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Abstract

Sensory modalities typically are important for both sexes, although sex-specific functional adaptations may occur
frequently. This is true for hearing as well. Consequently, distinct behavioural functions were identified for the different
insect hearing systems. Here we describe a first case, where a trait of an evolutionary novelty and a highly specialized
hearing organ is adaptive in only one sex. The main function of hearing of the parasitoid fly Emblemasoma auditrix is to
locate the host, males of the cicada species Okanagana rimosa, by their calling song. This task is performed by female flies,
which deposit larvae into the host. We show that male E. auditrix possess a hearing sense as well. The morphology of the
tympanal organ of male E. auditrix is rather similar to the female ear, which is 8% broader than the male ear. In both sexes
the physiological hearing threshold is tuned to 5 kHz. Behavioural tests show that males are able to orient towards the host
calling song, although phonotaxis often is incomplete. However, despite extensive observations in the field and substantial
knowledge of the biology of E. auditrix, no potentially adaptive function of the male auditory sense has been identified. This
unique hearing system might represent an intralocus sexual conflict, as the complex sense organ and the behavioural
relevant neuronal network is adaptive for only one sex. The correlated evolution of the sense organ in both sexes might
impose substantial constraints on the sensory properties of the ear. Similar constraints, although hidden, might also apply
to other sensory systems in which behavioural functions differ between sexes.
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Introduction

Adaptive phenotypes are a result of evolutionary processes

underlying natural selection, genetic drift and sexual selection. In

sexual reproducing species, such phenotypes have also to be

balanced between the sexes [1,2]. Females and males phenotyp-

ically differ in many traits, which are regulated by sex-biased genes

[3,4]. This bias may lead to intralocus sexual conflicts (IASC),

when a trait in one sex affects the phenotypic optimum in the

other sex [5]. Here we investigate a complex sense organ, the ear

of flies, in respect to sexual differences and adaptive functions.

In insects hearing evolved several times independently [6–9]

driven by three basic selection forces: intraspecific communication

(like mate finding and spacing, in many species of Orthoptera and

Homoptera), predator avoidance (most prominently in nocturnal

Lepidoptera to avoid echolocating bats) and host finding (used by a

few parasitoid Diptera). Hearing organs may also serve more than

one function: for example, crickets use a low frequency band for

intraspecific communication and a high frequency band for

predator avoidance [10]. If the selection pressure is not the same

for both sexes IASC can occur and/or hearing organs might

evolve to be sexually dimorphic. Examples of dimorphic ears are

found in several groups. For example, mantid ears may show

anatomical as well as physiological differences [11,12]. In mantid

species with sexual differences, females have reduced hearing

capabilities, especially in the ultrasonic range and the trait

correlates with wing reduction. Sexually dimorphic ears have also

been described in parasitoid fly species (Ormiini, Tachinidae) [13–

16]. These flies are parasitoids of nocturnally calling Orthoptera.

Host finding is a function of hearing, which is performed only by

one sex, the females. The male ear is smaller, is differently tuned

and less sensitive when compared to the female ear) [13–16]. In

Ormiini, the male hearing organ is believed to function for

predator ( = bat) avoidance.

In addition to the Tachinidae, some species of Sacrophagidae

convergently evolved auditory host finding [17]. The sarcophagid

Emblemasoma auditrix parasitizes sound producing males of the

cicada Okanagana rimosa [17,18]. Like in the Ormiini this parasitoid

uses acoustic cues for host localisation, but – as the host - it is

active during daylight only and therefore no predator pressure by

bats exists. Gravid females perform phonotaxis to the calling song

of O. rimosa for larva deposition into the host. Here, we investigate

whether males have an auditory sense and whether the sense

organ is functional physiologically and behaviourally. The findings

are discussed in respect to the character evolution in both sexes.
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Methods

Animals were observed and collected in the field near Grayling

or Pellston, Michigan, USA. For electrophysiology pupae were

collected from infected host cicadas (Okanagana rimosa). The pupae

were transferred to University of Göttingen, Germany and kept for

up to six months at 4uC. Adult flies of both sexes emerged 14 to 20

days after transferring them into room temperature. Adult flies

were kept with water and sugar ad libidum and were investigated 3–

5 days after emergence.

In the field, male E. auditrix were collected by sweeping the

vegetation and were transferred to the Biological Station of the

University of Michigan (UMBS), Pellston for behavioural tests.

Animals had their wings clipped off to prevent escape and were

kept in small cages, with sugar and water ad libidum. Flies were

tested up to seven days after their capture. Altogether 17 flies were

tested, up to three times in an experiment.

The arena for behavioural tests (50 cm x 70 cm) was weakly

illuminated from above (300–430 Lux). The arena was covered

with cloth to minimise optical cues. One piezo loudspeaker (HT-

Horn; Conrad Electronic) was placed behind the cloth in the

centre of one side. Flies were released in 50 cm distance from the

front of the loudspeaker. For phonotaxis experiments the calling

song of the host O. rimosa was digitised (from a mastertape of T.

Moore, Ann Arbor, USA) and stored on a compact disc (CD,

44.1 kHz sampling rate). The calling song consisted of chirps with

8–10 kHz peak frequency, 6 ms duration and a repetition rate of

83 chirps per second (cps); cicadas emit the calling song with

90 dB SPL at 10 cm distance [19]. Song models of the calling song

were created using CoolEdit (Syntrillium Coop.) and also stored

on compact disc. The first model had a carrier frequency of 9 kHz,

a repetition rate of 80 cps and comprised two pulses (one of 1 ms

and one of 4 ms separated by 1 ms pause, for a total duration of

6 ms, resembling the temporal structure of the calling song). The

second model had a carrier frequency of 5 kHz corresponding to

the best hearing frequency. The signals were played back with a

discman (Sony D-131) connected to a custom built amplifier and

attenuator in order to adjust sound intensity at the release point of

the flies. Sound intensity was measured using a sound level meter

(Bruel & Kjael 2203) equipped with a 1/2‘‘ microphone (B & K

4165). The intensity was varied in steps of 5 dB between 60 and

85 dB SPL (rel. 20 mPa). A discriminative scoring system was

developed in order to detect minute behavioural elements of

phonotaxis. The behaviour was observed and scored in three

classes: class 1 - turns towards the loudspeaker, class 2 - phonotaxis

of 20 cm, class 3 - complete phonotaxis (50 cm). For statistical

analyses each class was assigned one point and the mean number

of points was calculated. Statistical analysis included contingency

table tests and ANOVA using Prism software (GraphPad Coop.).

In the field the signals were broadcasted with a sound pressure

level of 90–100 dB SPL and animals performing phonotaxis were

collected [20]. Acoustic attraction experiments were also made at

clearings with dry vegetation, where male flies had been caught by

sweeping with a net. At these places sounds have been recorded on

digital recorder (Tascam DR-100, 44.1 kHz cut off frequency) to

identify any specific sounds males are exposed to.

For electrophysiological determination of the hearing threshold

the animal was fixed dorsal side up and the neck connective was

exposed [18]. The hearing threshold was determined by suction

electrode recordings from axons of auditory interneurons in the

neck connective. Sound stimuli (comprising pure sine waves

between 3 and 50 kHz and a duration of 50 ms with pauses of

250 ms) were synthesised with a PC-controlled sound board and

presented with a single speaker. For other details of the

electrophysiological setup see [15,16].

For scanning electron microscopy of the tympanal organ, the

anterior thorax was dissected and fixated in 4% paraformalde-

hyde. After dehydration, preparations were critical point dried

(Balzers, CPD 030) and sputtered with gold (Baltec SCD 050). The

preparations were viewed with a Leo 438VP scanning electron

microscope and pictures were digitised (10246768 pixel) with a

CCD camera. Additional morphometric measurements were

performed with a dissecting microscope (Leica MS5) and a

calibrated ocular.

Ethics statement
For the field work, access to the Pellston site was permitted by

the Biological Station of the University of Michigan (UMBS). The

Grayling site is public land, no permission is required. Emblemasoma

auditrix is not protected and experiments were done in accordance

with the regulations for invertebrate research in the US and

Germany.

Results

The sarcophagid Emblemasoma auditrix possesses an ear at the

prothorax, directly behind the head (Fig. 1). The ear is sexually

dimorphic with the female ear broader than the male ear (table 1).

The ear width, measured from one side to the other side of both

tympanal membranes, as well as the width of the probasisternite (a

cuticular element ventral of the tympanal membrane) is about 8%

larger in females than in males. Head widths of males and females

do not differ, whereas males have a longer femur than females

(table 1). The ear width correlates best with the head width

(females: r = 0.806; males: r = 0.612).

The male hearing organ is physiologically functional. The

hearing threshold has a minimum at about 5 kHz and is relatively

insensitive in the ultrasonic range (Fig. 2). Interestingly, the

threshold curves of males and females are rather similar in respect

to tuning and general sensitivity.

In the field, female Emblemasoma auditrix can be attracted to a

loudspeaker broadcasting the calling song of the host. In hundreds

of experiments in 12 years of field research only females have been

caught on the speaker. In rare cases (less than 5 observations

during 12 years) male flies were detected in the vicinity of the

experimental setup. More regularly, male flies could be caught

early in season by sweeping patches with dry vegetation. At these

patches matings have been observed; analyses of the status of

mating females showed that they had developed ovaries, but no

larvae (n = 3). Recorded sounds at these places included bird

vocalizations and environmental noise (wind), but no specific fly

related sounds.

Behavioural experiments in the laboratory clearly demonstrated

that male flies react to sound signals. A male was released in the

arena and the behaviour in response to the calling song of the

cicada was quantified. Complete phonotaxis has not been

observed in contrast to females [21]. Therefore, a more

discriminative assay than that used for female phonotaxis had to

be designed: Points were assigned to three different levels in

behaviour (turning towards the speaker, initial directed movement,

completed phonotaxis). Control males which were released in the

arena without acoustic signals turned towards the loudspeaker only

by chance and reached a mean score of 0.25 points (Fig. 3A;

s.e.m.: 0.091, n = 24). When stimulated with the calling song of the

host about 80% of the animals turned towards the speaker and the

behavioural score increased with increasing sound pressure level

(Fig. 3A). At 80 dB SPL the score reached nearly the value 1 and

Useless Hearing
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was significantly different from the control level; in this scoring

system females reach a score of nearly 3 [22]. Due to variability in

the male response individual thresholds for single males have not

been determined. Additionally, males were tested with a song

model with 9 kHz carrier frequency (corresponding to the peak

frequency of the host calling song), in comparison to a model with

5 kHz carrier frequency (best hearing frequency). Males showed a

frequency dependent behavioural reaction, with higher scores in

response to the model with 9 kHz carrier frequency (Fig. 3B). Two

out of 17 males even showed a complete phonotaxis to the song

model with 9 kHz carrier frequency.

Discussion

The results clearly show that males of E. auditrix possess an ear,

are able to hear and may use it for phonotaxis towards cicada

songs. Nevertheless, since the known hearing function (host finding

for larvae deposition) is exclusively related to the female, the main

question arises: why do males hear at all? We propose that for the

species E. auditrix hearing has an adaptive value for the female

only, while for the male no detectable function exists. This

proposed non-function in one sex can only be revealed with

negative evidence, which principally is difficult to produce. In the

following we firstly carefully check the male hearing sense against

the known functions of hearing in insects [9], before relating the

findings to general questions.

1) Function in intraspecific signalling, either between
sexes or between individuals of the same sex

This function of insect hearing requires sound production of the

species. Evolutionarily, in a taxon like Orthoptera sound

production is rather old and it is even more widely distributed

than hearing [9,23,24]. However, no intraspecific acoustic

communication signals are known in Emblemasoma and no

specialized sound producing structures have been detected on

the flies. Flies may produce buzzing noises during flight, but these

noises do not seem to play a role for long range intraspecific

signalling: no buzz related auditory behaviour has been detected

and the rather high hearing threshold makes such behaviour

unlikely. For Diptera in general it is known that Near Field sounds

produced by the wing movements may be important for sex

recognition in short distance and that such sounds contain

frequencies below 1 kHz [25]. The antenna reacts to the particle

velocity of these sounds (Mosquitos [26–28]; Drosophila [29,30]).

By contrast, the tympanal ear of E. auditrix is a sound pressure

receiver, reacting to Far Field sounds of higher frequencies than

1 kHz.

In addition to self-generated sounds, also sound from external

sources might be used by both sexes for intraspecific interaction,

like gathering together at a sound source. However, screening for

environmental sounds in the habitat did not reveal any abiotic

sound source which might attract both sexes. Furthermore, non-

biological noises are irregular and have frequency spectra below

Figure 1. Scanning electon micrographs of the ear of a female
(A) and a male (B) Emblemasoma auditrix. at: attachment site of the
sensory cells, co: coxa of the foreleg, lc: lateral cervicale, pbs:
probasisternite, ps: prosternite, tym: tympanal membrane. Dorsal is to
the top.
doi:10.1371/journal.pone.0087211.g001

Table 1. Mean length and width of different morphological
structures of males and females in mm (s.e.m. in parentheses).

Male (n = 21) Female (n = 22) P-value

Femur length 2.73 (0.039) 2.61 (0.023) P = 0.0241*

Head capsule width 3.15 (0.028) 3.23 (0.031) P = 0.1003

Ear width 5.38 (0.058) 5.82 (0.055) P,0.0001****

Probasisternite width 1.94 (0.022) 2.12 (0.049) P = 0.0021**

Statistics: unpaired t-test with Welch’s correction comparison of male and
female; the ear width is highly significantly different between males and
females.
doi:10.1371/journal.pone.0087211.t001

Figure 2. Hearing thresholds (mean and s.e.m.) of female
(green) and male (red) E. auditrix. The hearing threshold was
determined based on extracellular recordings from the neck connective.
Hearing threshold for female adapted from [17]. N = 3 for female, N = 4
for male.
doi:10.1371/journal.pone.0087211.g002
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2 kHz [31]. A biological sound source with such a function, of

course, could be the cicada calling song, which is discussed under

function 3.

2) Function in predator detection
It is self-evident that it is advantageous to detect all kinds of

stimuli, which would indicate appearance of a potential predator.

The male ear, therefore, might serve as a predator detector.

However, for what predators might the ear be specifically

adaptive? E. auditrix is active during (sunny) daytime [20] and it

is unlikely that bats – a major predator group driving evolution of

hearing in insects - predate on them.

In direct contrast to E. auditrix hearing tachinid flies are active

during night. Therefore, a predator avoidance function has been

suggested for male hearing in Ormia ochracea [13]. The suggestion is

based on the shape of the threshold curve, as well as on the

difference to female hearing, but evasive behaviour of males has

not yet been shown. Like in E. auditrix it never has been observed

that males of Ormiini are attracted to songs of hosts (O. depleta [32];

O. ochracea [33]; H. alleni [34]). Little is known about the biology

and activity of males and also for potential predator pressures.

Male Ormia seem to aggregate in large groups on top of exposed

landmarks as a waiting station for mating [35]. Non-hearing

tachinids show the same behaviour, even at the same sites [35].

This questions the selection pressure for hearing in males at least

in this behavioural context. Nevertheless, the hypothesis of bat

avoidance in male tachinids is plausible, but it does not apply to

the known activity pattern of E. auditrix.

Selective pressure for auditory detection of diurnal predators

has not been clearly demonstrated, although some butterflies

might be able to detect bird sounds [36]. In general, birds, reptiles,

or predatory insects might catch E. auditrix, but no specific

predator (and related sounds) has been detected. For example,

wing beat noises have lower frequencies [36] than sensitive hearing

in E. auditrix (peak at 5 kHz). Additionally, sympatric blow fly

species do not possess an ear. A well-developed visual sense and a

vibration sense seem to be more important for predator avoidance.

Like many other flies, E. auditrix reacts sensitive to vibratory stimuli

[17] and has prominent eyes.

3) Function in host detection
This function is exclusively necessary for females of the

investigated parasitoid species. A female is perfectly able to infect

a cicada [37], and males are not necessary during the infection

process. Could male phonotaxis towards the host calling song be

an indirect way of mate finding? The reproductive behaviour of E.

auditrix does not support such a hypothesis either: Already in early

June nearly all female E. auditrix which were attracted to the

loudspeaker were carrying fully developed larvae in their uterus

[22]. Matings must have taken place some days earlier, as larvae

need some time to develop. Furthermore, multiple matings are

unlikely, since later in the season the ovaries were shrunken in

females [22] and mating flies did not carry larvae. Additionally,

observations of 12 years field work support the lack of male

attraction to the host, as males have never been attracted to a

loudspeaker (by contrast to far more than thousand females) and

mating has never been observed during the phonotactic experi-

ments.

By contrast to phonotaxis, visually guided male chasing

behaviour and mating have been observed in the appropriate

microhabitat. For mating male E. auditrix follow fast moving

objects as do many other Oestroidea flies [38]. Male flies even may

possess specific neuronal networks for the chasing behaviour and

detection of small objects [39]. Thus, the visual sense probably

plays the major role in mate finding.

Furthermore, the reproductive behaviour of this fly species is

related to the seasonality of the host. Adults of the host cicada

species emerge from the ground by mid-June [19] and it takes

some more days before cicada males start calling. Flies are present

in the biotope before the host is available. A similar temporal

pattern has also been observed in the ormiine fly, Therobia leonidei

(Lehmann, pers. comm.) and seems to be adaptive to ensure an

overlap in seasonality of parasitoid and host. Taken together, mate

finding in E. auditrix does not rely on the cicada song.

Physiology of hearing in both sexes and intralocus sexual

conflict. None of the functions suggested so far for insect

hearing seems to be relevant for male E. auditrix. Whereas the

hearing system is clearly present in males, the positive behavioural

reaction to the host signal, however, was detected by a sensitive

Figure 3. Phonotactic behaviour of male E. auditrix. The
behaviour was scored in three classes, which were assigned one point
each. Class 1: turning towards the speaker, class 2: moving towards the
speaker (20 cm), class 3: complete phonotaxis and reaching the speaker
(in 50 cm distance). A Phonotactic score in respect to the sound
pressure level of the calling song. The dashed line indicates the score
without sound; the grey area indicates the variation (+- s.e.m.). The
numbers of tests are indicated in the columns. Each animal was tested
twice (N = 12, n = 24 without sound; N = 11, n = 22 for 65 dB SPL; N = 13,
n = 26 for 70 dB SPL; N = 12, n = 24 for 75 dB SPL), except for 80 dB SPL
(N = 14, n = 42). Mean with s.e.m., ANOVA with Bonferroni correction. B
Phonotactic score in respect to song models with different carrier
frequencies (both at 80 dB SPL). Despite the more sensitive hearing at
5 kHz, the phonotactic score to 5 kHz models is significantly lower than
to 9 kHz models (p = 0.0113, t = 3.27, df = 11, paired t-test). The
numbers of tests are given in the columns; each animal was tested
once. Mean with s.e.m.
doi:10.1371/journal.pone.0087211.g003
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scoring system. In the following we discuss the physiology in

respect to genetic links which might have led to the evolution of

the sense organ in both sexes, although it is needed only in one sex.

Evolution of traits is balanced between sexes [1–3] and

intralocus sexual conflict occurs when the expression of sexually

antagonistic alleles increases the fitness in one sex, but decreases

the fitness in the other sex [4,5]. Here, conflicting selection

pressures might occur for the hearing sense of E. auditrix since a

probably functionless trait has evolved in the context of correlated

characters. Ears in both sexes are rather similar, e.g. in respect to

tuning to 5 kHz instead of matching the peak frequency of the

host’s calling song (9 kHz). This mismatch has already been

puzzling during interpretation of the female hearing [17,20,21].

For host detection it has been assumed that temporal structures of

the calling song are more important than peak frequency [21].

The finding that males have the same best hearing frequency as

females indicates the tuning of the ears being a general

phenomenon. So far, the reasons for the mismatch can only be

speculated upon. Since the ear is also sensitive to substrate

vibrations [17], the tuning might be related to that physiological

function. Ongoing physiological experiments test the hypothesis

that vibration detection is important for both sexes.

A non-functional organ in one sex might also lead to sexually

dimorphic sense organs or to reduction of the organ. Both

processes are observed among hearing insects. In insect species

with sexually dimorphic hearing organs divergent functions for the

sexes have been found or proposed [11,12,40,41]. The best

investigated taxon in this respect are Mantodea [11,12]: female

mantids in different lineages have reduced their hearing capabil-

ities to different degrees. This reduction is best correlated with a

partial or complete reduction in wings and has therefore been

related to reduced selection pressure by bats [11]. A correlation of

wing loss, correspondingly reduced predator pressure and reduced

hearing has also been found in other taxa [40,42,43]. In moths a

loss of predation may lead to a reduced sensitivity in hearing

[44,45]. Such a regression typically affects both sexes, as in

grasshopper which lost acoustic communication [46]. The lack of

regression in E. auditrix might be due to the evolutionary origin

from a precursor chordotonal organ the function of which is still

represented in the present ear [17]. Nevertheless, a biological

function of hearing in males is missing and genetic coupling might

have influenced the evolution.

The developmental genetics for formation of a tympanal ear in

insects are not known and hopefully future gene expression studies

might reveal the mechanisms for development of the different

phenotypes. Nevertheless, possible intralocus sexual conflicts

would have implications for interpretation of the traits for hearing

and evolution of insect ears in general. For intraspecific acoustic

communication, the basic scheme is that one sex (male) signals and

the other sex (female) responds to the sounds [9]. Thus, the

evolution of an ear might in the first place have been adaptive for

females. Because of a genetic linking, the male would have evolved

an ear as well and hearing would have acquired secondary

functions, like intraspecific spacing of signaling males, duet

communication or predator avoidance. Such a view is also

supported by the fact, that in some taxa the sound producing

structure of females and males evolved independently [47,48].

These constraints should be kept in mind, when interpreting the

physiology of hearing.

Following the arguments above, we have identified a sense

organ that is functional in both sexes but is probably not adaptive

in males. This process could only be detected in an example, in

which despite careful investigations no - not even a speculative -

function was detected. It seems plausible that the hearing sense

evolved correlated in both sexes, even though it has a function in

one sex only. The evolutionary origin of insect hearing organs also

speaks for the hypothesis that the initial traits are genetically

coupled and that only later the traits came under the influence of

sex-specific adaptations.
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27. Göpfert M, Robert D (2000) Nanometre-range acoustic sensitivity in male and

female mosquitoes. Proc Roy Soc Biol Sci 267: 453–457.

28. Warren B, Gibson G, Russell I (2009) Sex recognition through midflight mating
duets in Culex mosquitoes is mediated by acoustic distortion. Curr Biol 19: 485–

491.
29. Eberl DF, Duyk GM, Perrimon N (1997) A genetic screen for mutations that

disrupt an auditory response in Drosophila melanogaster. Proc Natl Acad Sci USA

94: 14837–14842.
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