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A B S T R A C T   

Background: Medical researchers and clinicians have shown much interest in developing machine learning (ML) 
algorithms to detect/predict surgical site infections (SSIs). However, little is known about the overall perfor-
mance of ML algorithms in predicting SSIs and how to improve the algorithm’s robustness. We conducted a 
systematic review and meta-analysis to summarize the performance of ML algorithms in SSIs case detection and 
prediction and to describe the impact of using unstructured and textual data in the development of ML 
algorithms. 
Methods: MEDLINE, EMBASE, CINAHL, CENTRAL and Web of Science were searched from inception to March 25, 
2021. Study characteristics and algorithm development information were extracted. Performance statistics (e.g., 
sensitivity, area under the receiver operating characteristic curve [AUC]) were pooled using a random effect 
model. Stratified analysis was applied to different study characteristic levels. Preferred Reporting Items for 
Systematic reviews and Meta-Analyses extension for Diagnostic Test Accuracy Studies (PRISMA-DTA) was 
followed. 
Results: Of 945 articles identified, 108 algorithms from 32 articles were included in this review. The overall 
pooled estimate of the SSI incidence rate was 3.67%, 95% CI: 3.58–3.76. Mixed-use of structured and textual 
data-based algorithms (pooled estimates of sensitivity 0.83, 95% CI: 0.78–0.87, specificity 0.92, 95% CI: 
0.86–0.95, AUC 0.92, 95% CI: 0.89–0.94) outperformed algorithms solely based on structured data (sensitivity 
0.56, 95% CI:0.43–0.69, specificity 0.95, 95% CI:0.91–0.97, AUC = 0.90, 95% CI: 0.87–0.92). 
Conclusions: ML algorithms developed with structured and textual data provided optimal performance. External 
validation of ML algorithms is needed to translate current knowledge into clinical practice.   

1. Introduction 

Surgical site infections (SSIs) are the most frequently reported 
healthcare-associated infections among surgical patients [1,2]. Annu-
ally, 1.3 million operative procedures are performed in Canada, and an 
estimated 312.9 million operations are completed globally, of which 
2–5% of the patients acquire SSIs [2,3]. The extra cost attributable to 
SSIs is estimated to be $20,842 USD per admission, and patient hospital 

stay is prolonged by an average of 9.7 days [4,5]. Most importantly, the 
rate of SSIs is increasing because of surgery volume growth and longer 
life expectancy [5,6]. 

Detecting SSIs is essential for infection prevention and control pro-
grams to further quality initiatives and decrease infection rates. Tradi-
tional SSI case identification methods rely on International 
Classification of Diseases 10th Revision (ICD-10) codes or chart reviews. 
However, the validity of ICD-10 codes in administrative databases varies 
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by local coding practices, and chart review requires extensive human 
resources and is often time-consuming [7]. Machine learning (ML) al-
gorithms that leverage rich text data documented in electronic medical 
records (EMR) have been applied in SSI case identification and predic-
tion [8–12]. However, to date, the effectiveness of these ML algorithms 
has not been summarized. 

To close this knowledge gap, this systematic review aims to sum-
marize literature evidence of ML algorithms’ performance in SSIs case 
detection and prediction, describe the impact of the use of unstructured 
and textual data in the performance of ML algorithms, and provide 
summaries of methodologies commonly applied in ML algorithm 
development. 

2. Methods 

The review protocol was registered at PROSPERO (register number: 
CRD42022339630) [13]. The Preferred Reporting Items for Systematic 
reviews and Meta-Analyses extension for Diagnostic Test Accuracy 
Studies (PRISMA-DTA) guidelines were followed [14]. 

2.1. Search strategy 

The literature search strategy (Supplement, eAppendix) was devel-
oped with the help of an experienced medical information expert. The 
Ovid MEDLINE, Ovid EMBASE, CINAHL, Cochrane Central Register of 
Controlled Trials (CENTRAL) and Web of Science databases were sys-
tematically searched from inception to March 25, 2021. Two groups of 
subject headings and synonyms of machine learning and surgical site 
infection were combined and searched without language limitation. 
Non-human studies, case reports, editorials, protocols, comments, or 
letters were excluded (Supplement: Search Strategy). Grey literature 
search was conducted through OpenGrey and Google Scholar. 

2.2. Eligibility criteria 

Only original studies were included. An article was considered for 
inclusion if it met the following criteria: (1) Population: adult patients 
who underwent any type of surgery (e.g., colorectal, gastrointestinal, 
orthopedic, abdominal, neurosurgical, etc.). (2) Measures: Authors 
defined ML algorithms for detecting and/or predicting SSIs. These 
include but are not limited to LASSO model, decision trees, random 
forest, artificial neural network, etc. (3) Comparison: Reference stan-
dard in the article to confirm the presence of SSIs. (4) Outcomes: The 
performance measures of ML algorithms. (5) Study Design: Not limited. 

. 

2.3. Study selection 

During the initial round of title and abstract screening, two reviewers 
(GW and SK), independently and in duplicate, reviewed the titles and 
abstracts for all retrieved citations. The same two reviewers subse-
quently reviewed the full texts of abstracts identified by both reviewers 
during the first screen. Articles that met the above inclusion criteria 
were included in the data extraction. Kappa statistic was employed in 
both the screening stages to measure agreement between reviewers 
[15]. All citations were managed with EndNote 20 (Thomas Reuters, 
Philadelphia, PA, USA). 

2.4. Data extraction 

The information of each selected article was collected in a data 
extraction form developed prior to review. The two reviewers extracted 
the following data independently: study characteristics (e.g. publication 
year/country, funding source, study design, etc.), patient demographic 
information (age, sex), SSIs information (e.g., type of wound, type of 
SSIs, the incidence rate of SSIs, etc.), ML algorithm information (e.g., 

data source/sample size of model training and validation) and perfor-
mance measures (i.e., sensitivity, specificity, positive predictive value 
[PPV], negative predictive value [NPV], accuracy and area under the 
receiver operating characteristic curve [AUC]). The reviewers (GW and 
SK) extracted the numbers of true positive, false positive, false negative 
and true negative of SSIs (two-by-two table) for each algorithm, if re-
ported in the article, or recalculated them (using available data) with the 
online Diagnostic Test Calculator, if not reported [16]. 

2.5. Risk of bias assessment 

Two reviewers (GW, FY) independently assessed the risk of bias for 
including articles using the validated tool QUADAS 2 (Quality Assess-
ment tool for Diagnostic Accuracy Studies) [17]. Rating results were 
discussed, and a consensus was reached. RevMan 5 was used to generate 
the risk of bias and applicability concerns summary and graph (Review 
Manager (RevMan) [Computer program]. Version 5.4, The Cochrane 
Collaboration, 2020). 

2.6. Synthesis of results 

Discrepancies from any review procedures were resolved by 
consensus. A third reviewer (DS) was involved when necessary. A 
PRISMA flow diagram was applied to indicate the number of articles 
included or excluded in the review and meta-analysis. Descriptive sta-
tistics were calculated for the results from the extracted data, including 
study characteristics, the incidence rate of SSIs, and ML performance 
indicators. Meta-analysis was performed to examine the performance 
estimates of selected ML algorithms along with a confusion matrix and 
its 95% confidence interval (CI) under a random-effects model. Strati-
fied analysis was applied to explore performance at different levels. 

The source of heterogeneity in a systematic review of DTA studies 
includes within-study variabilities (among ML algorithms) and between- 
study differences [18–20]. Therefore, heterogeneity was presumed in 
this review. Traditional heterogeneity measurements (e.g., Cochrane Q 
and I2) were univariate tests that do not account for heterogeneity 
among different ML algorithms within each study [18]. We followed the 
Cochrane Handbook for Systematic Reviews of DTA studies to graphi-
cally depict the observed heterogeneity using the summary receiver 
operating characteristic (SROC) curve [18,21]. The test performance 
was estimated with the hierarchical summary receiver operating char-
acteristic (HSROC) model. The model utilizes a hierarchical structure of 
data distributions in terms of two levels, within-study variability, and 
between-study variability [18–20]. It can provide equivalent summary 
estimates for both sensitivity and specificity. The overall ML algorithm 
performance was pooled using HSROC model, median and its corre-
sponding interquartile ranges (IQR) were also presented [19,20]. The 
Deeks Funnel Plot was used to determine publication bias [22]. Likeli-
hood Ratio Scatter was applied to graphically display the potential ap-
plications of developed algorithms [23]. All statistical analyses were 
performed using Stata SE 16 (StataCorp. 2019. Stata Statistical Software: 
Release 16. College Station, TX: StataCorp LLC.). 

3. Results 

The literature search initially revealed 945 articles. Title and abstract 
review resulted in 59 articles for full-text review (Kappa = 0.701), 17 
articles from a review of references and six articles from grey literature 
search. A total of 32 articles [7,8,10,24–52] were included for qualita-
tive synthesis with a Kappa agreement of 0.805. We conducted a 
meta-analysis on 15 articles [7,10,40–52] with cohort study design and 
sufficient ML performance data to enable calculations (Fig. 1). 

3.1. Characteristics of included articles 

As summarized in Table 1, over half of the included studies were 
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published between 2019 and 2020. Most of them were retrospective 
(81.3%), single-center (65.6%) studies originating in the United States 
(68.8%) using a consecutive sampling method (56.3%), with a focus on 
mixed (37.5%), colorectal (15.6%) or gastrointestinal (15.6%) surgical 
procedures. Of the 32 articles, 23 (71.9%) reported SSI follow-up days, 
of which 17 (73.9%) reported 30 days post-surgery follow-up. The ma-
jority (56.3%) of the studies did not disclose any funding source. 

Wound classification (clean 49.2%, clean/contaminated 27.2%, 
contaminated 15.3% and dirty 8.3%) was reported in three articles [10, 
33,48]. Excluding studies that did not report on sample sizes for model 
training and/or testing [24,25,31,39] and case control studies [30, 
35–37], a total of 6076 SSIs occurred in 165,717 surgical procedures. 
This translated to an overall pooled estimate of SSIs incidence rate of 
3.67%, 95% CI: 3.58–3.76. Types of SSIs were categorized as superficial 
incisional SSI (n = 1,074, 42.84%), deep incisional SSI (n = 427, 17.03), 

and organ/space SSI (n = 1,006, 40.13%) in five included studies [10, 
27,28,43,52]. 

3.2. Risk of bias in articles 

Four articles failed to report on the detailed process of patient se-
lection [30,35–37,53]. Reference standard used for algorithm validation 
was not clearly stated in nine articles [10,25,29,30,33,36,38,43,48]. 
The applicability concerns were minimal among all included articles 
(Supplement, eFig. 1). 

3.3. Description of ML algorithms 

A total of 108 ML algorithms were retrieved from the included 
studies, 36 (33.3%) were detective algorithms, and 72 (66.7%) were 

Fig. 1. Selection of articles for Review. 
Abbreviations: SSI, surgical site infections; ML, machine learning. 
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predictive algorithms. There were nine (8.3%) algorithms developed 
from textual data only, 47 (43.5%) algorithms developed from struc-
tured data and 52 (48.2%) algorithms developed with a mixed data 
source. The reference standard data sets used for ML algorithm devel-
opment were from national surveillance or quality improvement pro-
grams (n = 8, 25%), hospital surveillance programs (n = 5, 15%) and 
chart review (n = 8, 25%). The ML algorithms were developed using 
Logistic Regression and its variation (n = 31, 28.7%), random forest (n 
= 13, 12%), decision tree (n = 8, 7.4%), support vector machines (n = 8, 
7.4%), and Bayesian network (n = 7, 6.5%). The model threshold was 
reported in three (9.4%) articles [40,44,52]. The median sample size 
and SSI cases were 3410 (IQR: 1115–5992) and 167 (IQR: 60–232) for 
model training, 1616 (IQR: 654-4160) and 142 (IQR: 34–216) for model 
validation, respectively (Table 2). 

3.4. Performance of ML algorithms 

The research team extracted the two-by-two table for 15 articles that 
included 44 algorithms (7 detective and 37 predictive) [7,10,40–52]. 
The ML algorithms’ median sensitivity and specificity were 0.78 (IQR: 
0.62–0.86) and 0.91 (IQR: 0.87–0.98), respectively. HSROC model 
indicated an overall pooled sensitivity of 0.74, 95% CI: 0.66–0.81, 
specificity of 0.95, 95% CI 0.92–0.97, and AUC of 0.93, 95% CI: 
0.90–0.95. Heterogeneity was depicted with SROC cure and explored 
with stratified analysis. Most of the observed study results lay close to 
the summary ROC curve (Supplement, eFig. 2); however, there were 
quite a few scattered in ROC space, indicating a certain amount of 
heterogeneity. We explored the heterogeneity and its source of origin 
with meta-regression adjusted for study characteristics [54,55]. The 
type of ML algorithms (Predictive/Detective), mixed-use of structured 

Table 1 
Characteristics of included articles.  

Study ID Country Population Study 
Design 

Setting Sampling 
Method 

Patient Age Female 
No. (%) 

Surgery Type SSI Follow- 
up Days 

Funding 
Source 

Atti/2020 [43] Italy Pediatric Retro Single Consecutive NR NR Mixed 30 NR 
Azimi/2020 [46] USA NR Retro Single Consecutive Mean = 60.25 106 (51.5) Colorectal NR NR 
Bucher/2020 [10] USA NR Retro Multiple Random Mean = 53, SD 

= 18 
11,077 
(50.8) 

Mixed 30 G 

Chen/2020 [39] China Adult Retro Multiple Consecutive Median = 54.3, 
IQR (44, 65) 

13,293 
(61.5) 

Mixed NR NR 

Hopkins/2020 [44] USA NR Retro Single Consecutive 57.5 2104 [52] Orthopedic NR NR 
Karhade/2020 [38] USA Adult Retro Multiple Consecutive Median = 47, 

IQR [37,59] 
2628 
(44.8) 

Orthopedic 90 P 

Merath/2020 [29] USA Adult Retro Multiple Consecutive Median = 66, 
IQR (57, 75) 

NR Colorectal 30 NR 

Petrosyan/2020 
[47] 

Canada Adult Retro Single Consecutive Mean = 56.7 4540 
(56.3) 

Mixed 30 G 

Skube/2020 [50] USA NR Retro Single Consecutive Mean = 54, SD 
= 17 

5094 [45] Mixed NR G 

Song/2020 [49] USA Mixed Retro Multiple Consecutive NR 3990 [43] Cardiac and 
vascular 

NR G 

Gowd/2019 [23] USA NR Retro Multiple Consecutive Mean = 69.5, 
SD = 9.6 

7493 
(43.8) 

Mixed 30 NR 

Quérouéa/2019 
[48] 

France NR Retro Single Consecutive NR NR Orthopedic 90 NR 

Shen/2019 [32] USA NR Retro Single NR NR NR Colorectal 30 G 
Shi/2019 [40] USA NR Retro Multiple NR NR NR Mixed 30 G 
Silva/2019 [7] Brazil Pediatric Retro Single NR Mean = 48.31, 

SD = 22.03 
7107 
(56.9) 

Mixed 30 NR 

Thirukumaran/2019 
[35] 

USA NR CC Single Consecutive Mean = 45.8, 
SD = 20.7 

760 [48] Orthopedic 90 G 

Tunthanathip/2019 
[41] 

Thailand NR Retro Single Random Mean = 45.1, 
SD = 21.1 

632 [43] Neurosurgical 90 NR 

Grundmeier/2018 
[24] 

USA Pediatric Retro Multiple Consecutive NR NR Mixed 60 G 

Kocbek/2018 [42] Slovenia NR Retro Single NR NR NR Gastrointestinal 60 G 
Strauman/2018 [34] Norway NR CC Single NR NR NR Gastrointestinal NR G 
Weller/2018 [36] USA NR Retro Single Random NR NR Colorectal NR NR 
Chapman/2017 [37] USA NR Retro Multiple NR NR NR Gastrointestinal 30 G 
Sohn/2017 [8] USA NR Retro Single Random NR NR Colorectal 30 NR 
Hu/2016 [26] USA Pediatric Retro Single Consecutive NR NR Mixed 30 NR 
Ke/2016 [27] USA NR Pro Single NR Mean = 56.4 345 (63.7) General- 

abdominal 
30 NR 

Mandagani/2016 
[28] 

USA NR CC NR NR NR NR Gastrointestinal NR NR 

Sanger/2016 [31] USA NR Pro Single Random Mean = 56.5 542 (63.7) General- 
abdominal 

30 NR 

Hu/2015 [25] USA NR Retro Single Consecutive NR 3754 [60] Mixed 30 G 
Soguero-Ruiz/2015 

[33] 
Norway NR CC Single Random Mean = 57.0, 

SD = 20.7 
477 (47.4) Gastrointestinal NR NR 

Esbroeck/2014 [22] USA NR Retro Multiple Consecutive NR NR Mixed 30 NR 
Michelson/2014 

[30] 
USA Adult Retro Single Consecutive Mean = 53.5 1058 

(48.4) 
Mixed 30 G 

Campillo-Gimenez/ 
2013 [45] 

France Adult Retro Single Consecutive NR NR Neurosurgical 30 NR 

Abbreviation: CI, confidence interval; IQR, interquartile range; NR, not reported; SD, standard deviation; SSI, surgical site infection. 
Study Design: Retro, retrospective cohort study; Pro, prospective cohort study; CC, case control study; Setting: Single, single center; Multiple, multiple centers; 
Funding source: G, government; P, private. 
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Table 2 
Summaries of machine learning algorithms development.  

Study ID Data ML Technique Model 
Type 

Model 
Threshold 

Model Training (REF)a Model Validation (REF) 

Type Reference 
Standard 

Sample 
Size 

No. of 
SSI 

SSI 
Incidence 
Rate (%) 

Sample 
Size 

No. 
of 
SSI 

SSI 
Incidence 
Rate (%) 

b Atti/2020 [43] S-EMR, 
FT 

Hospital 
surveillance 
program 

RE D NR T 
(2,944) 

T [18] T (0.61) NR NR NA 

b Azimi/2020 [46] S-EMR NR BN, DT, SVM, 
ANNs, RF 

P NR T (208) T [18] T (8.65) NR NR NA 

b Bucher/2020 
[10] 

S-EMR NR NER D NR 4574 255 5.57 17,210 793 4.61 

b Chen/2020 [39] S-EMR, 
FT 

National 
surveillance data 
(NNIS) 

LR, RF, DT, 
ANNs 

P NR 17,597 202 1.15 4014 43 1.07 

b Hopkins/2020 
[44] 

NR Chart review ANNs P NR 3034 T [60] T (1.48) 1012 NR NA 

b Karhade/2020 
[38] 

FT Chart review BC D 0.05, 0.1, 
0.5 

4483 46 1.03 1377 16 1.16 

Merath/2020 [29] S-EMR ACS-NSQIP DT P NR 15,657 NR NA NR NR NA 
b Petrosyan/2020 

[47] 
ADMIN ACS-NSQIP RF, LR P NR 10,046 556 5.53 4305 239 5.55 

b Skube/2020 [50] S-EMR ACS-NSQIP LR D 0.04, 0.06 6188 398 6.43 5132 161 3.14 
b Song/2020 [49] ADMIN, National 

surveillance data 
(NIC-HAI) 

LR, DT, SVM P NR 7419 T 
(205) 

T (2.21) 1855 NR NA 
S-EMR 

Gowd/2019 [23] S-EMR NR LR P NR 13,697 NR NA 3422 NR NA 
b Quérouéa/2019 

[48] 
S-EMR, 
FT 

Hospital 
surveillance 
program 

LR D NR T 
(2,133) 

T [22] T (1.03) NR NR NA 

Shen/2019 [32] FT Chart review DT, SVM, RF D NR T 
(1,178) 

T (80) T (6.79) NR NR NA 

b Shi/2019 [40] S-EMR, 
FT 

Chart review RF, SVM, LR P NR T 
(5,795) 

T 
(291) 

T (5.02) NR NR NA 

b Silva/2019 [7] S-EMR, 
FT 

Hospital 
surveillance 
program 

RF, LR, SVM, 
BN, NC, SGD 

P/D NR 15,479 188 1.21 12,637 202 1.60 

Thirukumaran/ 
2019 [35] 

ADMIN, Hospital 
surveillance 
program 

LR P NR 1263 172 13.62 316 36 11.39 
S-EMR, 
FT 

b Tunthanathip/ 
2019 [41] 

S-EMR NR DT, BN, ANNs, 
KNN 

P NR T 
(1,471) 

T (67) T (4.55) 295 NR NA 

Grundmeier/2018 
[24] 

ADMIN, Chart review RF, LR P NR 6871 209 3.04 1039 25 2.41 
S-EMR, 
FT 

b Kocbek/2018 
[42] 

S-EMR, 
FT 

NR LR, BC P Range: 
0.171- 
0.245 

909 183 20.13 228 50 21.93 

Strauman/2018 
[34] 

S-EMR ICD-10 and 
Procedure codes 

ANNs D NR T (883) T 
(232) 

T (26.27) NR 232 NA 

Weller/2018 [36] S-EMR, 
FT 

NR LR, RF, SVM, 
BN, BC 

P NR 1051 102 9.71 232 18 7.76 

Chapman/2017 
[37] 

S-EMR, 
FT 

Chart review SVM D NR 565 NR NA 100 NR NA 

Sohn/2017 [8] S-EMR, 
FT 

Chart review BN D NR T (751) T (67) T (8.92) NR NR NA 

Hu/2016 [26] S-EMR ACS-NSQIP LR D NR 5280 336 6.36 3629 157 4.33 
Ke/2016 [27] S-EMR, 

FT 
NR Linear 

regression, 
SVM 

P NR 652 T 
(167) 

T (20.49) 163 NR NA 

Mandagani/2016 
[28] 

S-EMR NR LR, DT P NR T (879) T 
(181) 

T (20.59) NR NR NA 

Sanger/2016 [31] S-EMR NR BN D NR T (851) T 
(167) 

T (19.62) NR 229 NA 

Hu/2015 [25] S-EMR ACS-NSQIP LR D NR 3996 278 6.96 2262 127 5.61 
Soguero-Ruiz/ 

2015 [33] 
S-EMR ICD-10 and 

Procedure codes 
SVM P NR T 

[1,005] 
T 
(101) 

T (10.05) NR NR NA 

Esbroeck/2014 
[22] 

S-EMR, 
FT 

ACS-NSQIP LR P NR 602,089 NR NA 350,545 NR NA 

Michelson/2014 
[30] 

S-EMR, 
FT 

Hospital 
surveillance 
program 

LR P NR T 
(2,407) 

T [59] T (2.45) NR NR NA 

b Campillo- 
Gimenez/2013 
[45] 

S-EMR, 
FT 

Chart review VSM D NR 3785 42 1.11 1225 NR NA 
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and textual data sources for development of algorithms were associated 
with heterogeneity and were hence used for stratified analysis (Sup-
plement, eFig. 3). 

The median sensitivity and specificity of detective ML algorithms 
were 0.92 (IQR: 0.79–0.94) and 0.92 (IQR: 0.88–0.99), respectively. 
Pooled estimates in HSROC model reached a sensitivity of 0.89, 95% CI: 
0.81–0.94, specificity of 0.98, 95% CI: 0.86–1.0 and AUC of 0.95, 95% 
CI: 0.93–0.97. The median sensitivity and specificity of predictive ML 
algorithms were 0.75 (IQR: 0.58–0.84) and 0.91 (IQR: 0.87–0.97), 
respectively. HSROC model pooled estimates had a sensitivity of 0.70, 
95% CI: 0.61–0.78, specificity of 0.96, 95% CI: 0.91–0.96 and AUC of 
0.92, 95% CI: 0.89–0.94. The median sensitivity and specificity of al-
gorithms developed with structured data were 0.69 (IQR: 0.44–0.88) 
and 0.91 (IQR: 0.87–0.98), respectively. HSROC model pooled estimates 
had a sensitivity of 0.56, 95% CI:0.43–0.69, specificity of 0.95, 95% 
CI:0.91–0.97 and AUC of 0.90, 95% CI: 0.87–0.92. The median sensi-
tivity and specificity of algorithms developed with mixed data sources 
were 0.84 (IQR: 0.79–0.89) and 0.90 (IQR: 0.87–0.92). HSROC model 
pooled estimates had a sensitivity of 0.83, 95% CI: 0.78–0.87, specificity 
of 0.92, 95% CI: 0.86–0.95, AUC of 0.92, 95% CI: 0.89–0.94 (Figs. 2 and 
3). 

The performance of different ML methodologies varied in this study. 
Using the HSROC model, Logistic Regression and its variation (n = 14) 
had a sensitivity of 0.82, 95% CI: 0.70–0.91, specificity of 0.91, 95% CI: 
0.85–0.95, AUC = 0.94, 95% CI: 0.91–0.96, Artificial Neural Network 
(n = 5) had a sensitivity of 0.68, 95% CI: 0.50–0.82, specificity of 0.97, 
95% CI: 0.88–0.99, AUC = 0.90, 95% CI:0.87–0.92, Random Forest (n =
5) had a sensitivity of 0.70, 95% CI: 0.56–0.81, specificity of 0.93, 95% 
CI: 0.86–0.96, AUC = 0.90, 95% CI: 0.87–0.93, Support Vector Machine 
(n = 4) had a sensitivity of 0.75, 95% CI: 0.56–0.87, specificity of 0.94, 
95% CI: 0.86–0.96, AUC = 0.93, 95% CI:0.91–0.95. 

3.5. Publication Bias Assessment 

A mild asymmetric distribution of a natural logarithm of the DOR (x- 
axis) against a reciprocal of the square root of the effective sample size 
(y-axis) could be observed in Fig. 4. The results of Deeks funnel plot 
suggested symmetry (p = 0.14) of included studies and a low likelihood 
of publication bias. 

3.6. Sensitivity analysis on robustness of study estimates 

In this review, sensitivity analysis was undertaken by removing 
studies with application concerns rated by QUADAS 2, sample size 
smaller than one thousand, or keeping studies with 30 days of SSI 
follow-up. A repeat of the primary meta-analysis on algorithms derived 
from different data types was presented in eTable 1. In all sensitivity 
analyses, the ranking of the algorithms remained consistent with algo-
rithms derived from mixed data sources outperforming algorithms solely 
developed from structured data in both measures of sensitivity and AUC. 
Furthermore, the magnitude and direction of differences remained 
similar across sensitivity analysis suggesting robust estimates. 

3.7. Generalizability assessment 

Most of the included studies (93.8%) were internally validated with 
k-fold cross-validation. However, only a single study evaluated the 
external validity of developed algorithms with a blind cohort from 
another healthcare system [10]. The potential application of developed 
ML algorithms was graphically summarized in Supplement eFig. 4. The 
solid red square in the scatter graph indicates the position of the com-
bined positive likelihood ratio (LR) and negative LR estimates. The 
whiskers running through the red square are the confidence intervals for 
either positive LR (vertical whiskers) or negative LR (horizontal whis-
kers). The summary of the positive and negative likelihood ratios for ML 
algorithms with 95% CI in the upper right quadrant, indicates that the 
developed algorithms help confirm the presence of SSIs (when positive) 
and not their exclusion (when negative). 

4. Discussion 

Our review of the current literature identified 32 articles and 108 ML 
algorithms developed for SSI case detection and prediction. In addition, 
we observed an increased interest in applying ML techniques in SSI 
control and prevention with more articles published over the period 
studied. Despite a certain amount of heterogeneity, the median and IQR 
of raw data and HSROC model pooled estimates indicate that algorithms 
developed from mixed-use of structured data and textual data out-
performed algorithms solely based on structured data. Among ML 
methods included in this review, Logistic Regression and its variation 
demonstrated superior performance, suggesting an important technique 
for future studies. 

One important finding of this review is that adding clinical notes or 
free text as a data source for ML algorithm development could improve 
the model performance of SSIs case detection and prediction [26,41,56]. 
About 97% of SSIs occurred post-patient discharge [56]. Therefore, it is 
critical to detect or predict infections to capture any signs and symptoms 
documented in clinical notes with automated ML algorithms. Further-
more, our review suggests that ML algorithms trained with mixed-use of 
structured and textual data could produce comparable results compared 
with manual chart review. Current SSI surveillance programs mostly 
rely on ICD codes for an initial screen to exclude the most unlikely re-
cords, followed by a panel chart review to confirm the presence of SSI. 
The initial screen is crucial as the more accurate the rule-out method-
ology is, the fewer cases would remain for chart reviews, and subse-
quently be less time-consuming and cost-efficient. Given that the 
performance of ICD codes varied, it is anticipated that ML algorithms 
can be further developed and validated for SSI screen surveillance pro-
grams in the near future. 

This meta-analysis revealed better performance for detective models 
compared to predictive models. This is not surprising given that detec-
tive algorithms were developed with hospitalization data, while most 
predictive algorithms were trained solely on data collected before sur-
gery [7]. Logistic Regression and its variation were ranked at the top of 
ML algorithms that were included for meta-analysis and demonstrated 
its potential in automating SSI identification [57]. Depending on the 
purpose of a study, researchers need to choose the most relevant models 
(detective vs. predictive) and appropriate ML tools [58]. 

Abbreviation: IQR, interquartile range; NA, not available; NR, not reported; SSI, surgical site infection. 
Data type: FT, Free text data; ADMIN, Administrative data; S-EMR, Structured Electronic Medical Records. Reference standard, ACS-NSQIP, American College of 
Surgeons-National Surgical Quality Improvement Program; NIC-HAI, Nursing Intensity of Patient Care Needs and Rates of Healthcare-Associated Infections; NNIS, 
National Nosocomial Infections Surveillance. ML type: ANNs, Artificial Neural Networks and its variations; BC; Boosted Classifiers (e.g., AdaBoost, XGBoost); BN, 
Bayesian Network; DT, Decision Tree; KNN, k-nearest neighbors; LR, Logistic Regression and its variations; NC, Nearest Centroid; NER, Named Entity Recognizer; SGD, 
Stochastic Gradient Descent; SVM, Support Vector Classification; RE, Regular Expression; RF, Random Forest; VSM, Vector Space Model. Model type: P, predictive; D, 
detective. 
(REF): Data extracted from reference standard (e.g., chart review). 

a T (number indicates total number of SSI/procedures (when training/testing sample size were not specified in article). 
b Articles included for Meta-analysis. 
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Fig. 2. Forest plot of sensitivity and specificity for structured data-based algorithms (2A) and mixed data-based algorithms (2B).  

G. Wu et al.                                                                                                                                                                                                                                      



Annals of Medicine and Surgery 84 (2022) 104956

8

Fig. 3. Hsroc curve for structured data-based algorithms (left) and mixed data-based algorithms (right).  

Fig. 4. Deeks funnel plot for publication bias assessment.  
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Heterogeneity was expected in this review [19,20,54,55]. Sources of 
heterogeneity were explored with meta-regression and stratified anal-
ysis was performed. Other sources, like the threshold effect, could also 
cause heterogeneity [59]. The threshold in ML is the best score we could 
choose and set from decision function output to label a sample as a 
negative or positive class to achieve optimal model performance [60]. In 
addition, a threshold can be decided for research purposes (high sensi-
tivity/PPV or F1 score) and tuned during model development. In this 
review, performance estimates were pooled using the HSROC model, 
considered the most statistically rigorous model to mitigate threshold 
effect, as recommended by the Cochrane Collaboration Center and the 
Agency for Healthcare Research and Quality (AHRQ) [18,19,21,59]. 
Descriptive statistics (median, IQR) of raw data and pooled estimates of 
HSROC model for algorithm performance measures suggest similar dif-
ferences in magnitude and direction. 

The application of ML technologies into medical research is prom-
ising, and validity is still the crucial step for generalizability [61]. 
Almost all (93.8%) of the algorithms were internally validated, with 
only a single study providing external validation, using a large cohort 
from a different healthcare system [10]. The majority (65.6%) of 
included articles were single-center studies, so the external validation 
for developed algorithms remains a concern [61]. Clinical imple-
mentation of developed algorithms was not explicitly suggested in ar-
ticles, and knowledge translation studies are still largely needed. 

5. Limitations 

To the best of our knowledge, this is the first systematic review to 
summarize the performance of ML algorithms in SSI case detection and 
prediction. Despite rigorous review steps and applying multiple statistic 
methodologies, our findings must be carefully interpreted with the 
following limitations. First, though the conclusion is clear, pooled ML 
performance estimates are subjected to chances of heterogeneity. We 
suggest using descriptive statistics of raw data instead. Second, we re- 
calculated the two-by-two table with reported measures from the 
included articles, and there might be a chance of misclassification due to 
rounding. However, we estimate the impact would be minimal 
compared to the large cardinality of included surgical procedures. 
Lastly, the stratified analyses of individual ML methodology were built 
on a limited number of reported studies which may not accurately reflect 
their general performance. 

6. Conclusion 

The application of ML algorithms into medical practice has been 
promising in the past decade. Algorithms developed with mixed-use of 
structured and textual data provided optimal performance for SSI 
detection and prediction. However, external validation of developed 
algorithms is needed for translating current knowledge into clinical 
practice. 
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