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Multiple primary cancers (MPCs) are major obstacles to long-term survival in head

and neck cancer (HNSCC), however, the molecular mechanism underlying multiple

carcinogenesis remains unclear. “Field cancerization” is a classical theory to elaborate

the malignant progression of MPCs. Apart from environmental and immune factors,

genetic factors may have great potential as molecular markers for MPCs risk

prediction. This review focuses on inherited and acquired gene mutations in MPCs,

including germ-line mutation, single-nucleotide polymorphism, chromosomal instability,

microsatellite instability and DNAmethylation. And definition and prognosis of MPCs have

also been discussed. These may pave the way for the early detection, prevention and

effective treatment of MPCs in HNSCC.

Keywords: head and neck cancer, multiple primary cancer, field cancerization, cancer-associated fibroblasts,
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INTRODUCTION

Head and neck squamous cancer (HNSCC) ranks sixth among the most prevalent malignancies in
the world (1). It is estimated that HNSCC accounts for 64,690 new cases and 13,740 deaths in the
United states in 2018 (2). Although significant improvements have been made in the therapeutic
modalities, the prognosis of HNSCC remains stagnant in the past decades, with a 5-year survival
of only 50% (3). The dismal prognosis has always been attributed to local recurrences, distant
metastasis, and development of multiple primary cancers (MPCs).

MPCs are defined as two or more primary cancers occurring in an individual synchronously
or metachronously, neither extensions, recurrences nor metastases of each other (International
Agency for Research on Cancer), which accounts for approximately one-third of deaths in HNSCC
(4, 5). MPCs are also named as second primary malignancies (SPMs), secondary primary tumors
(SPTs), second primary cancers (SPCs), and multiple primary tumors (MPTs) (6). Several risk
factors, including smoking exposure, alcohol consumption, human papilloma virus (HPV), and
hepatitis C virus (HCV), have been suggested to be associated with the development of MPCs (7–
10). However, researches revealed that a major proportion of MPCs could not be fully explained by
these environmental factors, and genetic factors, such as single-nucleotide polymorphism (SNP),
chromosomal instability (CIN), microsatellite instability (MSI), and epigenetic alterations, may
contribute to the susceptibility of MPCs in HNSCC (11).
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MPCs have been considered to be a clinical quandary both
in diagnosis and treatment. It is challenging for the oncologists
to distinguish MPCs from a metastasis or local recurrence
merely on the basis of clinical and pathological information.
Furthermore, this classification leaves a profound effect on the
choice of treatment as well as patients’ prognosis. Recently, there
are a number of novel screening strategies for MPCs prediction,
such as genetic markers, and the role of genetic alterations in
the development of MPCs after index HNSCC were not fully
elucidated (12). Here, we conducted this review to summarize
the mechanisms and relevant genetic alterations of MPCs, which
might provide benefit in the detection, prevention, and treatment
of MPCs in HNSCC.

DEFINITION AND PROGNOSIS OF MPCs

In 1932, Warren and Gates published the classical clinical criteria
of SPT, being (1) each of the malignancies must have been
verified by histologic examination, (2) the malignancies must
be anatomical separate by normal mucosa, and (3) exclude the
possibility that the second malignancy represents a metastasis
of the index tumor (13). However, this clinical definition carries
the risk of misclassification and inability to differentiate between
an SPT, a recurrence and a metastasis (14). For example, what
distance should lie between the malignancies? How to define
the normal mucosa, by naked eye or histologic examination?
How to distinguish the SPT from a metastasis or a recurrence?
To solve this dilemma, Braakhuis et al. proposed a new
classification on the basis of molecular profiles of the tumors
and the genetically altered mucosal field between the tumors
(14). Tumors displaying distinct molecular profiles or sharing a
common pattern attributed to chance are defined as SPTs, while
those possessing similar molecular aberration are defined as local
recurrences (14).

It is widely accepted that MPCs are the leading obstacle to
long-term survival among HNSCC patients (15). According to
a retrospective study conducted by Shiga et al., patients with
synchronous SPMs displayed a poorer 5-year overall survival
rate than those with metachromous SPMs in Japan (16). In line
with this result, Bugter et al. claimed that the 5-yearsurvival rate
for synchronous and metachronous primary cancer patients was
25 and 85%, respectively (17). The higher proportion of high-
stage tumor in the synchronous primary cancer patients and
unadjusted treatment protocol may account for this discrepancy.

However, accumulating evidence has demonstrated that HPV-
positive HNSCC patients were accompanied by a decreased
risk for SPT than HPV-negative HNSCC patients (18–20).
HPV has been established as an emerging carcinogen in a
subset of HNSCCs, particularly in the oropharynx (21). HPV-
positive HNSCCs differ fromHPV-negative HNSCCs induced by
tobacco and alcohol epidemiologically, clinically, and biologically
(22–24). The putative reasons for this phenomenon are as
follows: (1) HPV-positive HNSCCs exhibited higher sensitivity to
radiotherapy and chemotherapy (25); (2) HPV-positive HNSCCs
often arise in an environment with lower exposure to tobacco and
displayed fewer smoking-related genetic abnormalities, which

is less associated with smoking-related SPTs (26–28); (3) Saito
et al. suggested that field cancerization effect would not be
observed in HPV-positive HNSCCs, since HPV viral DNA
integration was limited to the cancerous tissue (29). However, the
concrete mechanisms between HPV-positive HNSCCs and SPTs
are remained to be elucidated in the future.

The dismal clinical outcome of MPCs in HNSCC emphasizes
on the importance of early diagnosis and prevention. These
genetic alterations could serve as molecular makers to guide the
early diagnosis, prevention and treatment of HNSCC patients
in several aspects. Firstly, these molecular markers could be
readily obtained by the primary tumor samples without bringing
additional invasion to patients (30). Secondly, genetic markers
could select the high-risk individuals for MPCs, which should
be under strict cancer surveillance and proper preventive
procedures. Given the discrepancies between HPV-positive and
HPV-negative HNSCC, Jain et al. proposed that future screening
procedures for MPCs may be adjusted by HPV and smoking
status (31). Thirdly, in-depth understanding of the role of these
molecular markers in MPCs may pave the way for targeted
gene therapies. In addition, genetic markers could be utilized
to distinguish MPCs from a local recurrence or a metastasis.
For example, Mercer et al. showed that microsatellite PCR
facilitated the discrimination between second primary cancer
and metastatic HNSCC (32). Daher et al. employed combined
HPV typing and TP53mutational profiling successfully identified
the accurate origin of lung tumors in 32 HNSCC patients,
in which only 13 cases were diagnosed correctly on the
basis of clinical and morphological data alone (33). Apart
from physical and pathological information, genetic profiles
analysis could be an effective tool to distinguish MPCs from
a recurrence. Gasparotto et al. suggested that 3 clinically
diagnosed recurrences and 2 lung lesions were actually MPTs
by comparing the p53 mutation status of primary tumors and
corresponding recurrences/metastases in HNSCC patients (34).
Microsatellite analysis indicated that 6 tumors showing clonally-
related patterns with primary tumors were recurrences, while 17
tumors with clonally-unrelated patterns were SPTs in 23 HNSCC
patients with genetic changes (35).

MECHANISM OF MPCs

The concrete molecular mechanism underlying multiple
carcinogenesis remains unclear. “Field cancerization” theory has
often been applied to explain the occurrence of MPCs (Figure 1).
The stem cell receives one (or more) genetic hit (Figure 1A),
probably a mutation of p53 gene, and gives rise to a patch
with genetically altered daughter cells [(36); Figure 1B]. Then
a subsequent genetic alteration induces the patch to spread in
a lateral direction and substitutes the normal epithelial cells to
form a field [(36); Figure 1C]. As the field expands at the expense
of normal epithelial cells, additional genetic alterations take place
and promote the progression from field to an overt carcinoma
(Figure 1D). The second tumor of monoclonal origin develops
by implantation, intraepithelial migration or sub-mucosal
spread of primary cancer cells (Figure 1E), while the polyclonal
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FIGURE 1 | “Field cancerization” theory in the MPCs of HNSCC. The stem cell receives first genetic hit (A), and gives rise to a patch with genetically altered daughter

cells (B). Then a patch develops into a field by expanding in a lateral direction under the indduction of a second genetic hit (C). Additional genetic alterations take

place and convert the field to an overt carcinoma (D). The implantation, intraepithelial migration or sub-mucosal spread of primary cancer cells lead to the

development of a SPT with monoclonal origin (E), while the final genetic hit induces the occurrence of a SPT with polyclonal origin (F).

second tumor forms under the induction of final genetic hit
[(14, 37); Figure 1F].

Failure of immune surveillance also contributed to the
occurrence of SPTs in HNSCC (Figure 2). Patients with
decreased T-cell numbers in the circulation were predisposed to
infections, disease recurrence, or a second malignancy (38). Kuss
et al. reported that CD4+ and CD8+ T cells were significantly
reduced in the SPT group relative to normal control group in
HNSCCs (38). And patients with recurrences or SPTs showed
a 25% lower number of CD4+ T cells than those with primary
disease (38). The TCR associated CD3 zeta chain plays a critical
role in the signal transduction of T-cell activation, the absence
of which impairs T-cell signaling and consequently leads to
immune dysfunction (39). Kuss et al. concluded that individuals
with SPTs or recurrences exhibited lowest zeta-chain expression,
which might exert long-lasting negative effects on the anti-
tumor immune response (40). Decreased expression of HLA
class I molecules is considered to be an effective strategy for
malignant cells to evade host immunosurveillance (41). Grandis
et al. suggested that the number of HLA allelic loss increased
the risk of developing a new primary tumor (41). Collectively,
decreased T-cell numbers, CD3 zeta chain and HLA class I
molecules may be associated with the development of SPT, which
may provide new opportunities for cancer immunotherapy
in HNSCC.

In addition, cancer-associated fibroblasts (CAFs) may
play an unneglectable role in the development of field
cancerization [(42); Figure 2]. Ge et al. proposed that migratory

cancer-associated fibroblasts (CAFs), also named myofibroblast,
may appear beneath the cluster of genetic altered epithelial cells,
and ultimately lead to the malignant transformation of these cells
(42). Angadi et al. demonstrated that myofibroblasts were present
in the stroma around the oral squamous cell carcinoma (OSCC)
cell as well as the connective tissue below the histologically
normal mucosa adjacent to OSCC by immunochemistry, which
validates Ge’s hypothesis further (43). Chan et al. indicated that
cancer-associated fibroblasts promoted field cancerization by
elevating the expression of reactive oxygen species (ROS) in the
microenvironment (44). CAFs from squamous cell carcinoma
reduced the expression of Smad3 and cJUN to suppress the
activity of glutathione peroxidase 1 (GPX1), one key enzyme
affecting hydrogen peroxide detoxification. Suppression of GPX1
leads to elevation of extracellular hydrogen peroxide, which
facilitates the conversion of normal fibroblast to CAF phenotype,
and promotes the tumor-forming capacity and invasiveness.
Till now, there is no more available evidences on the role of
tumor microenvironment in MPCs, including macrophages,
myeloid-derived suppressor cells (MDSCs) and etc., which
warrants further investigation in the future.

MPCs AND INHERITED MUTATIONS

MPCs and Germ-Line Mutations
Germ-line mutation of tumor suppressor genes has been
considered to be a potential driver of MPCs. p53 gene, known
as the “the guardian of the genome,” is an well-known tumor
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FIGURE 2 | Immune factors and CAFs contribute to the development of MPCs. Decreased T-cell numbers, CD3 zeta chain and HLA class I molecules may promote

the development of MPCs by inducing immunosuppression. In the CAFs, reduced expression of Smad3 and cJUN suppress the activity of GPX1, leading to the

elevation of extracellular hydrogen peroxide. High hydrogen peroxide level in the microenvironment induces the conversion of normal fibroblast to CAF phenotype, and

promotes the occurrence of MPCs.

suppressor gene which has been involved in the cell cycle control
and DNA repair (45). It is estimated that p53 gene was mutated
in approximately 50% of HNSCC patients (46). In 1999, Gallo
and his colleagues employed polymerase chain reaction single-
strand conformation polymorphism (PCR-SSCP) analysis and
DNA sequencing to examine the p53 germ-line mutations in
24 HNSCC patients who developed MPCs and their first-degree
relatives. As a consequence, only one missense mutation in exon
6 as well as two same-sense mutations in exon 6 and 8 have been
detected (47). So the authors proposed that p53 gene might not
be the only target responsible for the multiple genetic alterations
of field cancerization (47).

CDKN2A, a tumor suppressor gene exerting an important role
in the regulation of cell cycle, is associated with the occurrence
of HNSCC. Cabanillas et al. proposed that germ-line mutations
of CDKN2A gene may serve as a common feature of HNSCC
(30). However, Jefferies et al. screened full coding sequence of
CDKN2A gene and failed to detect any germ-line mutations in
40 HNSCC patients with a SPC, which suggested that germ-line
mutations of CDKN2A contributed less to the susceptibility of
MPCs (48).

Mismatch genes, such as hMLHI, contribute greatly to the
MPCs of gastrointestinal cancers. Nevertheless, its germ-lime
mutations don’t seem to be an major event in the carcinogenesis
of HNSCC or MPTs (49). Piccinin et al. analyzed the mutations

of hMLHI gene by PCR-SSCP and sequencing in 67 HNSCC
patients, 22 MPTs and 45 controls, and no somatic or germ-lime
mutations of hMLHI have been identified (49).

Based on the above, it seems that germ-line mutations of
certain tumor suppressor genes and DNA repair genes, including
p53, CDKN2A, and hMLHI, exert a minor influence on the
genetic predisposition of MPCs after index HNSCC.

MPCs and SNPs
It is estimated that SNP accounts for up to 90% of genetic
variability (50). Researchers have demonstrated that genetic
polymorphisms of various genes were correlated with the risk
of MPCs in HNSCC. Based on their functions, these genes
could be classified into four categories: tumor suppressor genes,
oncogenes, DNA repair genes and carcinogen metabolism-
related genes, which were listed in detail as follows.

SNPs of Tumor Suppressor Genes
p53 makes a substantial contribution to the regulation of cell
cycle, cellular apoptosis and anti-cancer properties (45). p53
mutations have been shown to be correlated with the occurrence
of primary HNSCC as well as SPMs (51). The polymorphism of
p53 commonly occurred at the codon 72, with a substitution of
proline for arginine, which might promote the carcinogenesis
by disturbing the apoptosis process and cell cycle (52). Several
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studies indicated that p53 codon 72 polymorphism may play a
minor role in the development of HNSCC (53, 54). However, Li
et al. showed that patients with p53 72Arg/Pro and the combined
p53 72Arg/Pro + Pro/Pro genotypes exhibited a significantly
greater risk of SPMs in a cohort of 1271 HNSCC patients,
compared with p53 72Arg/Arg genotype (51). The authors
speculated that p53 codon 72 polymorphism may influence
the SPM risk by modifying the response to DNA-damaging
treatments (51). Despite the inherited limitations of patient
selection and clinical outcome collection, these results indicated
that p53 codon 72 polymorphism could serve as a genetic marker
to evaluate the risk of SPMs in HNSCC.

Functionally, tumor suppressor gene p14 and p73 belong
to the p53-related gene family. p14ARF gene maps to 9p21
and encodes proteins of p16INK4a and p14ARF , thus playing
an important role in maintaining genomic stability via p53
and Rb pathways (6). Direct interaction between p14ARF and
MDM2 impedes the protesomal degradation of p53, resulting
in an abnormal cell cycle regulation and cellular apoptosis
(55). Genetic Alterations of p14ARF have been considered to be
rare in the development of HNSCC. Gruttgen et al. evaluated
the p14 expression with immunochemistry, and concluded that
loss of p14ARF merely occurred in 15 of 100 HNSCC patients
(56). Zhang et al. stated that p14ARF-rs3088440 and rs3731217
polymorphisms were correlated with a moderately increased risk
of SPMs in HNSCC (6). Compared with those without p14ARF

variant genotypes, HNSCC patients with both variant genotypes
had a 3-fold increased risk for developing SPMs (6). Therefore,
p14ARF polymorphisms could serve as a risk marker for SPMs in
HNSCC patients (6).

p73 displays a similar function as p53 in the regulation of
cell cycle, apoptosis and DNA repair by inducing apoptosis
or G1 cell cycle arrest (57). It has been assumed that p73
compensated for the absence of p53 induced by mutations (58).
Previous studies have revealed that genetic abnormalities of p73,
such as its G4C14-to-A4T14 polymorphism, were associated
the risk of HNSCC (59, 60). Li et al. investigated the role of
p73 G4C14-to-A4T14 polymorphism in SPMs in a cohort of
1384 HNSCC patients, and advocated that patients carrying
p73 GC/AT heterozygotes or the combined p73 GC/AT+AT/AT
genotypes had a significantly lower SPM susceptibility, compared
to those with p73 GC/GC genotype. The p73 GC/AT+AT/AT
genotypes conferred a pronounced protection over SPMs in
several subgroups, for example, older patients, men, minorities,
ever smoker, and ever drinkers, further supporting the role of
p73 polymorphism as a genetic marker of MPCs in HNSCC
patients (61).

FAS belongs to the death receptor family and interacts with
its ligand, FASLG, to modulate the extrinsic apoptosis pathway,
cellular homeostasis and immune escape of tumor cells (62,
63). Genetic alterations of the FAS/FASLG signaling pathway
may lead to immune evasion, thus facilitating tumorigenesis
including SPM (64). FAS-1377G>A, FAS−670A>G, FASLG-
844C>T, and FASLG-124 A>G are four well-known SNPs in
the FAS/FASLG signaling pathway. Zhang et al. reported that
subjects with both the FAS-1377 AA and FAS-670 (GG + AG)
genotypes were associated with an increased risk of HNSCC,

but not for those with FASLG variant genotypes (65). But things
are really different when it comes to the incidence of MPCs. It
has been demonstrated that patients carrying FAS-670 AG+GG
genotypes or FASLG-844 CT+TT genotypes were significantly
associated with mounting risk of SPMs compared with the
wild-type homozygous genotypes, which makes FAS and FASLG
polymorphisms a potential marker for HNSCC patients at high
SPM risk (64). Additionally, the risk of SPM was augmented in a
dose-response manner for those with increasing number of risk
genotypes (64).

p21 and p27 are two CDK inhibitors which participate in the
regulation of DNA repair, cell cycle, and apoptosis (66). It has
been demonstrated that SNPs in p21 and p27 were associated
with risk of HNSCC (67, 68). HNSCC patients carrying p27 109
TG/GG, p21 98 CA/AA, and p21 70 CT/TT variant genotypes
had a worse survival and an increased SPM risk than those with
p27109 TT, p21 98 CC, and p21 70 CC genotypes, respectively
(69). Moreover, patients with p27 (T109G) and p21 (C98A
and C70T) polymorphisms were 2.4 times more susceptible to
develop MPCs than those without variant genotypes (69). These
results indicated that p27 T109G and p21 (C98A and C70T)
polymorphisms seem to modulate the susceptibility of SPMs
in HNSCC.

Accumulating evidences have established that SNPs of tumor
suppressor genes made a considerable contribution to the
formation of MPCs in HNSCC, which makes SNPs of tumor
suppressor genes a potential molecular marker to predict the risk
of MPCs in HNSCC.

SNPs of Oncogenes
Murine double minute 2 (MDM2), also known as an E3 ubiquitin
ligase, is the central antagonist of the tumor suppressor p53 (70).
MDM2 negatively regulates the activity of p53 by suppressing
its transcriptional activity and promoting its degradation, thus
contributing to the carcinogenic process (71). The overexpression
and genetic alterations of MDM2 have been commonly reported
in HNSCC (72). Two SNPs in its promoter region, MDM2-
rs2279744 and MDM2-rs937283, may alter MDM2 expression
at transcriptional level and subsequently modulate the risk
of HNSCC (71). With respect to SPM, Jin et al. reported
that MDM2-rs2279744 and MDM2-rs937283 increased the
susceptibility of SPM inHNSCC by 90 and 20%, respectively (73).

Analogous to MDM2 in structure, murine double minute
4 (MDM4) is also a negative regulator of p53. Several studies
suggested that high MDM4 expression may substitute for p53
mutations, and MDM4 overexpression was a common event in
the HNSCC patients (74). ThreeMDM4 SNPs, rs11801299G>A,
rs1380576C>G, and rs10900598G>T, have been identified
in HNSCC patients. Yu et al. proposed that individuals
with combined 1-3 risk genotypes of MDM4 SNPs exhibited
significantly increased risk of oropharyngeal cancer (75). In
a cohort of 1283 HNSCC patients, Jin et al. concluded that
MDM4-rs11801299, MDM4-rs1380576, and MDM4-rs10900598
enhanced the incidence of SPMs in index HNSCC cases by
10, 10, and 40%, respectively (73). Collectively, MDM2 and
MDM4 polymorphisms may increase the susceptibility of SPMs
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in HNSCC to some extent, which may improve the precision of
risk estimates of SPMs.

SNPs of DNA Repair Genes
The MRN complex, composed of MRE11, RAD50, and Nbs1,
plays a critical role in the double-strand break repair and
telomere maintenance (76). To evaluate the role of MRE11 and
RAD50 genes in HNSCC, Ziółkowska-Suchanek et al. conducted
a case and control study of 358 HNSCC patients. Their results
suggested that common variants of MRE11 and RAD50 genes
contributed little to the occurrence of HNSCC and SPTs located
in the head and neck region (77). XRCC3, short for X-ray
repair cross-complementing group 3, is another important gene
which participates in the double-strand break repair (78). Several
studies revealed that XRCC3 C18067T polymorphism may play a
minor role in the etiology of primary HNSCC as well as MPTs.
(78, 79).

The X-ray repair cross-complementing group 1 (XRCC1)
exerts on a vital role in the DNA single-strand break repair
pathway (80). XRCC1 Arg194Trp, XRCC1 Arg280His, and
XRCC1 Arg399Gln are the three most common examined SNPs
in the XRCC1 gene (81, 82). Lou et al. suggested that XRCC1
Arg194Trp, XRCC1 Arg280His, and XRCC1 Arg399Gln posed
limited effect on the HNSCC risk in a meta-analysis with 29
studies (83). Similarly, no significant associations have been
presented between XRCC1 gene SNPs and the incidence of MPT
in the HNSCC patients (79).

Apart from double-strand and single-strand repair pathway,
the host can protect the genome from damage induced by various
environmental carcinogens by means of nucleotide excision
repair (NER) pathway (84). Seven SNPs of the NER genes
involved in theHNSCC are listed as follows:XPCAla499Val,XPC
Lys939Gln, XPDAsp312Asn, XPD Lys751Gln, XPGHis1104Asp,
ERCC1 C8092A, and XPA G23A. Zafereo et al. declared that no
significant association between aforementioned seven SNPs and
the SPM susceptibility, independently or collectively, has been
found in a recessive model (84).

All in all, no significant associations between SNPs of DNA
repair genes and MPC risk have been found so far. On the basis
of above evidences, it is plausible that SNPs of DNA repair genes
might not play a major role in the development of MPCs in the
HNSCC subjects.

SNPs of Carcinogen Metabolism-Related Genes
Glutathione peroxidase I (GPX1), a selenium-dependent enzyme,
participates in the detoxification of activated oxygen species (85).
Genetic alterations or polymorphism in the coding region of
GPX1 gene might be involved in the development of cancer.
A significant correlation has been observed between GPX1
expression and T-stage as well as index tumor sites in HNSCC
patients (86). The GPX1 polymorphism represents three possible
alleles, namely ALA5, ALA6, and ALA7. Jefferies et al. evaluated
the association between GPX1 genetic polymorphisms and
HNSCC patients who developed SPTs in a case-control study. A
significant difference in allele frequencies of GPX1 ALA∗6 and
ALA∗7 was observed between the SPT cases and controls, which

indicated that polymorphisms of GPX1 gene may be a molecular
marker for the development of SPTs in HNSCC (85).

CYP1A1 and CYP2E1 are two main genes associated with
the carcinogen metabolic activation. Rydzanicz et al. reported
that HNSCC patients with CYP1A1 genotype ∗1/∗4 and allele
∗4 represented a 4.1- and 2.6-fold risk of developing MPT,
respectively (79). However, no significant correlations has been
established between SNPs of CYP2E1 gene and the incidence
of MPT, which suggested a limited role of CYP2E1 in the
susceptibility of MPTs in HNSCC (79).

Glutathione S transferase (GST) plays a critical role in
the detoxication and elimination of various carcinogens (87).
GSTM1, GSTT1, and GSTM3 gene are three members of the
GST family in human (87). Studies reported that the GSTT1
null genotype and polymorphism in GSTM3 gene were not
correlated with a statistically significant increased risk for SPTs or
tobacco-related SPTs (79, 88). Inversely, a significant association
was observed between the polymorphism in GSTM1 gene and
development of SPTs or tobacco-related SPTs (88).

N-acetyltransferase 2 (NAT2) gene participates in the
metabolism of aromatic, heterocyclic amines and hydrazines
(89). Evidence from 23 case and control studies indicated that
NAT2 polymorphisms could increase the incidence of HNSCC
by 23% and serve as a risk factor of HNSCC in Asians (90). With
respect to MPCs, NAT2∗7B was significantly correlated with an
increased risk for SPTs in patients after index HNSCC (79).

According to the available evidences, a significant association
has been observed between MPCs and SNPs of carcinogen
metabolism-related genes, such as CYP1A1, GSTM1, and NAT2.
However, well-designed, large-scale, multi-center studies are still
warranted to verify these conclusions in the future.

MPCs AND ACQUIRED MUTATIONS

MPCs and CIN
CIN comprises altered DNA copy number and loss or
rearrangement of the chromosomes, resulting in the loss or gain
of function of certain genes (91). Piccinin et al. evaluated the
LOH status at 1p, 3p, 9p, 13q, and 19p. However, no significant
differences have been observed between the MPCs group
and single cancer group, which suggested that chromosomal
instability may not account for the propensity to develop SPMs
in the upper aerodigestive tract (49).

MPCs and MSI
MSI, a major hallmark of genetic instability, originates from
deficient DNA mismatch repair (92). It is mostly observed
and studied in the hereditary non-polyposis colorectal cancer,
which is characterized by MPCs of different organs, such as
gastrointestinal, endometrial and urinary tract (93). So, MSI is
considered to be a major determinant in the development of
MPCs. Piccinin et al. analyzed the MSI on five chromosomes
in 67 HNSCC patients, 22 MPCs and 45 controls, and revealed
that no significant differences existed between MSI and MPCs
cases (49). This implied that except for MSI, other systems
concerning the genome integrity might be responsible for the
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TABLE 1 | Genetic factors, genes, and potential biomarkers of multiple primary

cancer of HNSCC.

Factors Genes Potential biomarkers

Germline mutation p53, CDKN2A, hMLHI Unidentified

SNP Tumor suppressor genes:

p53, p1p14, p73,

FAS/FASLG, p21, p27

Oncogenes: MDM2, MDM4

DNA repair genes: MRE11,

RAD50, NBN,

XRCC3, XRCC1, XPC, XPD,

XPG, ERCC1, XPA

Carcinogen

Metabolism-related genes:

GPX1, CYP1A1, CYP2E1,

GSTT1, GSTM1,

GSTM3, NAT2

p53, p1p14, p73,

FAS/FASLG, p21, p27

MDM2, MDM4

Unidentified

GPX1, CYP1A1,

GSTM1, NAT2

CIN

MSI

Epigenetic alterations

Unidentified

Unidentified

CCNA1, DCC, TIMP3

Unidentified

Unidentified

CCNA1, TIMP3

carcinogenesis of HNSCC and tumormultiplicity of the head and
neck region (49).

MPCs and DNA Methylation
DNA methylation is a well-categorized change of epigenetic
alterations in tumors, which is capable of silencing the
classic tumor suppressor genes (94). DNA methylation could
disrupt the tumor suppressor gene function by obstructing
its promoter region and impeding the transcriptional
process (95). Longo et al. have detected CCNA1, DCC, and
TIMP3 hypermethylation in the exfoliated cell samples of
HNSCC patients (96). To investigate the relationship between
hypermethylation and MPCs in HNSCC, Rettori et al. examined
the methylation patterns of 19 genes in 70 HNSCC cases (97),
revealing that CCNA1 and TIMP3 hypermethylation were
significantly connected with formation of SPT in HNSCC.
Hypermethylation of CCNA1 and TIMP3 might be a promising

genetic marker to predict the incidence of SPT in HNSCC
subjects, providing the basis for the use of preventive measures
and adjuvant treatment.

CONCLUSIONS

The dismal prognosis of HNSCC has always been attributed
to the occurrence of MPCs. “Field cancerization,” induced by
carcinogens and CAFs, is proposed to elaborate the development
of MPCs. Apart from environmental and immune factors,
genetic factors may play a major role in the risk of MPCs.
In summary, SNPs of tumor suppressor genes, oncogenes
and carcinogen metabolism-related genes, together with DNA
methylation, may serve as potential molecular markers of
MPCs risk (Table 1). SNP chips and next-generation sequencing
technology will enables us to access the strength of these
“nature” components of MPCs, resulting in early diagnosis
and better survival in HNSCC patients. However, there is
still a long way to go before the clinical application of these
genetic markers. HNSCC is a genetically heterogeneous disease
with a wide range of genetic alterations (98), so a panel
of genetic markers with the most accuracy and specificity
need to be selected. On the other hand, large-scale, well-
designed, and multi-center studies are warranted to examine
their clinical relevance.
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