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A B S T R A C T   

Huntington’s disease (HD) is a neurodegenerative disorder characterized by motor, psychiatric, and cognitive 
symptoms. Due to its diverse manifestations, the scientific community has long recognized the need for sensitive, 
objective, individualized, and dynamic disease assessment tools. We examined the feasibility of Differential 
Tractography as a biomarker to evaluate correlation of symptom severity and of HD progression at the individual 
level. Differential tractography is a novel tractography modality that maps pathways with axonal injury char-
acterized by a decrease of anisotropic diffusion pattern. We recruited sixteen patients scanned at 0-, 6-, and 12- 
month intervals by diffusion MRI scans for differential tractography assessment and correlated its volumetric 
findings with the Unified Huntington’s Disease Rating Scale (UHDRS). Deterministic fiber tracking algorithm was 
applied. Longitudinal data was modeled using the generalized estimating equation (GEE) model and correlated 
with UHDRS scores, in addition to Spearman correlation for cross-sectional data. Our results show that volumes 
of affected pathways revealed by differential tractography significantly correlated with UHDRS scores in lon-
gitudinal data (p-value < 0.001), and chronological changes in differential tractography also correlated with the 
changes in UHDRS (p-value < 0.001). This technique opens new clinical avenues as a clinical translational tool to 
evaluate presymptomatic and symptomatic gene positive individuals. Our results provide support that differ-
ential tractography has the potential to be used as a dynamic imaging biomarker to assess at the individual level 
in a non-invasive manner, disease progression in HD. Critically important, differential tractography proves to be 
a quantitative tool for following degeneration in presymptomatic patients, with potential applications in clinical 
trials.   

1. Introduction 

Huntington’s disease (HD) is a progressive chronic neurodegenera-
tive disorder, resulting from a mutation in the huntingtin gene consist-
ing of a CAG repeat expansion. The resulting protein has an expanded 
glutamine repeat near the N-terminus, resulting in a toxic gain of 
function. No effective treatment is available for HD, and the disease is 
universally fatal. Hallmarks of HD include choreic movements, extra-
pyramidal motor abnormalities, and cognitive impairment. HD patients 

may also present with behavioral abnormalities including anxiety, 
depression and compulsive behaviors (Craufurd et al., 2001). A reliable 
approach to evaluate disease severity and progression has been chal-
lenging in HD. The assessment of the severity of clinical symptoms relies 
mostly on the Unified Huntington’s Disease Rating Scale (UHDRS) for 
disease stage stratification (Kieburtz et al., 2001). UHDRS evaluates the 
motor, cognitive, behavioral, and functional capacity allowing for a 
quantitative assessment based on clinical presentation. Despite the 
usefulness of UHDRS, there is still an ongoing need for an objective 
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imaging biomarker to assess disease onset, progression, and severity. 
Studies such as PREDICT-HD (Biglan et al., 2009) and TRACK-HD 

(Tabrizi et al., 2009) have used standard MRI to quantify gross struc-
tural findings and investigate the correlation between neuroimaging 
findings with cognitive and biological imaging and motor outcome 
measures. TRACK-HD correlated volumetric MRI with UHDRS in pre-
manifest and manifest patients. Both PREDICT-HD and TRACK-HD 
confirmed previous reports supporting the value of imaging markers, 
especially of striatal and whole-brain atrophy during the premanifest 
stage (Biglan et al., 2009; Tabrizi et al., 2009). A recent study (Zeun 
et al., 2022) that applied fixel-based analysis in a large sample of pre-
manifest individuals suggests that white matter structures such as the 
cortico-basal ganglia display signs of degeneration or “vulnerability” at 
around 11–25 years after diagnosis, with preserved integrity as early as 
25 years before diagnosis has been established. In addition, the afore-
mentioned study observed that the sensory and motor components of the 
thalamus and the limbic and motor striatum have demonstrated to be at 
risk in this population, suggesting that clear observable white matter 
changes at the voxel level can be demonstrated years after diagnosis and 
not during the premanifest phase. These interesting findings allow the 
opportunity for the emergence of biomarkers capable of detecting onset 
of neurodegeneration before clinical manifestations, which in turn, with 
early initiation of disease modifying therapies, can potentially represent 
a better quality of life for these patients. Other studies have shown that 
white matter atrophy is evident in T1-weighted MRI with posterior- 
frontal white matter degeneration evident in at-risk individuals far 
from disease onset (Tabrizi et al., 2009). Structural MRI allows for the 
examination of gradual changes that occur in premanifest HD with MRI 
studies showing that these subjects have brain atrophy years before 
disease manifestation in pyramidal projection neurons in the motor and 
prefrontal cortices, and cingulate and angular gyri (Macdonald and 
Halliday, 2002; Thu et al., 2010). However, volumetric findings in the 
above-mentioned studies applied a group-based approach and individ-
ual difference are of the utmost importance for clinical applications. 
Although it is recognized that structural MRI has been sensitive to 
measure for neuronal loss and total volume measurement in grey and 
white matter cortical areas (Tan et al., 2021), there is still ongoing ef-
forts to increase the search for specific markers for localization of vol-
ume loss and atrophy (Adanyeguh et al., 2021). 

White matter changes have been studied by implementing diffusion 
MRI to explore its clinical value in neurodegeneration. Techniques such 
as Diffusion Tensor Imaging (DTI) (Basser et al., 1994) are capable of 
detecting structural changes in axonal pathways in HD patients (Dumas 
et al., 2012; Georgiou-Karistianis et al., 2011; Gregory et al., 2015; 
Klöppel et al., 2008; Phillips et al., 2013; Poudel et al., 2014; Rosas et al., 
2010; Ross et al., 2014; Weaver et al., 2009). Disruption of several white 
matter pathways including cortico-striatal motor projections, cingulum, 
uncinate fasciculus, thalamocortical projections, corpus callosum, and 
corticospinal tract, have been found in HD (Dumas et al., 2012; 
Georgiou-Karistianis et al., 2011; Müller et al., 2013; Nopoulos et al., 
2010; Phillips et al., 2013; Rosas et al., 2010; Weaver et al., 2009). 
Furthermore, cognitive and motor parameters correlated with white 
matter DTI alterations in several studies (Dumas et al., 2012; Georgiou- 
Karistianis et al., 2011; Gregory et al., 2015; Phillips et al., 2013; Poudel 
et al., 2014; Rosas et al., 2010; Ross et al., 2014; Weaver et al., 2009). 
DTI remains a commonly used technique to study structural white 
matter changes in neurodegeneration, however, its clinical applications 
are limited due to its inability to resolve complex fiber orientations in 
the presence of free water (i.e. CSF volume acting as an artifact) (Berlot 
et al., 2014; Jeurissen et al., 2013; Metzler-Baddeley et al., 2012), while 
still only demonstrating a difference in HD patients at a group level 
when compared to a control population. Recent studies have applied 
beyond-DTI methods such as fixel-based analyses using constraint 
spherical deconvolution (CSD) in early HD (Adanyeguh et al., 2021; Oh 
et al., 2021) and in premanifest HD (Zeun et al., 2022) to identify 
neurodegeneration in HD. However, although the fixel-based approach 

provides a high angular resolution advantage (Tournier et al., 2004), 
several technical considerations need to be taken to avoid a critical flaw 
in tractography clinical studies (Parker et al., 2013). Furthermore, the 
acceptance that DTI-based metrics are non-specific for neuro-
degeneration and disease progression assessment, warrants the oppor-
tunity to move beyond DTI-based approaches (Farquharson et al., 2013; 
Fernandez-Miranda, 2013; Tournier et al., 2004). 

Recently advanced diffusion MRI has acquired a more sophisticated 
diffusion model by resolving multiple diffusion sensitization and hun-
dreds of diffusion sampling directions (Sotiropoulos et al., 2013). This 
significant improvement has allowed to resolve complex fiber orienta-
tion by using or resorting to a nonparametric approach (Tuch et al., 
2003). This has led to the development of beyond-DTI tractography that 
can handle crossing-fibers (Tournier et al., 2011) and cope with the 
partial volume of free water (Zhang et al., 2013). Beyond-DTI tractog-
raphy has been used in patients with aphasia to demonstrate a clear 
functional correlation of tractography white matter fiber bundles such 
as the arcuate fasciculus (AF), inferior longitudinal fasciculus (IFOF), 
uncinate fasciculus (UF), and middle longitudinal fasciculus (MdLF) 
with semantic and phonological abilities involved in language produc-
tion (Hula et al., 2020). Conventional tractography is not sensitive 
during early neuronal degeneration as tractography differences can only 
be demonstrated if anisotropy drops substantially below the tracking 
threshold, and although diffusion MRI has been explored as a potential 
biomarker for early onset neurodegeneration, anisotropy as a mea-
surement at the voxel level is susceptible to local variability including 
but not limited to partial volume effect (Henf et al., 2018; Wang et al., 
2011; Yeh et al., 2019) restricting its potential in the clinical setting 
(Melonakos et al., 2011; Yeh et al., 2019). Our recent study demon-
strated that differential tractography (Yeh et al., 2019) addressed these 
limitations by focusing on differences in anisotropy to track only the 
segment of the pathway with neuronal degeneration. In the aforemen-
tioned study, the analysis required two longitudinal scans of the same 
subjects to derive differences, but in the present study we implemented 
an advanced protocol that compared one patient’s scan with a cohort of 
control subjects. Differential tractography accomplishes a substantial 
improvement when compared to conventional tractography. The 
method performs a comparison of voxel-wise differences of diffusion 
properties, such as quantitative anisotropy (QA), allowing to only track 
changes resulting in highlighted tractograms with segments of degen-
eration. Volumes extracted from obtained tractograms result in a simple 
measurement of the amount of neurodegeneration. The volume of spe-
cific pathways with a decrease in anisotropy was used as a quantitative 
biomarker to correlate with clinical UHDRS scores. This novel modifi-
cation allowed us to derive a numeric value of altered pathways for 
individual patients, hence enabling the opportunity to study the ad-
vantages of a true diffusion-based analysis technique as a clinical 
translational biomarker for early neuronal injury, in contrast to other 
technique such as Tractwise Fractional Anisotropy Statistics (TFAS) 
which applies fiber tracks as a skeleton to obtain underlying voxel 
Fractional Anisotropy (FA) for statistical analysis (Müller et al., 2016). 
Furthermore, since differential tractography tracks neuronal injury 
along a fiber pathway, this provides the ability to differentiate true 
findings from errors occurring at the local voxel level, as errors gener-
ated locally stay withing the local limits, versus true neuronal injury that 
disseminates along axons (Yeh et al., 2019). 

In the present study we applied differential tractography in pre- 
manifest and manifest HD to localize differences in anisotropy be-
tween base and repeat scans, along with statistical correlation of 
anisotropic differences with UHDRS clinical scores, including total 
motor score (UHDRS TMS), dystonia total, chorea total, rapid alter-
nating movements (RAM), stroop color word, behavior, and total func-
tional capacity (UHDRS TFC). In addition, compromised fiber pathways 
in HD patients were identified by comparing them with healthy controls 
and quantifying the volume of each affected pathways as a biomarker. 
Although we have not taken in consideration any hypothesis to specific 
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white matter bundles, our study is exploratory, and we hypothesized 
that pathway alterations would correlate with the UHDRS in both cross- 
sectional and longitudinal settings. We demonstrate progressive 
degeneration as subjects were imaged at several time points and provide 
evidence that differential tractography can be used as a dynamic 
biomarker for progressive structural damage, which correlates with 
disease progression in HD patients. 

2. Materials and methods 

2.1. Patient characteristics and demographics 

We recruited sixteen patients, including twelve manifest HD patients 
and four pre-manifest patients (Table 1). All patients gave their 
informed consent prior to their inclusion in the study. Manifest were 
symptomatic and pre-manifest were asymptomatic (all confirmed gene 
positive). Patients had three scans over a period of two years. Twelve 
patients had three scans, one patient had two scans, and three patients 
had one scan. The average scan interval from the first to the second scan 
was 6 ± 0.4 months (range 5 to 10 months) and the average scan in-
terval from the first to the third scan was 12 ± 1 months (range 11 to 24 
months). Patients underwent a comprehensive clinical evaluation on the 
day of the scan conducted by a neurologist specializing in movement 
disorders. Previous to each MRI, subjects were evaluated to assess their 
Unified Huntington Disease Rating Scale (UHDRS) (Kieburtz et al., 
2001) scores, including motor, behavior, cognitive and functional as-
sessments. A reconstructed averaged template was included from the 
CMU-60 database, a compiled diffusion MRI dataset of 60 healthy in-
dividuals acquired with a 257-diffusion sampling direction that served 
as control for our study. 

2.2. MRI acquisition 

Diffusion spectrum imaging data were acquired on a 3 T Tim Trio 
System (Siemens, Erlangen, Germany) using a 32-channel coil. A head 
stabilizer was utilized to prevent head motion. A 25 min, 257-direction 
DSI scan with a twice-refocused spin-echo planar imaging sequence and 
multiple b values (repetition time = 9916 ms, echo time = 157 ms, voxel 
size = 2.4 mm × 2.4 mm × 2.4 mm, field of view = 231 mm × 231 mm, 
maximum b-value = 7000 s/mm2) was performed. For anatomical 
comparison, we included a high-resolution anatomical image using a 9- 
min T1-weighted axial MPRAGE sequence (repetition time = 2110 ms, 
echo time = 2.63 ms, flip angle = 8◦, number of slices = 176, field of 
view = 256 mm × 256 mm, voxel size = 0.35 mm × 0.5 mm × 1.0 mm). 
We have used the same scanner as in the control population (CMU 60). 
The potential impact of the use of different scanners is addressed in the 
discussion section. 

2.2.1. Differential tractography for individuals 
The flowchart of our revised differential tractography (Yeh et al., 

2013a) analysis is demonstrated in Fig. 1. Diffusion imaging data of each 
patient (Fig. 1A) was reconstructed to a common stereotaxic space using 
q-space diffeomorphic reconstruction (QSDR) (Yeh et al., 2010; Yeh and 
Tseng, 2011), which is a method that satisfies the conservation of 
diffusible spins and reconstructs diffusion MRI data in a common 

standard space. QSDR was applied to generate the density distribution of 
anisotropic diffusion (Fig. 1B). The red–greenblue colors represents the 
orientation of diffusion (red: left–right, green: anterior-posterior, blue: 
superior-inferior). QSDR allowed us to calculate the differences in 
anisotropic diffusion by comparing it with a normal population database 
(CMU-60 database, Fig. 1C) (Beukema et al., 2015; Donos et al., 2016) to 
show the locations of local fibers with a decrease of anisotropic diffusion 
in study subjects, indicating changes in fiber integrity. We used a 
percentile rank lower than 5 of the decrease in anisotropy as the 
threshold to filter the results. Fig. 1D shows the piecewise fibers (color- 
coded by orientation) with substantial decreases, which were connected 
to guide the fiber tracking algorithm to map the exact segment of 
affected fiber bundles (Fig. 1E). Fiber bundles were segmented based on 
a recent tractography atlas (Yeh et al., 2018) by using DSI Studio’s 
interface for manual fiber tracking and we cross referenced with the 
average population atlas. The tracking was determined using a deter-
ministic fiber-tracking algorithm (Yeh et al., 2013b) in our proprietary 
developed and open-source software DSI Studio (http://dsi-studio. 
labsolver.org). Deterministic tractography applies quantitative anisot-
ropy (QA) which relies on generalized q-sampling imaging (GQI) to 
estimate the orientation of individual fibers (Yeh et al., 2010), and spin 
distribution function (SDF) to provide the amount or density of diffusing 
water in any direction within a single voxel (Yeh et al., 2016), therefore 
posing a great advantage over widely used diffusivity-based estimations 
such as FA. The tracking begins from each local fiber orientation as seeds 
and propagates until no orientation is found in the propagation direc-
tion. A maximum turning angle of 60◦ was used with a step size of 1 mm. 
The determined trajectories, termed the affected tracts, are used to 
identify pathways with decreased connectivity. 

2.3. Statistical methods 

We conducted a statistical analysis to determine the correlation of 
the UHDRS scores with quantitative data of each region of interest ob-
tained by differential tractography. Data was evaluated using a one- 
sided t-test and was then organized by longitudinal and cross-sectional 
analyses to determine the efficacy of the dynamic biomarker tested 
and have more control over brain regions tested and their correlation 
with clinical scores. 

Longitudinal measures of subjects were modeled using the general-
ized estimating equation (GEE) model, a linear model similar to the 
mixed effect model that can investigate the correlation between tract 
volume and the clinical scores that evaluated the cognitive levels and 
severity of the disease. Sandwich estimate of the variance was used to 
avoid violations of normality. 

Using the GEE model, we correlated differential tractography find-
ings and UHDRS total scores for motor, cognitive, behavior, and func-
tional capacity. Since the motor scores include assessments to evaluate 
the motor dysfunction in detail, we further correlated differential trac-
tography with subscores under the motor assessment, including Total 
Motor Score (TMS), Dystonia Total, Chorea Total and Rapid Alternating 
Movements (RAM), to see whether there are meaningful findings spe-
cific to these subscores. The same setting was applied to the cognitive 
component represented by the subscore Stroop Color-Word. Lastly, the 
UHDRS Behavioral Total, and TFC (Total Functional Capacity) scores 
were correlated. Using our novel method, we obtained several tract 
bundles with decreased anisotropy. All bundles obtained by differential 
tractography were further segmented into five different white matter 
regions, which included cingulum, corpus callosum, corticostriatal 
pathway, corticospinal pathway, and the whole brain. This allowed us to 
study region-specific correlation. 

Targeted fiber tracking analysis was performed for each scan using 
their corresponding differential tractography results. Quantitative data 
such as tract volume for each segmented region was registered as a 
reference for tract involvement, higher volumes indicate greater 
magnitude of affected tracts. 

Table 1 
Patient demographics.   

average (minimum ~ maximum) 

Age 50.8 (36 ~ 62) 
Age of onset 47 (37 ~ 56) 
CAG Repeats 43 (41 ~ 46) 
UHDRS TMS 27 (0 – 67) 
UHDRS Behavior 11 (0 – 36) 
UHDRS TFC 10 (2 – 14) 
Stroop Color Word 34 (0 – 63)  
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Overall, a total of 35 comparisons were performed to determine 
statistical correlation, which translate to 35 hypotheses, one for each 
longitudinal and cross-sectional analyses. For cross-sectional analysis, 
we correlated the volume extracted from each fiber bundle with each 
clinical score. Furthermore, we correlated the change in tract volume 
with the change in clinical scores which yielded 35 hypotheses. Each 
hypothesis was tested in repeat scans of pre-manifest and manifest 
subjects using the GEE model. We also studied these 35 correlation 
hypotheses for each scan time point (scans 1, 2, and 3) as three inde-
pendent cross-sectional studies using the Spearman correlation model, a 
nonparametric method to investigate the correlation using the rank of 
the tract values. 

The longitudinal change in tract volume and the clinical scores of the 
above-mentioned 35 correlation hypotheses, were also studied using the 
GEE model for the manifest patients. Three separate Spearman corre-
lation analyses were conducted to study the change between scan one 
and scan two, scan one and scan three, and scan two and scan three. The 
hypothesis was tested using a one-sided tail t-test. A p-value of 0.05 was 
corrected using Bonferroni correction to obtain familywise significance 
and eliminate false positive results, yielding a p-value of 0.001 or less to 
be considered statistically significant. All analyses were conducted in 
SAS 9.3. 

The statistics of this study and its interpretation were supervised by a 
statistician (YF. C.). 

3. Results 

3.1. Individual differential tractography results 

Table 2 shows differential tractography volume measurements of 
cingulum, corpus callosum, corticostriatal pathway, corticospinal 
pathway, and whole brain in all manifest and premanifest subjects, 
which were mapped automatically by differential tractography. As 
noted in Table 2, increased tract volumes (mm3) denote reduced tract 
integrity compared to normal population. The color red in Table 2 helps 
to differentiate tracts with higher volume (dark red color) from tracts 
with lower volumes (light red color). The UHDRS Total Motor Score 
(TMS) and differential tractography results were assessed indepen-
dently. Differential tractography progression was demonstrated in nine 
out of twelve manifest subjects (75%), and in one out of four premanifest 
subject (25%) with a time-dependent increased volume of affected 

tracts. Subjects A, B, and C were selected to demonstrate a correlation 
based on their UHDRS TMS, in which higher deteriorating motor func-
tion was evident (Fig. 2). Higher UHDRS TMS indicates worse perfor-
mance, and all three subjects demonstrated an increased volume of 
affected tracts, likely correlating with decreased connectivity (Fig. 2). 
This progression corresponded with UHDRS TMS higher scores at each 
measurement, with the exception of subject C, in which an increase in 
the volume of degenerating tracts did not correspond with UHDRS TMS, 
remaining unchanged at 6-months compared to the baseline scan. To 
visualize inter-individual variability, please refer to Table S1. 

3.2. Manifest versus premanifest patients 

Significant differences were observed in the manifest and pre-
manifest group. Initial scans in symptomatic patients demonstrated a 
significant number of affected bundles. In contrast none or a small 
number of affected tracts in the premanifest group (Table S1). These 
results provide further validation of this technique in identifying 
affected pathways and distinguishing presymptomatic from symptom-
atic patients. 

3.3. Longitudinal versus cross-sectional analyses 

Longitudinal data was evaluated to determine the correlation be-
tween affected tract volumes and UHDRS clinical scores. We performed 
two longitudinal analyses and the time frame was 6–12 months. First, 
we studied the correlation between UHDRS clinical scores and tract 
volumes in each brain region (cingulum, corpus callosum, corticostriatal 
pathway, corticospinal pathway, and whole brain). In addition, a second 
longitudinal analysis was performed to examine the correlation between 
change in clinical scores and the change in volumes of tracts, including 
cingulum, corpus callosum, corticostriatal pathway, corticospinal 
pathway, and whole brain. 

Out of 35 correlations in our initial longitudinal analysis, twelve 
(34.3%) showed statistical significance between tract volume and clin-
ical scores, which included 2 correlations (5.7%) with statistical sig-
nificance (p-value < 0.001) and ten correlations (28.6%) statistically 
significant (p-value < 0.0001). In addition, all brain bundles (cingulum, 
corpus callosum, corticostriatal pathway, corticospinal pathway, and 
whole brain) significantly correlated with clinical scores as follows. 
UHDRS TMS was statistically significant (p-value < 0.0001) in cingulum 

Fig. 1. Flowchart of the differential tractography analysis. The red–greenblue colors represents the orientation of diffusion (red: left–right, green: anterior-posterior, 
blue: superior-inferior). (A) The diffusion data of each subject was reconstructed in a common stereotaxic space using q-space diffeomorphic reconstruction (QSDR) 
to calculate the diffusible spin distribution function. (B) The reconstruction allows the visualization of the density distribution of the anisotropic diffusion of the 
subject in the standard space. (C) Values from a normal population are compared to the study subject to calculate the percentile rank. (D) Comparison is then used to 
map locations with anisotropic diffusion of subject sufficiently smaller than normal population (<5 percentile rank). (E) Fiber tracking algorithm is then associated 
with the data obtained by substantial decrease in anisotropic diffusion to map exact fiber pathways affected by the disease. 
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Table 2 
Tract volume measurements in HD subjects.a  
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and corticostriatal pathway; RAM was significant with cingulum, corpus 
callosum, corticostriatal and corticospinal pathway (p-value < 0.0001), 
and with whole brain (p-value < 0.0001); Stroop color-word was sig-
nificant with Cingulum and Corpus Callosum (p-value < 0.0001); and 
UHDRS TFC was significant with cingulum and corticostriatal pathway 
(p-value < 0.0001), and with corticospinal pathway (p-value < 0.001) 
(Table 3). Supplementary Tables S2 and S3 represent visual components 
of Table 3 for better visualization. 

In the second longitudinal analysis, seven correlations (20%) were 
statistically significant (p-value < 0.0001) as follows. A statistical sig-
nificance was observed in dystonia total with cingulum and corpus 
callosum (p-value < 0.0001); and RAM showed significance in all brain 
regions (p-value < 0.0001). Results from this analysis supports differ-
ential tractography as a practical and accurate biomarker for evaluating 
changes in volume of different brain regions in relation to clinical scores 
(Table 3). 

Table 4 show results for cross-sectional and longitudinal data in 
manifest patients. Correlation analysis was applied to evaluate the 
relationship between clinical scores and tract volumes in cross-sectional 
data from the first, second, and third scans, yielding a total of 105 
correlations that were corrected using Bonferroni correction to consider 
familywise significance. In addition, Table 5 shows results of correlation 
analysis which was applied to evaluate the relationship between the 
changes in all clinical scores and the changes in tract volumes in three 
separate groups: (1) changes observed from first to second scan, (2) 
changes observed from the first to the third scan, and (3) changes 
observed from the second to the third scan. No statistical significance 
was observed when tract volumes were compared to clinical scores in 
cross-sectional data, or when tract volumes were compared to the 

changes in clinical scores in longitudinal data (Tables 4 and 5). How-
ever, it is unlikely to achieve significance when familywise p-value is 
considered (Bonferroni correction) due to the small number of subjects 
included in the analysis, and this does not diminish the important 
findings obtained in the longitudinal analysis (Table 3). For better 
visualization, supplementary Table S4 and S5 represent visual compo-
nents of Table 4 and Table 5, respectively. 

Since this study does not examine individual fiber tracts, but rather 
white matter bundles as a group, any findings are common between 
subjects in majority. In addition, since subject data was normalized to a 
common space, the overlapped findings were examined and groupwise 
statistical significance was common in the population. 

4. Discussion 

In this study we evaluated differential tractography as a clinical 
translational tool by conducting correlation analyses between white 
matter volumes measurements and clinical scores in manifest and pre-
manifest HD patients. Overall results indicate that differential tractog-
raphy appears to be a robust dynamic biomarker with high statistical 
significance in longitudinal data to determine changes in tract volumes 
of white matter tracts with the potential to supplement the UHDRS in 
manifest and premanifest HD. Differential tractography appears to be a 
highly reliable monitoring biomarker to delimit changes exhibited in 
cingulum, corpus callosum, corticostriatal pathway, corticospinal 
pathway, and whole brain when correlated with UHDRS. Moreover, an 
increase of volume of damaged tracts was observed before symptom 
onset in one particular subject (Subject C, Fig. 2). This prediction power 
can be taken in consideration to anticipate onset at the premanifest stage 

Fig. 2. Fiber pathways affected in three manifest subjects mapped by differential tractography. The red–greenblue colors represents the orientation of diffusion (red: 
left–right, green: anterior-posterior, blue: superior-inferior). Tract volumes are represented in mm3. The greater the volume of affected fibers, the higher the UHDRS 
Total Motor Score (UHDRS TMS) that subjects will display, showing a deteriorating performance in motor functions. Subject A displays a significant correlation 
between fiber pathways affected and UHDRS TMS (35, 41, and 58) with increasing tract volumes (13,753 mm3, 13,656 mm3, and 46,728 mm3) in three different 
scanning time points respectively (0 month, 6 months, 1 year). Subject B shows a UHDRS TMS of 45, 49, and 52 with tract volumes of 34,840 mm3, 53,288 mm3, and 
57,560 mm3 at 0 month, 6 months, and 1 year, respectively. Subject C is the subject with the most change among the three, with a UHDRS TMS of 35, 35, and 64 and 
tract volumes of 22,168 mm3, 61,384 mm3, and 68,488 mm3 at 0 month, 6 months, and 1 year, respectively. Interestingly, subject C shows no change in the UHDRS 
TMS between 0 and 6 months, nevertheless, a significant increase in tract volume was observed in this time period (22,168 mm3 and 61,384 mm3 respectively), 
providing evidence that differential tractography can be used as a dynamic biomarker to predict pre-clinical manifestations. 
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Table 3 
Correlation analysis between tract volume and clinical scores in longitudinal data.  
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Table 4 
Cross-sectional correlation between clinical scores and tract volume.  
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Table 5 
Cross-sectional correlation between change in clinical scores and the change in tract volumes.  
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to characterize disease progression, adding great value and high reli-
ability to differential tractography as a predictive monitoring 
biomarker. The use of different scanners will have introduced a fixed 
bias in our correlation analysis, bringing the same intercept for our 
variable. Thus, the correlation coefficient will not have been affected, 
since the scanner difference is the same for all subjects, and our hy-
pothesis would have remained the same. 

It is also noteworthy the distinction that differential tractography 
provides when comparing manifest vs premanifest individuals, as 
affected tracts in manifest subjects displayed higher tract volumes as 
expected, in opposition to gene-positive individuals who yielded few or 
no tracts at all (as seen in Supplementary Table S1), supporting the 
accuracy of the technique. Since differential tractography findings are 
associated with damage appearing in pathway trajectories, the tech-
nique provides the amount of degeneration (in volume measurements) 
in addition to providing a better localization of disease. In this sense, we 
have been able to map segments of dysconnectivity in white matter areas 
to find the link between lesions and grey matter to better understand 
functional changes due to neuronal degeneration. Therefore, our 
diffusion-based analysis technique exhibits a significant novelty over 
conventional tractography by differentiating errors in local voxels 
versus true findings that spread along a fiber trajectory. This in turn, 
provides a biological advantage for not only localizing neuro-
degeneration with precision, but also for tracking the evolution of dis-
ease and treatment response, as suggested by a previous study (Yeh 
et al., 2019). By applying deterministic tractography, we have an 
advantage by the novelty of the technique which is capable of resolving 
crossing fibers. Deterministic tractography makes use of quantitative 
anisotropy (QA) which relies on generalized q-sampling imaging (GQI) 
to estimate the orientation of individual fibers (Yeh et al., 2010), and 
spin distribution function (SDF) to provide the amount or density of 
diffusing water in any direction within a single voxel (Yeh et al., 2016), 
therefore posing a great value over widely used diffusivity-based esti-
mations such as FA. The use of differential tractography paired with a 
robust clinical evaluation at the pre-clinical stage in gene positive 
asymptomatic populations, can be of utmost clinical significance in 
routine clinical follow-up, and although our study provides a small 
number of subjects, we acknowledge that future studies are granted to 
obtain robust measures for when assessment of new treatment and 
therapies are required in clinical trials. 

4.1. Implications of the clinical data 

Longitudinal analysis demonstrated the highest statistical correla-
tion with progression of clinical UHDRS scores in all brain regions 
(cingulum, corpus callosum, corticostriatal pathway, and corticospinal 
pathway), in relation to UHDRS TMS, Stroop Color-Word, UHDRS Total 
Functional Capacity (TFC), and especially in relation to Rapid Alter-
nating Movements (RAM), which was statistically significant (p-value <
0.0001) in all brain regions. Since Bonferroni correction was applied to 
consider familywise significance in multiple comparison analyses, re-
sults from the cross-sectional analysis did not yield significant findings. 
However, this does not hinder the potential of differential tractography 
as a tool to further understand the biological mechanism of white matter 
loss, and further studies with larger samples are required to determine a 
true significant value in cross-sectional data and larger group studies. 
Despite this limitation, results further confirm the role of white matter 
pathways involved in HD progression (Poudel et al., 2014; Rosas et al., 
2010). Demonstrated changes on differential tractography in both pre-
manifest and manifest HD, and particularly in the earlier stages, may be 
of value in future longitudinal and cross-sectional studies (Poudel et al., 
2015). In premanifest HD where clinical markers of disease progression 
do not exist, differential tractography can be used as a non-invasive tool 
to dynamically monitor clinically asymptomatic disease progression. In 
manifest HD, the observed disease progression made by differential 
tractography can be used to supplement existing clinical markers of 

progression. 

4.2. Speculative mechanisms 

Degeneration in the association, commissural and projection fibers 
are implicated in the course of the disease and its clinical manifestations. 
Degeneration of corticospinal and corticostriatal pathways white matter 
tracts are linked to changes in motor functions behavior, executive 
function, movement, and the lack of integration of motor and cognitive 
function resulting in progression of UHDRS TMS, RAM, Stroop Color 
Word, UHDRS TFC. Thus, statistical correlation of Corticospinal and 
corticostriatal pathways with UHDRS TMS, RAM, and UHDRS TFC 
supports the relationship with motor dysfunction, and studies have 
supported these findings in manifest HD, and several important behav-
ioral changes such as global apathy have been recently associated with 
degeneration of corticostriatal pathway (De Paepe et al., 2019; Phillips 
et al., 2015). Statistical correlation exhibited by the corticospinal tract in 
relation to UHDRS TMS, Stroop Color Word, TFC, and especially with 
RAM corroborates the critical relationship between corticospinal tract 
demyelination and motor symptoms at the premanifest and manifest 
stages which is associated with progression of UHDRS motor scores 
(Phillips et al., 2015). The highest correlation found with respect to RAM 
in longitudinal data studied by differential tractography, is validated by 
the motor involvement of the disease. Therefore, differential tractog-
raphy represents a novel monitoring biomarker allowing detection of 
the exact anatomical location of degeneration and its subsequent cor-
relation with loss of clinical function as measured by existing markers of 
progression. 

4.3. Differential tractography in relation to premanifest and manifest 
disease and UHDRS scores 

Despite the small number of patients, significant differences were 
observed between the premanifest and manifest HD. Relatively few 
areas were affected in premanifest patients in relation to patients in the 
manifest group (as in Supplementary Table S1), thereby lending further 
credibility to this imaging method. As expected, significant progression 
was observed at 6 and 12 months in manifest patients in relation to the 
baseline scan. The observed increase in volume of affected tracts cor-
responded with an increase in the UHDRS clinical scores. Despite being a 
reliable gold-standard to determine clinical progression in HD for many 
years (Kieburtz et al., 2001), the UHDRS assessment can be prone to 
variability. Differential tractography as an automated method is less 
prone to variability, and can supplement the use of the UHDRS in 
manifest HD. In premanifest patients, differential tractography can 
demonstrate changes in white matter preceding disease onset. 

4.4. Future directions and limitations 

We demonstrate the feasibility of differential tractography as a po-
tential biomarker to anticipate disease onset in premanifest and manifest 
HD. Our main limitation was the small number of subjects which pre-
vented obtaining statistical significance in cross-sectional data, and this 
limitation prevented us to obtain a more homogeneous clinical and 
longitudinal data. Additional research with larger samples is required to 
obtain a clear validation. We acknowledge that we cannot estimate ef-
fect size, as the method is for individual diagnosis which places more 
emphasis on sensitivity and specificity. Therefore, although differential 
tractography has potential for group diagnosis, future studies with a 
greater number of subjects will be necessary to evaluate the effect size at 
the group level. We did not account for time between scans in the sta-
tistical model, and this will certainly be a variable which must be 
considered in future larger studies. In addition, premanifest HD diag-
nosis was made based of genetic profile and we did not acquire clinical 
markers such as CAP score (CAG - Age Product Scaled score) or DBS 
(Disease Burden Score), for which we will consider obtaining in future 
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studies. There is a mismatch between differential tractography and the 
UHDRS TMS in few cases as shown by one patient (subject F, Table S1) 
with decreasing volumes and progression of the UHDRS TMS. In mani-
fest HD, differential tractography demonstrated changes or progression 
at an anatomical level that may not be readily discernible with UHDRS 
scores. At this stage we do not have a clear understanding of the nature 
of the mismatch and thus differential tractography will require further 
validation in a larger study. Lastly, although differential tractography 
provides encouraging results to carry future larger studies, we recognize 
the limitation that differences between manifest and premanifest pa-
tients cannot be generalizable due to the small number of subjects in 
each group. Nevertheless, the overall findings confirmed the applica-
bility of differential tractography as a dynamic non-invasive biomarker. 
Differential tractography can be considered in future studies with larger 
cohorts with more homogenous clinical and longitudinal data to assess 
the efficacy of therapeutic trials particularly in premanifest HD, where 
future drug trials will be aimed to prevent symptomatic conversion. 
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