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Abstract: Load balancing is effective in reducing network congestion and improving network
throughput in wireless sensor networks (WSNs). Due to the fluctuation of wireless channels,
traditional schemes achieving load balancing in WSNs need to maintain global or local congestion
information, which turn out to be complicated to implement. In this paper, we design a flowlet
switching based load balancing scheme, called EasyLB, by extending OpenFlow protocol. Flowlet
switching is efficient to achieve adaptive load balancing in WSNs. Nevertheless, one tricky problem
lies in determining the flowlet timeout value, δ. Setting it too small would risk reordering issue,
while setting it too large would reduce flowlet opportunities. By formulating the timeout setting
problem with a stationary distribution of Markov chain, we give a theoretical reference for setting an
appropriate timeout value in flowlet switching based load balancing scheme. Moreover, non-equal
probability path selection and multiple parallel load balancing paths are considered in timeout setting
problem. Experimental results show that, by setting timeout value following the preceding theoretical
reference, EasyLB is adaptive to wireless channel condition change and achieves fast convergence of
load balancing after link failures.

Keywords: wireless sensor networks; flowlet switching; load balancing; Markov chain; software
defined networking

1. Introduction

In wireless sensor networks (WSNs), many sensor nodes are deployed to collect various types of
data from the environment, e.g., temperature, image and video. The data collected are forwarded to
the sink nodes through wireless channels with or without the help of some intermediate nodes. At
the sink nodes, the data are further processed to perform some specific tasks, such as fire detection,
water quality monitoring and natural disaster prevention. To improve reliability and throughput,
multi-path routing algorithms are widely used in WSNs [1–6], where load balancing plays a key role in
reducing transmission latency and extending the lifetime of WSNs. As the wireless channels fluctuate
frequently due to the inherent characteristics of wireless signals, the channel capacities of the paths
change rapidly [7,8]. In the worst case, some links may even fail if deep fade happens [9]. In this
scenario, how to achieve adaptive load balancing in WSNs is a crucial problem.

Many efforts focus on achieving load balancing in various scenarios. These load balancing
schemes differ in operation granularity and the ability to handle asymmetry. According to load
balancing granularity, load balancing schemes can be broadly divided into three categories: packet
level, flow level and sub-flow level. MPTCP [10], DRB [11], Fastpass [12] and DeTail [13] are typically
working at packet level. In general, the packet level schemes are able to achieve accurate control of load
ratio among multi-paths, but often lead to packet reordering. ECMP [14], WCMP [15], Hedera [16]
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and MicroTE [17] operate load balancing at flow level. These schemes do not generally cause packet
reordering problem, but they cannot achieve accurate load balancing ratio. Flare [18], Presto [19],
Conga [20] and LetFlow [21] are sub-flow level load balancing schemes that obtain a trade-off between
accurate ratio control and freedom from packet reordering.

Load balancing in symmetrical network topologies such as Fat-tree [22] and Clos [23] usually
splits network traffic across multiple equal paths which have the same link capacity and delay. Due to
the fluctuation of wireless channels, asymmetries may occur frequently in WSNs where the capacities
of parallel routing paths are no longer the same. Many existing load balancing schemes can work
normally in symmetric networks. However, they will result in serious network congestion and a sharp
network performance decline in WSNs when asymmetries occur, such as ECMP. Load balancing
schemes can work in an asymmetric network when network congestion information is available, such
as CONGA [20] and HULA [24]. However, the implementation of CONGA or HULA in WSNs is very
complex because they need to obtain real-time congestion information with a centralized control of
fabric and end-to-end feedback. Recently, Vanini, et al. [21] verified that adaptive load balancing can
be implemented in asymmetric topology based on flowlet switching [25]. This scheme is extremely
simple to implement without any explicit congestion feedback.

As shown in Figure 1, a flowlet is a sub-flow which consists of several consecutive packets
from the same TCP flow. Flowlets are characterized by a timeout value, δ, which is the minimum
inter-flowlet interval, i.e., packet interval within a flowlet is smaller than δ. Flowlets can be switched
independently. Flowlet switching based load balancing will not cause TCP reordering if δ is set greater
than the maximum delay difference between any set of parallel paths, as shown in Figure 2.

flowlet 1

One TCP flow

idle ≥ d
flowlet 2flowlet 3

Figure 1. Flowlet is a burst of packets that is separated in time from other bursts in one TCP flow by an
idle time interval that is larger than a predefined timeout value, δ.

Delay = d
1

Delay = d
2

One TCP flow flowlet1
a b

Figure 2. Flowlet switching: the packets in one flowlet follow the same path. If δ ≥ |d1 − d2|, one can
randomly assign the packets in flowlet2 to one path without risking TCP packet reordering. Since
packets in flowlet1 will always leave the merge point b before flowlet2.

The size of flowlet will change with the real-time network congestion. More specifically, the less
congested the network is, the larger the size of flowlet is. Thus, Vanini et al. [21] found that this
property of flowlet can achieve adaptive and resilient load balancing in the presence of topological
asymmetry. They have implemented an extremely simple flowlet switching based load balancing
scheme, called LetFlow [21]. However, a key problem lies in determining a proper timeout value.
Setting the value too small will lead to heavy packet reordering issue, and setting the value too large
will reduce the opportunities of flowlet generation.

However, to achieve adaptive load balancing, choosing a proper timeout value is quite difficult
because of dynamic TCP traffic patterns, different capacities of multiple parallel paths, etc. Currently,
the timeout is usually set empirically based on sufficient simulations and statistics. Besides,
a pre-designed timeout in one network cannot always reach good performance in other scenarios.
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To solve this problem, in this paper, we investigate the theoretical reference on setting an appropriate
timeout value in flowlet switching based load balancing scheme, and verify the theoretical results in
an OpenFlow enabled network. The contributions of this paper are summarized as follows:

• First, we design a flowlet switching based load balancing scheme for WSNs, called EasyLB, by
adding one selection method for group table defined in OpenFlow [26]. We show that, by setting
timeout according to the theorem, EasyLB achieves approximately optimal load balancing in
WSNs and re-balances traffic quickly after link failures.

• Second, the flowlet switching process is modeled by a stationary Markov chain, with the
assumption that all flows occur as the Poisson process. Based on this model, we derive a theorem
that specifies the sufficient condition on timeout that ensures the system can converge to an ideal
load balancing effect.

• Third, we further study the timeout setting problem when it comes to non-equal probability
path selection and multiple parallel paths in flowlet switching. We conclude more generally
when non-equal probability path selection is adopted in flowlet switching based load balancing
scheme. Then, we give an algorithm for solving timeout setting problem in multiple parallel load
balancing paths.

The paper is organized as follows. Section 2 presents the design and implementation of EasyLB.
In Section 3, we describe the flow number change of parallel paths with a Markov chain model, and then
we reveal the relationship between δ and the load balancing effect by the stationary distribution of
Markov chain. We further study the timeout setting problem from the perspective of non-equal
probability path selection and multiple parallel paths in flowlet switching. We evaluate EasyLB in
different scenarios in Section 4. Section 5 concludes the paper and presents our future works.

2. EasyLB Design and Implementation

In this section, we introduce the architecture of EasyLB and give a brief explanation of the
modified group table selection algorithm. EasyLB can be deployed at any merge nodes in WSNs.

The architecture of EasyLB and one example of deployment policy in WSNs is shown in Figure 3.
In the WSN, the sensor nodes are reconfigurable, which is enabled by software defined networking.
More specifically, the sensor nodes communicate with a common controller via OpenFlow [26]. Flowlet
detection module of EasyLB is implemented in the sensor nodes while load balancing decision module
resides in the controller. The controller obtains the whole network topology through the topology
discovery module and periodically collects the channel state, link delay and flow information through
the network monitoring module. The controller pushes the source-destination multi-path decisions
into corresponding sensor nodes as group table entries.

OpenvSwitch

Controller
Openflow

Topology discovery Load balancing decision

Hash table Openflow agent Group table

Flowlet detection Group table selection

EasyLB

Source Node

EasyLB

EasyLB

EasyLB

Sink Node

Network monitoring

Figure 3. An overview of EasyLB and its deployment policy in wireless sensor networks.

As one representative southbound protocols in software defined networking [27], OpenFlow [26]
standardizes the control signalling between control plane and data plane. Group table defined in
OpenFlow protocol consists of multiple group entries and provides more advanced packet forwarding
features to OpenFlow enabled switches. Each group entry contains multiple action buckets. Only
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one action bucket chosen by selection method such as hash will be executed in the select type of
group entry. Obviously, the group entry of type “select” is suitable for implementing multi-path
forwarding. By extending the selection method, we implement EasyLB by modifying the source code
of OpenvSwitch [28].

The group table selection algorithm is described in Algorithm 1; the hash tables of last_arrival_time
and last_output_channel are used to record the last packet arrival time and egress channel for every
flow, respectively. When the time interval between two packets belonging to one flow is greater than δ,
one new flowlet is created. The flowlet switching will randomly choose one from available channels of
multi-path as its egress channel. If time interval is smaller than δ, the packet will still be forwarded from
the same egress channel as the previous one of the same flow. The group_alive_buckets function selects
a normal state channel from available output channels. When channel is down, the corresponding
action bucket will not be selected or executed. Meanwhile, a port down message will be sent to
controller and controller will make a new multi-path decision. These mechanisms can guarantee the
fast convergence of load balancing after link failures.

Algorithm 1 The group table selection algorithm.

1: procedure TABLESELECT
2: last_arrival_time← None;
3: last_output_channel← None;
4: timeout← δ;
5: while receive one packet do

6: key← hash(packet);
7: current_time← getTimeNow();
8: if key not in keys of last_arrival_time then

9: add (key, current_time) to last_arrival_time;
10: output_channel← random(group_alive_buckets());
11: add (key, output_channel) to last_output_channel;
12: else

13: last_time← get(key, last_arrival_time);
14: if current_time− last_time ≥ timeout then

15: update (key, current_time) to last_arrival_time;
16: output_channel ← random(group_alive_buckets());
17: update (key, output_channel) to last_output_channel;
18: else

19: update (key, current_time) to last_arrival_time;
20: last_channel ← get(key, last_output_channel);
21: if last_channel corresponding bucket is not alive then

22: output_channel ← random(group_alive_buckets());
23: update (key, output_channel) to last_output_channel;
24: send one port down message to controller;
25: else

26: output_channel ← last_channel;
27: end if
28: end if
29: end if
30: send packet to output_channel;
31: end while
32: end procedure
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3. Timeout Setting in EasyLB

A wrongly chosen timeout value cannot mitigate the congestion or even reduce the throughput of
the whole network in flowlet switching based load balancing scheme. Generally, the value of timeout
is obtained in advance through sufficient simulations and statistics. In this section, we introduce the
Markov chain model to describe the flowlet switching process, and to investigate the timeout setting
problem in EasyLB. We first start with the simplest case where there are two parallel paths with equal
path selection, and then extend it to non-equal path selection scenario. Finally, we solve the timeout
setting problem in the general multiple parallel case.

3.1. Markov Chain Model

Without loss of generality, consider that N flows transfer on two parallel paths P1 and P2 with
bottleneck capacities C1 and C2, respectively. Assume the arrivals of packets of each flow follow
the Poisson process (although not all flows are subject to Poisson process in different network
environments, the assumption of Poisson process can help us better understand the burstiness of
TCP and carry out relevant theoretical studies, as shown in [29–32]), and all the competing flows on
the same path fairly share the path’s capacity. Let F1 and F2 denote the set of flows on P1 and P2,
respectively. In an instant, we use γ to represent the average packet size, thus the arrival rate λi of
flow i can be calculated as

λi =

{
C1

n1γ , i ∈ F1,
C2

n2γ , i ∈ F2,

where n1 = | F1 | and n2 = | F2 | denote the number of flows on P1 and P2, respectively. The aggregate
arrival rate λa on P1 and P2 is

λa =
C1 + C2

γ
.

Obviously, the flowlet switching process can be modeled by a Markov Chain, where the number
of flows on P1 and P2 is the state. For state (n1, n2), the next state it may transfer into is (n1, n2),
(n1−1, n2 + 1) or (n1 + 1, n2−1), which depends on the random path selection of new triggered flowlet.
As Figure 4 depicts, if flow i on path P1 triggers a new flowlet and the random selection path is
P2, (n1, n2) will transfer to (n1−1, n2 + 1). Similarly, if flow i on path P2 triggers a new flowlet and
the random selection path is P1, (n1, n2) will transfer to (n1 + 1, n2−1). Otherwise, the state will
remain unchanged. (n1, n2) (n1+1, n2-1)(n1-1, n2+1)(0, N) (N, 0)… …

……

�( 
!
, 
"
)

#�( 
!
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"
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Figure 4. The model of Markov chain. In state (n1, n2), there are n1 and n2 flows on P1 and P2,
respectively. The green line represents flow i on P1 triggers a new flowlet and selects P2 as its next path
while the blue line represents flow i on P2 triggers a new flowlet and selects P1 as its next path. The red
line represents the other cases.

Let P0
(n1,n2)

, P1
(n1,n2)

and P2
(n1,n2)

denote the transition probability from state (n1, n2) to (n1, n2),

(n1−1, n2 + 1) and (n1 + 1, n2−1), respectively. According to [21], the transition probability P1
(n1,n2)

and

P2
(n1,n2)

can be calculated as

P1
(n1,n2)

=
1
2 ∑

i∈F1

( f (λi) + g(λi)) , n1 ∈ [1, N],
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and
P2
(n1,n2)

=
1
2 ∑

i∈F2

( f (λi) + g(λi)) , n1 ∈ [0, N − 1],

where f (λi) =
λi

λa−λi

(
e−λiδ − e−λaδ

)
and g(λi) =

λi
λa

e−λaδ.
Since λi � λa, P0

(n1,n2)
, P1

(n1,n2)
and P2

(n1,n2)
can be approximated as

P1
(n1,n2)

≈ C1

2(C1 + C2)
e−

C1δ
n1γ , n1 ∈ [1, N],

P2
(n1,n2)

≈ C2

2(C1 + C2)
e−

C2δ
n2γ , n1 ∈ [0, N − 1],

P0
(n1,n2)

=1− P1
(n1,n2)

− P2
(n1,n2)

, n1 ∈ [1, N − 1].

Note that the transition probabilities of P0
(0,N)

and P0
(N,0) are 1− P2

(0,N) and 1− P1
(N,0), respectively.

The transition probability between (n1, n2) and any other state besides (n1, n2), (n1−1, n2 + 1)
and (n1 + 1, n2−1) is 0. In summary, the transition probability matrix P of this Markov chain can be
written as

P =


P0
(0,N)

P2
(0,N)

P1
(1,N−1) P0

(1,N−1) P2
(1,N−1)

. . . . . . . . .
P1
(N−1,1) P0

(N−1,1) P2
(N−1,1)

P1
(N,0) P0

(N,0)


which is a typical tridiagonal matrix.

3.2. Formalization of Timeout Setting Problem

In this subsection, we derive the sufficient condition on timeout that ensures the flowlet switching
based load balancing scheme to achieve ideal load balancing effect.

Definition 1. In the flowlet switching based load balance scheme considered in the previous section, if n1
n2

= C1
C2

,
the ideal load balancing effect is achieved.

We define µ as the number of flows mapping to P1 when the ideal load balancing effect is achieved.

According to Definition 1, µ =
⌊

C1
C1+C2

× N
⌋

. In this case, the corresponding state of the Markov chain

is (µ, N − µ), we call it the ideal state.

Theorem 1. In flowlet switching based load balancing scheme, if N flows transmit over two parallel paths with
capacities C1 and C2, respectively, the sufficient condition on timeout δ to achieve ideal load balancing effect is
δ > δmin, where

δmin =


0, if C1 = C2,

µ(N−µ+1)γ×ln( C1
C2

)

C1(N−µ+1)−C2µ
, if C1 > C2,

(N−µ)(µ+1)γ×ln( C1
C2

)

C1(N−µ)−C2(µ+1) , if C1 < C2.

(1)

proof of Theorem 1. The number of states in the preceding Markov chain is restricted and all states
are accessible, thus this Markov chain is irreducible and all states are recurrent. Additionally, any
state can access itself again through one step, so this Markov chain has stationary distribution. Let
~π = [π0, π1, ..., πm, ..., πN ] represent the stationary distribution of this Markov chain, where πm denotes
the stationary probability of state (m, N −m). We can get the stationary distribution by solving

~πP = ~π
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where ∑N
m=0 πm = 1. After some mathematical manipulations, we finally get:

πm

πm+1
=

P1
(m+1,N−m−1)

P2
(m,N−m)

0 ≤ m ≤ N − 1. (2)

The relationship of stationary probability between ideal state and that of any other state can be
deduced from Equation (2) as:

πµ

πµ+k
=

πµ

πµ+1
×

πµ+1

πµ+2
× ....×

πµ+k−1

πµ+k

= (
C1

C2
)ke−δ ∑k

j=1(
C1

(µ+j)γ−
C2

(N−µ−j+1)γ ), k ∈ [1, N − µ], (3)

πµ−k

πµ
=

πµ−1

πµ
×

πµ−2

πµ−1
× ....×

πµ−k

πµ−k+1

= (
C1

C2
)ke−δ ∑k

j=1(
C1

(µ−j+1)γ−
C2

(N−µ+j)γ ), k ∈ [1, µ]. (4)

From the perspective of stationary distribution, when it comes to ideal load balancing effect,
the stationary probability of ideal state is greater than any other one, i.e.,

πµ

πµ+k
> 1, ∀ k ∈ [1, N − µ], (5)

πµ−k

πµ
< 1, ∀ k ∈ [1, µ]. (6)

By solving Equations (5) and (6), we can obtain the results specified in Equation (1). For more
detailed derivation, please refer to Appendix A.

When the capacity of P1 is greater than that of P2, Equation (3) is always larger than 1. That is,
when P1 has more flows than ideal state, flows themselves incline to transfer to P2. Contrarily, when the
capacity of P1 is smaller than that of P2, Equation (4) is always smaller than 1. This indicates that, when
P1 has fewer flows than ideal state, flows tend to transfer to P1. Note that, when paths are symmetric,
the timeout has no effect on the final load balancing state.

Assuming that the delay difference between P1 and P2 is d, δ not only has to meet the constraints
in Theorem 1, but also has to be greater than d to avoid packet reordering. However, setting δ too large
also lowers the possibility of flowlet generation. An extreme case is setting δ at infinity, which will
result in a flow-level load balancing scheme. An upper bound on δ is left as a future study.

3.3. Timeout Setting in Non-Equal Probability Path Selection

It is shown in [21] that, with equal probability path selection, flowlet switching based load
balancing scheme can achieve adaptive load balancing on the premise of appropriate selection of δ,
which is the magic of this load balancing technology. Considering a more general case where the
paths are selected with non-equal probabilities, it is worth investigating whether the flowlet switching
based load balancing scheme can still maintain its adaptive load balancing capability. In that case, how
should δ be set? In practice, the paths are usually selected with non-equal probabilities; let us take the
following two scenarios as an example. The first scenario is the switch queue’s length on path P1 is
greater than that on path P2. To reduce the packet loss rate and improve overall performance of the
network, we should choose path P1 as new routing path at a higher probability for newly triggered
flowlet. The second scenario is when the bandwidth of path P1 is greater than that of P2; for the
purpose of speeding up the convergence rate of load balancing, we choose P1 as routing path for newly
triggered flowlet at a higher probability. In this section, we study the timeout setting problem when
non-equal probability path selection is applied to flowlet switching based load balancing scheme.
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Denote the probability that P1 and P2 are selected as the routing path for newly triggered flowlet
as p and q, respectively. p and q meet the following conditions (to accelerate the convergence process
of load balancing, p and q are usually set proportional to the bandwidth of the corresponding paths,
i.e., p = C1

C1+C2
, q = C2

C1+C2
), where 

p > 0,

q > 0,

p + q = 1,

p 6= q.

It is easy to obtain the transition probability P1
(n1,n2)

as

P1
(n1,n2)

= q× ∑
i∈F1

( f (λi) + g(λi)) , n1 ∈ [1, N].

Similarly, the transition probability P2
(n1,n2)

is

P2
(n1,n2)

= p× ∑
i∈F2

( f (λi) + g(λi)) , n1 ∈ [0, N − 1].

According to Equation (2), we can get the relationship of stationary probability between ideal
state and that of any other state is

πµ

πµ+k
=

πµ

πµ+1
×

πµ+1

πµ+2
× ....×

πµ+k−1

πµ+k

= (
C1

C2
× q

p
)ke−δ ∑k

j=1(
C1

(µ+j)γ−
C2

(N−µ−j+1)γ ), k ∈ [1, N − µ],

πµ−k

πµ
=

πµ−1

πµ
×

πµ−2

πµ−1
× ....×

πµ−k

πµ−k+1

= (
C1

C2
× q

p
)ke−δ ∑k

j=1(
C1

(µ−j+1)γ−
C2

(N−µ+j)γ ), k ∈ [1, µ].

Following Equations (5) and (6), we have

δmin =


0, if qC1 = pC2,

µ(N−µ+1)γ×ln( C1
C2
× q

p )

C1(N−µ+1)−C2µ
, if qC1 > pC2,

(N−µ)(µ+1)γ×ln( C1
C2
× q

p )

C1(N−µ)−C2(µ+1) , if qC1 < pC2.

(7)

As long as δ > δmin, adaptive load balancing can be achieved even with non-equal probability path
selection. The derivation process is similar to Appendix A It can be seen that Theorem 1 is actually
a special case with p = q = 0.5.

3.4. Timeout Setting in Multiple Parallel Load Balancing Paths

In this subsection, we study the problem of how to set δ to achieve adaptive load balancing when
the load balancing parallel paths are multiple. When there are multiple parallel load balancing paths,
each newly triggered flowlet may choose any of the paths as new routing path. As the number of
multiple parallel paths increases, the Markov chain model encounters the state explosion problem and
hence the computation of the transition probability matrix and the stationary distribution will become
intractable. Alternatively, we leverage the results shown in Equation (7) to derive the threshold on δ.

Assume there are M parallel paths P1, P2, ..., PM with capacities C1, C2, ..., CM, respectively. We
divide all paths into two logical paths P1 and P2, where P1 contains P1 only and P2 contains all the
other paths. The bandwidth of P1 and P2 are C1 = C1 and C2 = ∑M

k=2 Ck, respectively. With random path
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selection of the M paths, the probability that P1 or P2 is chosen as the routing path for newly triggered
flowlet is p = 1

M and q = M−1
M , respectively. The number of flows mapping to P1 can be calculated as

µ =
⌊

C1
C1+C2

× N
⌋

when ideal load balancing effect is achieved. According to Equation (7), we can

obtain δ1
min that specifies the lower bound on δ when ideal load balance effect is achieved between

P1 and P2. After obtaining δ1
min, we remove P1 from the physical paths resulting in a new problem

of how to achieve load balance between the remaining M−1 paths P2, P3, ..., PM. Similarly, we can
obtain δ2

min by regarding P2 as one logical path and all the other M−2 paths as another logical path.
This procedure can be processed recursively until there are only two paths PM−1 and PM left which
yields δM−1

min . When ideal load balance effect is achieved between the M parallel paths, δ must be set as
δ > δmin, where

δmin = max{δk
min}, k ∈ [1, M− 1].

The detailed algorithm is described in Algorithm 2. The time complexity of the algorithm isO(M),

Algorithm 2 An iterative algorithm for solving timeout setting problem with multiple parallel paths.

Input:

One physical path set, P(P1, P2, ..., Pi, ...PM)(2 ≤ i ≤ M);

One logic path set that contains physical path in P, Pk(k = 1 or 2);

The bandwidth of physical path Pi, Ci;

The bandwidth of Pk, Ck(k = 1 or 2);

The total flow number, N;

The number of flows mapping to P1 when ideal load balancing effect is achieved, µ;

The probabilities of P1 and P2 is chosen as the routing path for newly triggered flowlet, p and q;

The m-th minimum value which must be less then δ, δm(1 ≤ m ≤ M− 1);
Output:

The maximum value of δm, δmin;
1: for m from 1 to M-1 do

2: Pp ← pick the first physical path in P;
3: P1 ← (Pp) and P2 ← P - P1;
4: C1 ← ∑Pi∈P1

Ci and C2 ← ∑Pi∈P2
Ci;

5: µ←
⌊

C1
C1+C2

× N
⌋

;
6: p← 1

M+1−m and q← M−m
M+1−m ;

7: According to (7), we get the δm;
8: N← N-µ;
9: Remove Pp from physical path set P;

10: end for
11: δmin ←max(δm) (1 ≤ m ≤ M− 1);
12: return δmin;

where M is the number of total parallel load balancing paths.

4. Performance Evaluation

In this section, we evaluate the performance of EasyLB both in symmetric topology and
asymmetric topology with random path selection. Further, we evaluate EasyLB under non-equal path
selection and multiple parallel paths in flowlet switching. Experimental results show that EasyLB
achieves relatively ideal load balancing effect. Meanwhile, without maintaining explicit congestion
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information, EasyLB has the ability to handle asymmetry in the topology and achieves fast convergence
of load balancing after link failures.

4.1. Asymmetric Topology with Random Path Selection

The testbed topology of wireless sensor networks is shown in Figure 5. The testbed is based on
SDN-WISE [33] which is a prototype system of SD-WSNs and uses OMNeT++ [34] simulator. We
break down P3 in the simulation of asymmetric topology and symmetric topology. The capacity of P1

and P2 are set to 20 and 10 Kbps, respectively. The delay difference between P1 and P2 is 0.01 s. The
forwarding queues of the sensor nodes are running in a round-robin [35] fashion in our simulations to
enhance the fairness of links. Ten long-lived TCP flows are generated that transmit from node C1 to C2.
The randomly generated requests are distributed to P1 and P2. The average packet size of each flow is
80 Bytes. We run a basic flowlet switching process whose path selection is random, as described in
Algorithm 1. We vary timeout value from 0.2 s to 8 s and get the convergent traffic load ratio of P1 to
P2 as shown in Figure 6a. According to Equation (1), δmin equals to 0.64 s. When δ > δmin, such as 1 s
or 1.2 s, the system will achieve the ideal load balancing effect. However, if the value of timeout is set
too large, such as bigger than 2 s, the granularity of flowlet switching based load balancing scheme is
approximate to flow level and the traffic load ratio of P1 to P2 will be much more random. Similarly,
if timeout is set too small, such as 0.2 s, it turns out to be packet-level load balancing and the traffic
distributed onto this two paths is roughly the same.
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Figure 5. The testbed topology of wireless sensor networks.
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Figure 6. The convergent traffic load ratio of P1 to P2 under different timeout values.

In Figure 7, we set timeout to different values to show the real time traffic load ratio of P1 to P2.
As shown in Figure 7a,b, the traffic load ratio fluctuates in both symmetric and asymmetric cases. As
more flowlets are assigned to one path, congestion is more likely to occur on this path which results
in the flowlet size reduction. Flows will transfer from a more congested path to a less congested one,
and finally the size of flowlet on this two paths is balanced.
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Figure 7. The traffic load ratio change of P1 to P2 under different timeout values.

4.2. Symmetric Topology with Random Path Selection

We also evaluate the performance of EasyLB in symmetric topology, where the capacity of P1 and
P2 are both set to 10 Kbps. The convergent traffic load ratio of P1 to P2 is shown in Figure 6b. According
to Equation (1), δmin equals to 0 s. As depicted in Figure 6b, the traffic load ratio is approximately 1,
which is the ideal load balancing effect in symmetric topology as long as the value of δ is not too large.

The load ratio change of P1 to P2 in symmetric topology is shown in Figure 7b. We can find that
EasyLB converges to ideal load balance effect. We know that, when the number of flows in one path
increases, this path becomes more congested and more packets are likely to be dropped. Packet loss
in TCP brings about TCP timeout and a new flowlet will be generated, which forces flows switch
to another path. When the system eventually reaches steady state, the congestion degree is almost
the same.

4.3. Non-Equal Probability Path Selection

To evaluate EasyLB with non-equal probability path selection, we set the path selection
probabilities of P1 and P2 to 1

3 and 2
3 , respectively. The bandwidth of P1 and P2 is set to 20 and

10 Kbps, respectively. According to Equation (7), δmin equals to 1.28 s. As shown in Figure 8, as
long as δ is larger than δmin, the traffic load ratio of P1 to P2 approximately approaches 2, which
is the ideal load balancing effect. Note that, as δ is sufficiently large, it acts more like flow-level
load balancing and hence the traffic load ratio of P1 to P2 has difficulty converging to 2, as shown
in Figure 8. An interesting finding is that, although the path selection probabilities of P1 and P2 are
inversely proportional to their bandwidth, EasyLB maintains its adaptive load balancing capability as
long as the timeout is appropriately set.
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Figure 8. The convergent traffic load ratio of P1 to P2 with non-equal path selection under different
timeout values.
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4.4. Multiple Parallel Paths

In this subsection, we evaluate the performance of EasyLB in the presence of multiple paths. As
shown in Figure 5, the client applications on sensor node C1 randomly generate requests to server
applications on C2. The capacity of the three paths P1, P2, and P3 are set to 6, 6 and 18 Kbps, respectively.
We randomly assign new triggered flowlet to the three paths, thus the path selection probability of
each path is 1

3 . According to Algorithm 2, δmin equals 0.88 s. As shown in Figure 9, when δ is set
smaller than δmin, EasyLB acts more like a packet-level load balancing scheme, therefore traffic loads
of the three paths are almost the same. When δ is set larger than δmin, EasyLB achieves the ideal load
balancing effect, in which the traffic distributed to each path is proportional to its bandwidth. However,
as noted above, when δ is too large, EasyLB evolves to flow level load balance scheme, thus the final
traffic load ratio of the three paths is much more random.
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Figure 9. The convergent traffic load ratio of P1, P2 and P3 under different timeout values.

4.5. React to Link Failure

The capacity of three paths P1, P2, and P3 are set to 6, 6 and 18 Kbps, respectively. We set δ to 1.2 s
and 1.4 s. At first, the traffic is distributed over the three paths, and around 20% traffic is allocated to
P2. At t = 30 s, we manually break the link (N1, S1). As is shown in Figure 10, EasyLB reacts fast to this
link failure event and around 25% of traffic is allocated to P2 after the re-balance. This is because, once
link failure happens in multi-paths case, the SDN controller can perceive it quickly and pushes the
new multi-path decision into switches as a new group entry.

0 10 20 30 40 50 60
Time(s)

0

5

10

15

20

25

30

35

40

45

T
h

e 
lo

a
d

 r
a

ti
o

 o
f 

th
e 

to
ta

l 
w

o
rk

lo
a

d
(%

)

 1.2s

 1.4s

Figure 10. The traffic load change of P2 under timeout value 1.2 s and 1.4 s. At t = 30s, a link down
event occurs on P1.

5. Conclusions and Future Work

We have studied the relationship between the timeout value in flowlet switching and the final
state of load balancing with a stationary Markov chain. We further derived a theorem that specifies the
sufficient condition on timeout to achieve ideal load balancing effect, which gives a comprehensive
recommendation on setting timeout in different network environments. We also implemented flowlet
switching based load balancing scheme called EasyLB in software defined networking by extending
OpenFlow protocol. Experimental results show that, by setting the timeout following the theorem,



Sensors 2018, 18, 3060 13 of 15

EasyLB has adaptive load balancing ability both in symmetric topology and in asymmetric topology.
The number of active flows was assumed to be static. However, in highly dynamic networks [36,37],
such as vehicle-to-vehicle (V2V) networks, the number of flows changes rapidly. Moreover, the flow
priority may affect the timeout value setting. How to deal with the dynamic arrival and departure of
flows, as well as take the flow priority into account in timeout value setting, is left as future studies.
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Appendix A The Derivation Process of Theorem 1

Taking the natural logarithm of both sides of Equations (5) and (6), we have

ln
πµ

πµ+k
= −δ

k

∑
j=1

(
C1

(µ + j)γ
− C2

(N − µ− j + 1)γ
)

+ k× ln
C1

C2
> 0, ∀ k ∈ [1, N − µ], (A1)

ln
πµ−k

πµ
= −δ

k

∑
j=1

(
C1

(µ− j + 1)γ
− C2

(N − µ + j)γ
)

+ k× ln
C1

C2
< 0, ∀ k ∈ [1, µ]. (A2)

We can get C1
(µ+j)γ −

C2
(N−µ−j+1)γ is always less than zero for j ∈ [1, N− µ] and C1

(µ−j+1)γ −
C2

(N−µ+j)γ
is always larger than zero for j ∈ [1, µ].

Thus, it can be derived from Equations (8) and (9) that δ should satisfy the following inequality as
δ > δmin = max{δmin 1 = max

1≤k≤N−µ
( f (k)), δmin 2 = max

1≤k≤µ
(g(k))} where

f (k) =
k× ln C1

C2

∑k
j=1(

C1
(µ+j)γ −

C2
(N−µ−j+1)γ )

and

g(k) =
k× ln C1

C2

∑k
j=1(

C1
(µ−j+1)γ −

C2
(N−µ+j)γ )

.

If C1 = C2, ln C1
C2

= 0 and δmin 1 = δmin 2 = 0, then δmin = 0. If C1 > C2, ln C1
C2

> 0 and

δmin 1 < 0, δmin 2 > 0, then δmin = δmin 2. Similarly, if C1 < C2, ln C1
C2

< 0 and δmin 1 > 0, δmin 2 < 0, then
δmin = δmin 1. Further, f(k) and g(k) are both decreasing, thus δmin 1 and δmin 2 get their maximum values
when k = 1. In conclusion, we can get the final results in Equation (1).

References

1. Radi, M.; Dezfouli, B.; Bakar, K.A.; Lee, M.J.S. Multipath routing in wireless sensor networks: Survey and
research challenges. Sensors 2012, 12, 650–685. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/s120100650
http://www.ncbi.nlm.nih.gov/pubmed/22368490


Sensors 2018, 18, 3060 14 of 15

2. Ganesan, D.; Govindan, R.; Shenker, S.; Estrin, D. Highly-resilient, energy-efficient multipath routing in
wireless sensor networks. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2001, 5, 11–25. [CrossRef]

3. Pham, Q.V.; Hwang, W.J. Network utility maximization in multipath lossy wireless networks. Int. J.
Commun. Syst. 2017, 30, 1–18. [CrossRef]

4. Pham, Q.-V.; Hwang, W.J. Network utility maximization-based congestion control over wireless networks:
A survey and potential directives. IEEE Commun. Surv. Tutor. 2017, 19, 1173–1200. [CrossRef]

5. Liu, X.; Xie, X.; Zhao, X.; Li, K.; Liu, A.X.; Guo, S.; Wu, J. Fast identification of blocked rfid tags. IEEE Trans.
Mob. Comput. 2018, 17, 2041–2054. [CrossRef]

6. Liu, X.; Xiao, B.; Li, K.; Liu, A.X.; Wu, J.; Xie, X.; Qi, H. RFID estimation with blocker tags. IEEE/ACM
Trans. Netw. 2017, 25, 224–237. [CrossRef]

7. Liu, X.; Xie, X.; Li, K.; Xiao, B.; Wu, J.; Qi, H.; Lu, D. Fast tracking the population of key tags in large-scale
anonymous rfid systems. IEEE/ACM Trans. Netw. 2017, 25, 278–291. [CrossRef]

8. Liu, X.; Li, K.; Guo, S.; Liu, A.X.; Li, P.; Wang, K.; Wu, J.; Liu, X.; Li, K.; Guo, S. Top-k queries for categorized
rfid systems. IEEE/ACM Trans. Networking 2017, 25, 2587–2600. [CrossRef]

9. He, J.; Tervo, V.; Zhou, X.; He, X.; Qian, S.; Cheng, M.; Juntti, M.; Matsumoto, T. A tutorial on lossy
forwarding cooperative relaying. IEEE Commun. Surv. Tutor. 2018. [CrossRef]

10. Raiciu, C.; Barre, S.; Pluntke, C.; Greenhalgh, A.; Wischik, D.; Handley, M. Improving datacenter performance
and robustness with multipath tcp. ACM SIGCOMM Comput. Commun. Rev. 2011, 41, 266–277. [CrossRef]

11. Cao, J.; Xia, R.; Yang, P.; Guo, C.; Lu, G.; Yuan, L.; Zheng, Y.; Wu, H.; Xiong, Y.; Maltz, D. Per-packet
load-balanced, low-latency routing for clos-based data center networks. In Proceedings of the ninth
ACM Conference on Emerging Networking Experiments and Technologies, Santa Barbara, CA, USA,
9–12 December 2013; pp. 49–60.

12. Perry, J.; Ousterhout, A.; Balakrishnan, H.; Shah, D.; Fugal, H. Fastpass: A centralized zero-queue datacenter
network. ACM SIGCOMM Comput. Commun. Rev. 2015, 44, 307–318. [CrossRef]

13. Zats, D.; Das, T.; Mohan, P.; Borthakur, D.; Katz, R. DeTail: Reducing the flow completion time tail in
datacenter networks. In Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, Helsinki, Finland, 13–17 August 2012;
pp. 139–150.

14. Hopps, C. Analysis of An Equal-Cost Multi-Path Algorithm. Rfc 2000, 109, S265.
15. Zhou, J.; Tewari, M.; Zhu, M.; Kabbani, A.; Poutievski, L.; Singh, A.; Vahdat, A. WCMP: Weighted cost

multipathing for improved fairness in data centers. In Proceedings of the Ninth European Conference on
Computer Systems, Amsterdam, The Netherlands, 14–16 April 2014.

16. Al-Fares, M.; Radhakrishnan, S.; Raghavan, B.; Huang, N.; Vahdat, A. Hedera: Dynamic flow scheduling
for data center networks. In Proceedings of the NSDI’10 Proceedings of the 7th USENIX Conference on
Networked Systems Design and Implementation, San Jose, CA, USA, 28–30 April 2010.

17. Benson, T.; Anand, A.; Akella, A.; Zhang, M. MicroTE: Fine grained traffic engineering for data centers.
In Proceedings of the Seventh Conference on Emerging Networking Experiments and Technologies, Tokyo,
Japan, 6–9 December 2011.

18. Kandula, S.; Katabi, D.; Sinha, S.; Berger, A. Dynamic load balancing without packet reordering.
ACM SIGCOMM Comput. Commun. Rev. 2007, 37, 51–62. [CrossRef]

19. He, K.; Rozner, E.; Agarwal, K.; Felter, W.; Carter, J.; Akella, A. Presto: Edge-based load balancing for fast
datacenter networks. ACM SIGCOMM Comput. Commun. Rev. 2015, 45, 465–478. [CrossRef]

20. Alizadeh, M.; Edsall, T.; Dharmapurikar, S.; Vaidyanathan, R.; Chu, K.; Fingerhut, A.; Matus, F.;
Pan, R.; Yadav, N.; Varghese, G. CONGA: Distributed congestion-aware load balancing for datacenters.
In Proceedings of the 2014 ACM Conference on SIGCOMM, Chicago, IN, USA, 17–22 August 2014.

21. Vanini, E.; Pan, R.; Alizadeh, M.; Taheri, P.; Edsall, T. Let It Flow: Resilient asymmetric load balancing
with flowlet switching. In Proceedings of the 14th USENIX Conference on Networked Systems Design and
Implementation, Boston, MA, USA, 27–29 March 2017; pp 407–420.

22. Al-Fares, M.; Loukissas, A.; Vahdat, A. A scalable, commodity data center network architecture. ACM
SIGCOMM Comput. Commun. Rev. 2008, 38, 63–74. [CrossRef]

23. Greenberg, A.; Hamilton, J.R.; Jain, N.; Kandula, S.; Kim, C.; Lahiri, P.; Maltz, D.A.; Patel, P.; Sengupta, S.
VL2: A scalable and flexible data center network. In Proceedings of the ACM SIGCOMM 2009 Conference
on Data Communication, Barcelona, Spain, 16–21 August 2009; pp. 51–62.

http://dx.doi.org/10.1145/509506.509514
http://dx.doi.org/10.1002/dac.3094
http://dx.doi.org/10.1109/COMST.2016.2619485
http://dx.doi.org/10.1109/TMC.2018.2793219
http://dx.doi.org/10.1109/TNET.2016.2595571
http://dx.doi.org/10.1109/TNET.2016.2576904
http://dx.doi.org/10.1109/TNET.2017.2722480
http://dx.doi.org/10.1109/COMST.2018.2866711
http://dx.doi.org/10.1145/2043164.2018467
http://dx.doi.org/10.1145/2740070.2626309
http://dx.doi.org/10.1145/1232919.1232925
http://dx.doi.org/10.1145/2829988.2787507
http://dx.doi.org/10.1145/1402946.1402967


Sensors 2018, 18, 3060 15 of 15

24. Katta, N.; Hira, M.; Kim, C.; Sivaraman, A.; Rexford, J. Hula: Scalable load balancing using programmable
data planes. In Proceedings of the Symposium on SDN Research, Santa Clara, CA, USA, 14–15 March 2016.

25. Sinha, S.; Kandula, S.; Katabi, D. Harnessing tcp’s burstiness with flowlet switching. In Proceedings of the
Third Workshop on Hot Topics in Networks HotNets-III, San Diego, CA, USA, 15–16 November 2004.

26. OpenFlow Switch Specification Version 1.3.1. Available online: https://www.opennetworking.org/wp-
content/uploads/2013/04/openflow-spec-v1.3.1.pdf (accessed on 9 September 2018).

27. Fundation, O. Software-defined networking: The new norm for networks. ONF White Pap. 2012, 2, 2–6.
28. Production Quality, Multilayer Open Virtual Switch. Available online: http://www.openvswitch.org

(accessed on 9 September 2018).
29. Chandrasekaran, S.S. Understanding Traffic Characteristics in a Server to Server Data Center Network.

Master’s Thesis, Rochester Institute of Technology, Rochester, NY, USA, 2017.
30. Bai, W.; Chen, K.; Wang, H.; Chen, L.; Han, D.; Tian, C. Information-agnostic flow scheduling for

commodity data centers. In Proceedings of the 12th USENIX Symposium on Networked Systems Design
and Implementation, Oakland, CA, USA, 4–6 May 2015; pp. 455–468.

31. Alizadeh, M.; Yang, S.; Sharif, M.; Katti, S.; McKeown, N.; Prabhakar, B.; Shenker, S. Pfabric: Minimal
near-optimal datacenter transport. ACM SIGCOMM Comput. Commun. Rev. 2013, 43, 435–446. [CrossRef]

32. Han, Y.; Yoo, J.-H.; Hong, J.W.-K. Poisson shot-noise process based flow-level traffic matrix generation
for data center networks. In Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated
Network Management (IM), Ottawa, ON, Canada, 11–15 May 2015; pp. 450–457.

33. Galluccio, L.; Milardo, S.; Morabito, G.; Palazzo, S. SDN-WISE: Design, prototyping and experimentation
of a stateful SDN solution for wireless sensor networks. In Proceedings of the 2015 IEEE Conference on
Computer Communications (INFOCOM), Hong Kong, China, 26 April–1 May 2015; pp. 513–521.

34. OMNeT++. Available online: https://www.omnetpp.org (accessed on 25 June 2018).
35. Shreedhar, M.; Varghese, G. Efficient fair queueing using deficit round robin. IEEE/ACM Trans. Netw. 1996, 4,

375–385. [CrossRef]
36. Qiu, T.; Liu, X.; Li, K.; Hu, Q.; Sangaiah, A.K.; Chen, N. Community-aware data propagation with small

world feature for internet of vehicles. IEEE Commun. Mag. 2018, 56, 86–91. [CrossRef]
37. Qiu, T.; Chen, N.; Li, K.; Atiquzzaman, M.; Zhao, W. How can heterogeneous internet of things build our

future: A survey. IEEE Commun. Surv. Tutor. 2018, 20, 2011–2027. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.3.1.pdf
https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.3.1.pdf
http://www.openvswitch.org
http://dx.doi.org/10.1145/2534169.2486031
https://www.omnetpp.org
http://dx.doi.org/10.1109/90.502236
http://dx.doi.org/10.1109/MCOM.2018.1700511
http://dx.doi.org/10.1109/COMST.2018.2803740
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	EasyLB Design and Implementation
	Timeout Setting in EasyLB
	Markov Chain Model
	Formalization of Timeout Setting Problem
	Timeout Setting in Non-Equal Probability Path Selection
	Timeout Setting in Multiple Parallel Load Balancing Paths

	Performance Evaluation
	Asymmetric Topology with Random Path Selection
	Symmetric Topology with Random Path Selection
	Non-Equal Probability Path Selection
	Multiple Parallel Paths
	React to Link Failure

	Conclusions and Future Work
	The Derivation Process of Theorem 1
	References

