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Immune abnormalities featuring HIV infection persist despite the use of effective combination antiretroviral therapy (cART) and 
may be linked to the development of noninfectious comorbidities. The aim of the present narrative, nonsystematic literature review 
is to understand whether cART regimens account for qualitative differences in immune reconstitution. Many studies have reported 
differences in T-cell homeostasis, inflammation, coagulation, and microbial translocation parameters across cART classes and in the 
course of triple vs dual regimens, yet such evidence is conflicting and not consistent. Possible reasons for discrepant results in the 
literature are the paucity of randomized controlled clinical trials, the relatively short follow-up of observational studies, the lack of 
clinical validation of the numerous inflammatory biomarkers utilized, and the absence of research on the effects of cART in tissues. 
We are currently thus unable to establish if cART classes and regimens are truly accountable for the differences observed in immune/
inflammation parameters in different clinical settings. Questions still remain as to whether an early introduction of cART, specifi-
cally in the acute stage of disease, or newer drugs and novel dual drug regimens are able to significantly impact the quality of immune 
reconstitution and the risk of disease progression in HIV-infected subjects.
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Randomized controlled trials (RCTs) and observational co-
hort studies enrolling HIV-infected subjects with sustained 
viral suppression have shown that CD4+ T-cell counts re-
main stable for >10 years in most individuals; <9% of subjects 
have reductions in CD4+ counts, and this drop is transient in 
>90% of cases [1]. These data have supported the World Health 
Organization’s suggestion to reduce the frequency of routine 
CD4+ T-cell monitoring in adults once CD4+ counts are >200 
cells/mmc and viral load is undetectable [2].

Questions nonetheless remain as to whether the CD4+ T-cell 
count is the most appropriate marker of combination antire-
troviral therapy (cART)–induced immune reconstitution to 
monitor the immune status of treated HIV-infected individuals. 
Indeed, despite long-term antiretroviral therapy with constant 
viral suppression and significant CD4+ T-cell gain, individuals 
fail to normalize the levels of immune activation/inflammation 

and hypercoagulation [3–9]. This persistent alteration of the im-
mune system has a clinical impact, given data in the literature to 
support its association with the development of noninfectious 
comorbidities, increased mortality, and impaired immune re-
constitution in the setting of treated HIV infection [10].

In particular, inflammation markers do not predict clinical 
events in cART-naive subjects [11], yet they are independently 
associated with clinical outcome in treated individuals [12, 13]. 
These findings strongly suggest that clinical events in HIV in-
fection are driven by differential mechanisms, that is, by the 
replicating virus in the former and by residual inflammation 
(which is not solely virus-related) in the latter.

A plethora of antiretroviral compounds that are equally ef-
fective in abating the HIV load are available in clinical prac-
tice; however, drugs and their combinations may have a diverse 
result on the immune and inflammatory perturbations that 
feature HIV infection—hence the risk of developing nonin-
fectious comorbidities for cART-treated individuals. Several 
studies have investigated the effects of antiretroviral drugs in 
areas other than suppression of HIV replication, focusing on 
peripheral markers of inflammation, immune activation, and 
immuno-senescence [14–25].

The scope of the present work is to review, in a narrative and 
nonsystematic manner, evidence in favor of or against qualita-
tive differences in immune recovery according to antiretroviral 
classes/regimens in antiretroviral-naive and cART-experienced 
patients.
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DIFFERENCES IN IMMUNE RECOVERY ACCORDING 
TO CART REGIMEN?

Immune Recovery in Antiretroviral-Naive HIV-Infected Patients 
Starting cART

In terms of the cART backbone used in this setting, a few subtle 
differences exist when comparing subjects treated with abacavir 
(ABC)- and tenofovir (TDF)-containing regimens, with dem-
onstrated transient decreases of high-sensitivity C-reactive pro-
tein (hsCRP) in the former and interleukin (IL)-6 in the latter 
[26]. Another study described a minor reduction of residual in-
flammation and endothelial activation markers in individuals 
receiving an ABC-based regimen vs a non-ABC-containing 
regimen [27]. In contrast, ABC and TDF resulted in compa-
rable expression of inflammatory, oxidative, and apoptotic 
stress genes in coronary endothelial cells without differently af-
fecting endothelial activation and inflammation [28, 29]. Taken 
together, these findings may explain the conflicting reports on 
atherosclerotic risk in individuals treated with ABC [30–41]. In 
this respect, the recent introduction of tenofovir alafenamide 
(TAF) has rekindled new hopes of less toxic antiretroviral regi-
mens: Although linked to the improvement of bone and kidney 
function [42–48], TAF has been shown to be equivalent to TDF 
regarding immune activation and inflammation [49].

Literature studies have also assessed differences in cART-
induced immune reconstitution according to the third drug 
used in triple combination regimens.

Earlier studies compared protease inhibitor (PI)– with non-
nucleoside reverse transcriptase inhibitor (NNRTI)–containing 
regimens. A  prospective, single-center observational study 
enrolling naive subjects sequentially treated with PI (indinavir 
[IDV] or lopinavir [LPV]) and NNRTI (efavirenz [EFV]) found 
a greater reduction in fibrinogen levels in the course of the 
latter, despite similar improvements in inflammation and coag-
ulation parameters [7]. Similarly, in the A5224s study, cystatin 
C, a renal function marker known to correlate with other in-
flammatory biomarkers, and hs-CRP were lower in subjects 
treated with EFV than those treated with atazanavir (ATV) [26, 
50]. On the other hand, PIs have also been associated with in-
creased HIV antigen- and mitogen-stimulated T lymphocyte 
proliferation [26], albeit transitory in nature [24]. Further, con-
trasting data exist on the effect of the third drug on peripheral 
T-cell phenotype, with some studies pointing to a greater reduc-
tion of immune activation parameters (CD4+/DRII+, CD8+/
DRII+, CD4+/CD25+, CD4+/CD25+) in PI-treated individ-
uals [26] and others demonstrating greater reduction of im-
mune activation parameters in NNRTI-treated subjects [51], as 
well as evidence of impaired CD8+ T-cell maturation (reduced 
CD8+/28-/CD45RA+ levels) in patients receiving PI- rather 
than in NNRTI-based cART [52].

More recently, studies have focused on the potential bene-
fits of integrase strand transfer inhibitors (INSTIs) on immune 
restoration.

A post hoc analysis of the STARTMRK study of raltegravir 
(RAL) vs EFV, each in combination with TDF/FTC, dem-
onstrated that INSTI use was associated with higher rates of 
CD4/CD8 normalization [53]. Several studies have also shown 
that first-line RAL-based regimens normalized monocyte ho-
meostasis [54] and contained T-cell activation, coagulation, 
and inflammation [6] as well as microbial translocation [55], 
whereas non-RAL-including cART did not. Similarly, another 
RCT demonstrated that elvitegravir/cobicistat (EVG/c) was 
associated with lower levels of monocyte activation and sys-
temic inflammation than EFV, given the greater reduction of 
sCD14 and hs-CRP in subjects treated with the INSTI-based 
regimen [56]. In line with the possible beneficial immune ef-
fects linked to first-line INSTI use, a cohort study demonstrated 
an association between INSTI treatment and normalization of 
the CD4/CD8 T-cell ratio in naive subjects following 1 year of 
therapy [57]. In antithesis, a post hoc analysis of the SINGLE 
study (which nonetheless was not controlled for the backbone 
regimen) showed that NNRTIs performed better than INSTIs, 
leading to a higher increase in the CD4+/CD8+ ratio as well as 
several T-cell recovery markers in subjects randomized to re-
ceive EFV/TDF/FTC instead of DGT/ABC/3TC [58].

Despite the above-mentioned findings of possible differences 
in immune parameters between INSTIs and other third-drug 
classes, findings from the A5260 study failed to detect a differ-
ential effect of a first-line cART with RAL or with a PI (ATV/r 
or DRV/r), in terms of T-cell senescence (CD28-CD57+) and 
exhaustion (PD-1 expression) [59, 60].

Regarding the quality of immune recovery following the in-
troduction of HIV entry inhibitors, a pilot RCT reported that 
quadruple therapy was associated with better duodenal immune 
reconstitution, greater reduction of cell-associated HIV-DNA 
in the duodenum, and higher decline in systemic levels of in-
flammatory markers in patients starting cART with TDF/FTC + 
maraviroc (MVC) + RAL rather than with TDF/FTC + MVC or 
TDF/FTC + EFV, possibly due to increased higher mucosal gut 
penetration of MVC [61]. In contrast, a post hoc analysis of the 
MERIT trial, comparing MVC and EFV in combination with 
AZT/3TC, showed a higher rate of CD4/CD8 normalization in 
the NNRTI arm, driven by a greater CD8+ T-cell decline [62].

On the Opposite Sides of the Spectrum: Immune Recovery in Antiretroviral-
Naive HIV-Infected Patients Starting cART in Acute and Late Stages of 
Infection

Antiretroviral-naive subjects introducing cART in the acute phase 
of HIV infection represent an intriguing clinical scenario in terms 
of immune recovery. Indeed, the literature has shown a possible 
method of controlling reported damage to the immune system if 
cART is started in the earliest stages of disease, with timely immune 
reconstitution (CD4+ T-cell count >500 cells/mm3, CD4% >30%, 
and CD4/CD8 ratio >1), a decrease in T-cell activation/inflamma-
tion, and a lower risk of non-AIDS comorbidities [3, 63–69].
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Standard triple regimens are currently recommended by 
European and American guidelines [70–72] for the treatment 
of acute HIV infection and have shown the ability to reduce 
immune activation in this setting [73]. Nonetheless, 4-drug re-
gimens have also been studied, aiming to hinder the establish-
ment of the viral reservoir: a prospective RCT demonstrated 
that starting TDF/FTC + RAL + MVC, compared with TDF/
FTC + RAL, promoted a faster reduction of 2-LTR circles and 
a recovery of CD4+ T cells with a partial decrease in the total 
reservoir size [74]. Quadruple cART with AZT + 3TC + ABC 
+ fosamprenavir (APV) in acutely infected patients was also 
associated with a more rapid decline in viremia and CD8+ 
T-lymphocyte activation reaching normalization at 48 weeks 
[75]. While RCT and prospective studies are currently evaluating 
the impact of different regimens (EFV- vs RAL-based cART, 
cART plus telmisartan [76]; EVG/c/TDF/FTC [77]; ABC/3TC + 
dolutegravir [DGV] [78, 79]; bictegravir + TAF [80]) in the set-
ting of acute infection, data on the use of MVC have shown that 
this drug does not lead to significant improvements in the levels 
of inflammation, endothelial activation, and coagulation [81], 
probably reflecting the scarce effects of MVC intensification on 
residual viremia in acutely HIV-infected individuals [82].

Another factor known to play a key role in the quality of cART-
mediated immune reconstitution is the CD4+ T-cell nadir [23, 
25, 83]. Indeed, antiretroviral-naive patients starting LPV/r- [23] 
and EFV-based cART [25] with a baseline CD4+ count >200/
mmc present better immunological improvement than patients 
starting with a lower CD4+ count. In contrast with these findings, 
however, subjects starting EFV-based cART with CD4+ T cells 
<300/mmc experienced not only a better immune reconstitution, 
but also a greater reduction of systemic inflammation markers 
compared with individuals starting with CD4+ >300/mmc [83]. 
In the context of advanced presentation, an RCT showed that the 
addition of MVC did not reduce monocyte/macrophage activa-
tion to a greater extent than standard triple cART [84].

Immune Recovery in cART-Treated HIV-Infected Patients Switching to 
Other Regimens

Conflicting results on the different effects of second-line 
NNRTI- and PI-based cART on inflammation and HIV per-
sistence stem from early observational studies assessing a wide 
range of biomarkers that are not validated as surrogate markers 
of clinical events [17, 18, 85–91].

More recently, an RCT showed that switching from a PI/r- to 
an RAL-containing regimen resulted in a reduction of markers 
proven to be linked to cardiovascular disease (hs-CRP, IL-6, 
D-dimer) [92]. In addition, a further RCT on overweight 
women randomized to an immediate or 24-week delayed 
switch from an NNRTI- or PI-based cART to an RAL-based 
regimen demonstrated a significant decline in sCD14 following 
cART change [93]. RAL also appears to have positive effects 
on the gastrointestinal tract, a major site of HIV pathogenesis: 

A  partial normalization of the gut microbiota composition, 
as well as markers of microbial translocation and inflamma-
tion, was observed in subjects receiving RAL and not a PI- or 
NNRTI-based regimen [94]. In addition to the reduction of sys-
temic inflammation, as demonstrated by reduced D-dimer [95] 
and T-cell activation [96], different RCTs showed that intensifi-
cation of current cART with RAL decreased low-level viral rep-
lication [95] yet did not affect measures of HIV persistence [96].

Other potential beneficial effects of INSTIs have been de-
scribed following treatment with EVG that resulted in immune 
activation and partially restored T-cell function [97].

With respect to MVC, a meta-analysis of clinical trials in 
treatment-experienced patients showed that this compound 
was associated with a significant increase in CD4+ T-cell count 
regardless of virologic suppression [98]. Even if adding MVC 
alone [99] or MVC + RAL to the current cART had no ef-
fect on the size of the latent HIV reservoir, intensification of 
a PI-regimen with MVC + RAL was associated with a reduc-
tion of cell-associated HIV-DNA, T-cell CD8+ activation, and 
rectal proviral HIV-DNA [100]. Evidence from the literature 
also favors the use of MVC in selected clinical settings given its 
immune-modulating and anti-inflammatory effects. A  recent 
study showed improved responsiveness to HBV vaccination in 
MVC-treated subjects, possibly due to reduced CD4+ T-cell ac-
tivation and proliferation [101]. Another report demonstrated 
lower levels of monocyte activation in individuals receiving 
MVC compared with those on MVC-free regimes [102], sup-
porting in vitro evidence on the possible role of CCR5 inihitors 
in hindering atherosclerotic plaque formation [103–105].

In contrast to the reported findings of possible differences in 
immune restoration parameters in subjects undergoing a ther-
apeutic switch, other studies have failed to demonstrate varia-
tions of biomarkers in this context.

An RCT conducted in patients randomized to switch from 
AZT/3TC- to either ABC/3TC- or TDF/FTC-based cART did not 
highlight differences in biomarkers of coagulation and inflamma-
tion (d-dimer, IL-6, or hs-CRP) [106]. Similarly, a large cohort 
study showed comparable monocyte activation (sCD14) in NVP- 
and EFV-treated individuals [107]. No differences were detected 
in T-cell activation and homeostasis when adding either MVC 
or DRV/r to RAL and ETV in patients experiencing viral failure 
[108]. Parameters of viral persistence (total HIV-DNA and 2-LTR 
circle levels) were also unchanged in subjects enrolled in an RCT 
switching from enfurvitide (T20) to RAL [109]. Of note, an RCT 
on cART intensification with RAL in suppressed individuals failed 
to detect any difference in gut and blood proviral DNA [110].

Immune Recovery in the Course of cART Intensification Strategies for HIV-
Infected Individuals Lacking CD4+ T-Cell Gain

Despite stable viral suppression, ~20%–30% of cART-treated 
subjects fail to obtain adequate CD4+ T-cell recovery. The literature 
has failed to demonstrate that changing cART regimen may favor 
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CD4+ gain in this setting [1], yet several intensification studies have 
shown the possible role of antiretroviral drugs in lowering markers 
of immune activation and exhaustion, microbial translocation, and 
inflammation in the peripheral blood and tissues, which feature 
subjects with persistently low CD4+ T-cell counts [111–115].

The addition of MVC to ongoing cART did not lead to in-
creases in the CD4+ T-cell count [116–118]; however, it 
reduced immune activation and apoptosis [116, 118] and in-
creased the frequencies of CD8+ T cells [117]. In addition, 
MVC-intensified subjects displayed, compared with placebo, a 
significant increase in T-cell activation in rectal tissue and pe-
ripheral blood and redistribution of CD8+ T cells from the gut 
to peripheral blood [119]; however, in another study, MVC had 
no effect on CD4+ T-cell counts, CD4+/CD8+ ratio, micro-
bial translocation, immune activation, or immune exhaustion 
parameters measured in the peripheral blood and gut [120].

Intensification strategies in immunological nonresponders 
(INRs) using RAL have not been shown to account for CD4+ 
T-cell recovery, but have shown reduced CD8+ T-cell activation 
[121] and inflammation [122] compared with PI-based cART 
[123]. In contrast, other studies failed to demonstrate RAL-
induced CD4+ T-cell recovery or reduction of T-cell/monocyte 
activation as well as microbial translocation [124, 125].

IMMUNE RECOVERY IN CART-TREATED HIV-
INFECTED PATIENTS WITH FEWER DRUG REGIMENS 

Clinicians are currently facing an exciting new era of signifi-
cant changes in the management of antiretroviral therapy for 
HIV infection, featuring dual regimens with excellent viro-
immunological properties in both naive and experienced 
subjects [126–130], as well as fewer drug-related toxicities com-
pared with standard triple cART [131]. Nonetheless, whether 
such novel therapeutic strategies are also able to limit inflam-
mation in the course of HIV infection is currently under inves-
tigation. Fewer drug regimens may, on the one hand, account 
for the loss of control over enduring inflammation given the 
reduced pharmacologic pressure on residual viral replication 
[132]; on the other hand, they may result in less drug-induced 
oxidative stress, contributing to the containment of inflamma-
tion and immune activation [133].

A large observational cohort study showed an increase in the 
absolute number of CD8+ T cells in patients on stable triple 
cART who were switched to dual regimens containing NRTI or 
to NRTI-sparing dual therapies, compared with subjects who 
were switched to a new triple regimen [132]. A similar increase 
in CD8+ lymphocytes was confirmed in another cohort study 
including patients switching from a TDF/ABC-based triple reg-
imen to a dual therapy, but only for subjects interrupting TDF 
and not ABC [134].

The first RCT on dual regimens was conducted in subjects 
undergoing simplification to PI-containing cART. Findings from 
the ATLAS study showed that ATV/r plus 2 NRTIs and ATV/r 

plus 3TC resulted in similar levels of peripheral inflammation 
[135] and a comparable reduction of the viral reservoir [136].

More recently, the immune effects of dual INSTI-based treat-
ment strategies from a well-powered RCT were published in the 
literature.

The findings of the SWORD-1 and SWORD-2 RCT showed 
diverging results: On the one hand, a significantly greater sCD14 
increase from baseline to week 48 was reported in subjects re-
ceiving standard triple cART than those switching to DTG 
+ RLP [137]; on the other, while a greater decrease in IFABP 
levels was found in the latter, no significant changes from base-
line to week 48 were detected for IL-6, sCD163, sVCAM-1, and 
D-dimer between groups [137]. Given the lack of a consistent 
pattern in the kinetics of these biomarkers, The authors did not 
claim that increased inflammation features particpants on the 
3-drug regimen compared to those receiving the dual–drug 
regimen [138]. Results from the TANGO study, in which vi-
rally suppressed subjects were randomized to either receive a 
DTG/3TC dual regimen or continue a TAF-based 3- or 4-drug 
regimen, also showed uncertain effects on the same inflam-
mation biomarkers (D-dimer, sCRP, IL-6, sCD14), given their 
reported differing directions in the 2 study groups [130]. The 
findings of an NEAT001/ANRS143 substudy that randomized 
cART-naive subjects to DRV/r in combination with TAF/FTC or 
RAL demonstrated a significantly higher gain in blood telomere 
length in the former, pointing to amelioration of HIV-associated 
immune-senescence [139]. In contrast, sCD14 levels decreased 
significantly in a retrospective crossover study on suppressed pa-
tients on a 3TC + PI/r dual therapy switching to 3TC + DTG, 
suggesting decreased monocyte activation in individuals treated 
with INSTI-based, and not PI-based, dual cART [140].

Taken together, these results highlight the need for longer 
follow-up, which may reveal the true inflammatory conse-
quences of switching to dual regimens and imply a word of cau-
tion on the interpretation of heterogeneous findings related to 
biomarker changes in this clinical setting [141].

Finally, few studies have comparatively investigated im-
mune activation and systemic inflammation in mono vs triple 
cART regimens. Despite maintaining undetectable viremia, 
in the MONARK study, the monotherapy arm with LPV/r 
showed comparable parameters of immune recovery and re-
sidual viremia to those observed in the standard triple regimen 
(AZT/3TC + LPV/r regimen) [142]. Similarly, immune activa-
tion, inflammation, and HIV-DNA did not improve with ATV 
monotherapy in the MODAT trial [143]. In a retrospective 
study, higher T-cell activation and microbial translocation were 
found in patients switching to monotherapy with LPV/r com-
pared with triple cART [144].

CONCLUSIONS

While extraordinarily effective in suppressing viral load and 
reconstituting the CD4+ T-cell compartment, cART fails to 
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normalize the effects of chronic inflammation in HIV infec-
tion [3]. To date, no therapeutic approach has effectively abated 
inflammation and immune activation in aviremic individuals. 
Indeed, chronic inflammation persists despite the introduction 
of novel, effective, and well-tolerated antiretroviral drugs and 
is known to drive morbidity and mortality in HIV-infected pa-
tients [4, 5, 10].

The present nonsystematic review, albeit lacking evidence 
synthesis, was conducted to offer breadth of literature coverage 

on the topic of cART-related differences in immune reconstitu-
tion parameters.

Overall, evidence points to possible differences in qualitative 
immune recovery during suppressive treatment for HIV, yet a 
limited number of studies are randomized, adequately powered, 
and have a sufficient follow-up to detect robust changes linked 
to cART classes and regimens (Tables 1 and 2). Further, many 
biomarkers were assessed over the years and were independ-
ently associated with clinical outcome in the setting of HIV 

Table 1. Overview of the Major Studies Evaluating the Quality of Immune Reconstitution Under Antiretroviral Therapy—Randomized Controlled Trials

Author, Refer-
ence

Study Popu-
lation cART Regimen Evaluation of Immune Recovery Study Design Main Results

Antiretroviral naive patients

McComsey 
et al. [26]

244 pts Blinded ABC/3TC 
+ open-label 
EFV or ATV/r 
vs blinded 
TDF/FTC + 
open-label 
EFV or ATV/r

Peripheral blood  
Inflammation: hs-CRP, IL-6, TNF-α, sTNFR-I, -II   
Vascular inflammation: sVCAM-1 and sICAM-1

RCT substudy No differences in sTNF-R and adhesion mole-
cule decrease by regimens. Higher decrease 
in hsCRP in ABC/3TC vs TDF/FTC and in EFV 
vs ATV/r. Greater IL-6 reduction in TDF/FTC 
than in ABC/3TC

Serrano-Villar 
et al. [53]

563 pts TDF/FTC + RAL 
vs TDF/FTC 
+ EFV

Peripheral blood  
Immune activation: CD4/CD8 T-cell ratio

RCT (post hoc anal-
ysis of STARTMRK 
study)

Higher rates of CD4/CD8 ratio normalization in 
the RAL arm

Blanco et al. [58]833 pts DTG/ABC/3TC vs 
EFV/TDF/FTC

Peripheral blood  
Immune activation: CD4/CD8 T-cell ratio, 

CD4 T-cell count (absolute and percentage 
values) 

RCT (post hoc analysis 
of SINGLE study)

Greater increase in CD4/CD8 ratio or mul-
tiple T-cell marker recovery (MTMR: CD4 T 
cells >500/mm3 and CD4% >29% and CD4/
CD8 ratio >1) in EFV/TDF/FTC than in DTG/
ABC/3TC

Kelesidis et al. 
[59, 60]

328 pts TDF/FTC + ATV/r 
vs TDF/FTC + 
DRV/r vs TDF/
FTC + RAL

Peripheral blood and PBMCs  
Markers of CD4± T-cell senescence: CD28–

CD57+   
Markers of CD4± and CD8± T-cell exhaustion: 

PD-1+   
Inflammation and immune activation: 

HLA-DR+ CD38+ expression; sCD163   
Inflammation and coagulation: hsCRP, IL-6, 

sCD14, D-dimer   
Macrophage and T-cell activation: %CD38+ 

HLADR+ on CD4+ and CD8+ T cells, sIL-2r, 
sCD14, sCD163, intermediate CD14+ 
CD16+ monocytes, inflammatory CD14+ 
CD16+

RCT (A5260) substudy Decrease of CD4+ T-cell senescence and ex-
haustion after ART. No changes in CD8+ T-cell 
senescence after ART and no differential 
changes in all markers in ART groups. No 
consistent differences in immune activation 
and reduction of inflammation between PI 
and RAL-based cART

Serrano-Villar 
et al. [62]

721 pts AZT/3TC + MVC 
vs AZT/3TC 
+ EFV

Peripheral blood  
Immune activation: CD4/CD8 T-cell ratio, 

CD8+ T-cell count

RCT (post hoc analysis 
of MERIT study)

Higher rate of CD4/CD8 ratio normalization sus-
tained by a greater CD8+ T-cell decline in the 
EFV arm than in the MVC arm

Hileman et al. 
[56]

200 pts EVG/TDF/FTC vs 
EFV/TDF/FTC

Peripheral blood and PBMCs  
Inflammation: hs-CRP, IL-6, TNFr1   
Vascular inflammation: Lp-PLA2   
MT: LPS   
Monocyte activation: sCD14, sCD163

RCT (Gilead 102) EVG/c/TDF/FTC showed higher reduction in 
inflammation and MT, compared with EFV/
TDF/FTC

Funderburg 
et al. [49]

194 pts E/C/F/TAF vs 
E/C/F/TDF

Peripheral blood  
Monocyte activation: sCD14, sCD163   
Systemic inflammation: IL-6, hsCRP, sTNFR-I, 

and D-dimer   
Vascular inflammation: Lp-PLA2 

RCT Equivalent declines in monocyte activation and 
systemic inflammation with TAF or TDF for 
48 weeks, suggesting that TAF and TDF have 
equivalent impact on immune activation and 
inflammation

Pallikkuth et al. 
[55]

30 patients RAL vs non-RAL 
cART

Peripheral blood and PBMCs  
Immune activation: HLA-DR/CD38 in CD4/

CD8 T cells   
Immune exhaustion: PD1 in CD4/CD8 T cells   
T-cell subsets, cytokine production: HIV gag–

specific IL-2, IFN-γ, CD107a responses in 
CD4/CD8 T cells   

MT: LPS and sCD14 

RCT substudy RAL in first-line treatment regimens results in 
rapid immune reconstitution with residual 
low-level MT. The week 48 immune profile 
was more favorable in patients taking RAL-
cART than in pts treated with non-RAL-cART
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Author, Refer-
ence

Study Popu-
lation cART Regimen Evaluation of Immune Recovery Study Design Main Results

Serrano-Villar 
et al. [61]

32 HIV+ pts 
12 HIV- 
pts

TDF/FTC + EFV 
vs TDF/FTC + 
MVC vs TDF/
FTC + MVC + 
RAL

Peripheral blood and PBMCs  
Rectal and duodenal biopsies, immune pheno-

types on CD4±/CD8± T cells  
T-cell density in gut  
Plasma and tissue antiretroviral drug concen-

trations  
Inflammation: plasma IL-6, LTA MT: sCD14   
Gut permeability: zonulin-1  
Total cell-associated HIV DNA in PBMCs, 

rectal and duodenal mononuclear cells

Pilot RCT Quadruple regimen resulted in higher CD8+ 
cell density decline, greater normalization of 
mucosal CCR5+ CD4+ cells, and increase in 
naive/memory CD8+ cells ratio, greater de-
cline in sCD14 and duodenal HIV-DNA. MVC 
had the highest gut concentrations, which 
negatively correlated with percentages of 
activated CD8+ in duodenum. MVC use was 
associated with activation of mucosal naive 
CD8+ cells, improvement of distribution of 
CD8+ cell maturational subset and higher 
zonulin-1 expression

Acute/primary HIV infection

Chaillon et al. 
[82]

18 pts Standard ART 
+ MVC vs 
standard ART

Peripheral blood and PBMCs: levels of HIV 
DNA and cell-free RNA; deep sequencing 
of C2-V3 env, gag, and pol

RCT There was no difference in CD4+ T cells be-
tween groups. There was a longitudinal 
decay of HIV-DNA after initiation of ART with 
no difference between MVC intensification 
groups. 

Puertas et al. 
[74]

30 pts TDF/FTC+RAL 
vs TDF/
FTC+RAL-
MVC

Peripheral blood and PBMCs  
Cell-associated HIV-1 DNA: total, integrated, 

and episomal   
Immune activation: HLA-DR+ CD38+ CD4/

CD8 T cells, frequency of CCR5 staining 
in CD38+ and CD38- in the CD45RA+ and 
CD45RA- cells   

Inflammation, coagulation, endothelial func-
tion: IL-6, D-dimer, CRP, Lp-PLA2, VCAM-1   

MT: sCD14

RCT (Maravi-Boost 
study)

Intensification with MVC results in faster reduc-
tion of 2-LTR newly infected cells, recovery 
of CD4+ counts, and a modest reduction in 
total reservoir size after 48 weeks. MVC also 
was associated with a slower decrease in 
plasma viremia and immune activation

Late presentation

Patro et al. [84] 65 pts TDF/FTC/EFV + 
MVC or pla-
cebo

Peripheral blood and PBMCs  
Monocyte and macrophage activation: CD14+ 

CD16+ monocytes, CD163 monocytes, 
CD169 monocytes, tetherin, sCD14, 
sCD163   

CD4 and CD8 activation: HLADR+ CD38+ 
CD4/CD8+ T cells

RCT (CADIRIS) 
substudy 

MVC did not affect biomarkers of monocyte and 
macrophage activation, but resulted in higher 
percentages of CCR5-positive monocytes 
in PBMCs

cART-treated patients—switch studies

Chege et al. 
[110]

24 pts RAL vs placebo Peripheral blood and sigmoid biopsies: proviral 
HIV-1 DNA in CD4+ T cells in blood and the 
sigmoid colon

Double-blind placebo-
controlled RCT 1:1

Intensification with RAL did not result in further 
decay of CD4+ T cells carrying HIV-1 proviral 
DNA in either the blood or gut after 48 or 96 
weeks of therapy, or in any increase in CD4+ 
T-cell counts

Llibre et al. [96] 69 pts Standard ART vs 
standard ART 
+ RAL

Peripheral blood and PBMCs  
Total HIV1-DNA and 2-LTR circles, 

ultrasensitive plasma viremia CD4/CD8 
T-cell subsets

Open label RCT 2:1 
(NCT 00554398) 

RAL intensification is associated with a signifi-
cant impact in CD8+ T-cell immune activation 
markers, as well as a transient increase in 
2-LTR circles

Lake et al. [93] 37 pts NRTI backbone 
+ PI or NNRTI 
vs NRTI back-
bone + RAL

Peripheral blood  
Inflammation: hsCRP, sCD14, IL-6, TNF-α, 

sTNF-RII, sVCAM-1   
Monocyte and macrophage activation: sCD14   
Microbial translocation: sCD163, I-FABP

Open label RCT Greater sCD14 decline in subjects switching to 
a RAL-based ART than in those remaining on 
a PI- or NNRTI-based therapy

Hatano et al. 
[95]

31 pts Standard ART 
+ RAL vs 
standard ART 
+ placebo

Peripheral blood and PBMCs  
Viral replication: 2-LTR circles   
Inflammation and hypercoagulation: IL-6, 

D-dimer

RCT Greater increase in 2-LTR circles and greater 
decrease in D-dimer levels in the RAL inten-
sification arm compared with placebo

Rasmussen 
et al. [106]

35 pts AZT/3TC vs 
ABC/3TC or 
TDF/FTC 

Peripheral blood  
Inflammation and endothelial dysfunction/

cardiovascular biomarkers: IL-6, hs-CRP, 
sICAM-1, sVCAM-1, E-selectin, MPO, 
D-dimer, fasting lipids

RCT (SWAP substudy) No difference in biomarkers among groups, 
with the exception that transient increases 
were seen in E-selectin and sVCAM-1 in 
ABC-based compared with TDF-based cART

Martinez et al. 
[92]

273 pts PI/r vs RAL Peripheral blood  
Inflammation: hsCRP, MCP-1, osteoprotegerin, 

IL-6, IL-10, TNF-α, ICAM-1, VCAM-1, 
E-selectin and P-selectin, adiponectin, in-
sulin, and D-dimer

RCT (SPIRAL trial) hsCRP, MCP-1, osteoprotegerin, IL-6, TNF-α, 
insulin, and D-dimer decreased in RAL 
compared with PI/r, whereas IL-10, ICAM-
1, VCAM-1, E-selectin, P-selectin, and 
adiponectin remained unchanged

Delaugerre et al. 
[109]

60 pts T20 vs RAL Peripheral blood and PBMCs: total HIV-1 DNA 
and 2-LTR circle levels

RCT (EASIER-ANRS 
138, substudy)

No differences in measures of viral persistence 
between groups

Table 1. Continued
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Author, Refer-
ence

Study Popu-
lation cART Regimen Evaluation of Immune Recovery Study Design Main Results

cART-treated patients—immunological nonresponders

Rusconi et al. 
[117]

97 pts ART vs ART + 
MVC

Peripheral blood and PBMCs: T-cell subsets   
Inflammation: plasma IL-7

Multicentric, parallel, 
open label, phase 4 
superiority RCT 1:1 
(NCT00884858)

MVC intensification was associated with a 
significant rise in IL-7 by week 48 and a trend 
in temporary reduction in activated HLA-DR+ 
CD38+ CD4+ by week 12 that was not main-
tained at week 48

Massanella  
et al. [121]

44 pts ART vs ART + 
RAL

Peripheral blood and PBMCs  
CD4 T-cell compartment: total, activated, and 

memory T cells   
CD8 T-cell compartment: total, activated, and 

memory T cells   
Thymic output: CD45RA+ CD31+, CD31- 

CD45RA+, CD45RA-   
Microbial translocation: sCD14   
Viral replication: 2-LTR circles

RCT No differences between groups in biomarker 
levels, except for lower T-cell activation in the 
RAL intensification arm

Negredo et al. 
[125]

44 pts ART vs ART + 
RAL

Peripheral blood and PBMCs: CD4 T-cell 
counts, total and episomal HIV DNA in 
PBMCs

RCT No difference between groups, except for a 
rapid yet limited CD4+ T-cell gain in the RAL 
intensification arm 

Hunt et al. [119] 45 pts ART + MVC vs 
ART + pla-
cebo

Peripheral blood, PBMCs, rectal mucosa  
Rectal CD T-cell density: CD8 and CD4 T cells   
Peripheral T-cell activation: CD8 and CD4 T cell, 

CD38, HLA-DR   
Rectal T-cell activation: CD38+ HLA- DR+   
T-cell maturation: naive (CD45RA+ CCR7+), 

central memory (CD45RA+ CCR7+), effector 
memory (CD45RA+ CCR7+), and terminally dif-
ferentiated effector memory (CD45RA+ CCR7-)   

CCR5 T cells and plasma MIP-1b levels, monocyte 
activation: sCD14, sCD163   

Neutrophil levels, peripheral count, and 
rectal MPO  

Microbial translocation: plasma LPS   
Low-level viremia: HIV-RNA

RCT In the MVC arm: rectal tissue and peripheral 
blood increase in T-cell activation; CD8 T-cell 
count increase in the peripheral blood and 
decrease in rectal tissue; increase in pe-
ripheral MIP-1b, monocyte/macrophage 
activation markers (sCD14 and sCD163), and 
peripheral blood and rectal tissue neutrophil 
count

cART-treated patients—dual and mono therapies

Belmonti et al. 
[135]

139 pts ATV/r plus 3TC 
vs ATV/r plus 
2 NRTIs

Peripheral blood  
Systemic inflammation: IL-6, CRP, sCD14, and 

D-dimer

RCT (ATLAS-M) 
substudy

No significant differences in changes from 
baseline to week 48 were observed between 
dual and triple therapy. No relationship was 
observed between baseline biomarker level 
and persistent residual viremia and HIV-1 
DNA load

Lombardi et al. 
[136]

201 pts Triple ATV/r-
based ART 
vs ATV/r plus 
3TC

Peripheral blood and PBMCs, HIV-1 reservoir: 
total HIV-1 DNA levels in whole blood and 
PBMCs

RCT (ATLAS M) 
substudy

Dual therapy resulted in a similar decline in 
HIV-1 DNA levels

Aboud et al. 
[137]

1024 pts ART vs DTG + 
RPV

Peripheral blood  
Inflammation: sCD14, IFBAP, IL-6, sCD163, 

sVCAM, D-dimer

RCT (SWORD 1–2) Greater sCD14 increase from baseline to week 
48 in subjects receiving standard triple cART 
than those switching to DTG+RLP. Greater 
IFABP decrease in DTG+RLP. No significant 
changes from baseline to week 48 were 
detected for IL-6, sCD163, sVCAM-1, or 
D-dimer between groups

Van Wyk et al. 
[130]

743 pts TAF-based ART 
vs DTG/3TC

Peripheral blood  
Inflammation: sCD14, IL-6, sCD163, D-dimer, 

hs CRP

RCT (TANGO) No clear-cut differences between groups

Stella-Ascariz 
et al. [139]

201 pts DRV/r + RAL vs 
DRV/r + TDF/
FTC

Peripheral blood: telomere length RCT Significantly higher gain in blood telomere 
length in TDF/FTC + DRV/r than DRV/r + RAL

Merlini et al. 
[143]

40 pts ATV/r + 2NRTI vs 
ATV/r

Peripheral blood and PBMCs  
HIV reservoir: total HIV-DNA   
T-cell immune phenotype: activated: HLADR+ 

CD38+; senescent: CD57+; apoptotic: 
CD95+; exhausted: PD-1+   

Inflammation: sCD14, IL-6

RCT (MODAt substudy)Comparable activation an inflammation bio-
markers

Abbreviations: 3TC, lamivudine; ABC, abacavir; (c)ART, (combination) antiRetroviralTherapy; ATV, atazanavir; AZT, zidovudine; c, cobicistat; CCR, C-C chemokine receptor; (s)CD, (soluble) 
cluster of differentiation; DNA, deoxyribonucleic acid; DRV, darunavir; DTG, dolutegravir; E, elvitegravir; EFV efavirenz; EVG, elvitegravir; F, emtricitabine; FTC emtricitabine; HIV, human immu-
nodeficiency virus; HLA, human leukocyte antigen; hs-CRP, high sensitivity C-reactive protein; (s)ICAM, (soluble) intercellular adhesion molecule; IFABP, intestinal fatty-acid binding protein; 
IFN, interferon; IL, interleukin; Lp-PLA2, lipoprotein-associated phospholipase A2; LPS, lipopolysaccharide; LTA, lipoteichoic acid; LTR,  long terminal repeat; MCP, monocyte chemoattractant 
protein; MIP, macrophage inflammatory protein; MPO, myeloperoxidase; MT, microbial translocation; MTMR, multiple T-cell marker recovery; MVC, maraviroc; NNRTI, non-nucleoside reverse 
transcriptase inhibitor; NRTI, nucleoside reverse transcriptase inhibitor; PBMCs, peripheral blood mononuclear cells; PD, programmed death; PI, protease inhibitor; r, ritonavir; RAL, raltegravir; 
RCT, randomized controlled trial; RNA, ribonucleic acid; sIL-2r, soluble IL-2 receptor; (s)TNFR, soluble tumor necrosis factor receptor; TAF, tenofovir alafenamide; TDF, tenofovir disoproxil fuma-
rate; TNF, tumor necrosis factor; TNF-R, tumor necrosis factor receptor; (s)VCAM, vascular cell adhesion molecule.

Table 1. Continued
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Table 2. Overview of the Major Studies Evaluating Quality of Immune Reconstitution Under Antiretroviral Therapy—Non–Randomized Controlled Trials

Author, 
Reference

Study 
Population cART Regimen Evaluation of Immune Recovery Study Design Main Results

Antiretroviral-naive patients

Funderburg 
et al. [6]

39 HIV+ pts 
21 HIV- pts

TDF/FTC + RAL Peripheral blood and PBMCs  
Immune phenotypes on CD4±/CD8± T cells  
Inflammation: plasma IL-6, TNFr1   
MT: sCD14, LPS   
Coagulation: d-dimer

Prospective, open-
label, multicenter, 
pilot study (A5248)

RAL-based ART reduced CD4+/CD8+ acti-
vation, cell cycle entry, and markers of 
coagulation and inflammation, without 
reaching HIV-uninfected levels.

De Salvador-
Guillouët 
et al. [57]

567 patients PI-based cART 
vs NRTI-based 
cART vs NNRTI-
based cART vs 
INSTI-based 
cART 

Peripheral blood  
Immune activation: CD4/CD8 T-cell ratio

Retrospective INSTI-based regimens associated with 
a CD4/CD8 ratio normalization 1 year 
from cART introduction. 

McCausland 
et al. [54]

29 HIV+ pts 
15 HIV- pts

TDF/FTC + RAL Peripheral blood and PBMCs  
Immune phenotypes on monocytes

Prospective, open-
label, multicenter, 
pilot single-arm 
study (A5248)

RAL-based ART reduces monocyte ac-
tivation and increases expression 
of chemokine receptors CCR2 and 
CX3CR1 on inflammatory and patrolling 
monocytes.

Late presentation

Tincati et al. 
[24]

34 pts DRV/r or EFV as 
third drugs of 
standard anti-
retroviral regi-
mens

Peripheral blood and PBMCs  
Proliferation and maturation on CD4±/CD8± cells  
Activation on CD8± cells  
HIV- and CMV-specific responses: IL-2, IFN-γ produc-

tion by CD4/CD8 cells   
Plasma inflammatory markers: IL-6 and sCD14

Retrospective, ex vivo 
study

No differences in T-cell maturation, acti-
vation, and function. Patiens on DRV/r 
show a transitory recovery of HIV-
specific IL-2+ IFN-γ-CD4+ cells and 
IL-2- IFN-γ+ CD8+ cells.

Marchetti 
et al. [23]

40 pts TDF/FTC + LPV/r Peripheral blood and PBMCs  
Quality of immune reconstitution: CD38+ CD8+, 

CD45R0+ CD38+ CD8+, CD95+ CD4+/CD8+, 
CD127+ CD4+/CD8+   

Microbial translocation: sCD14, LPS

Prospective No differences in T-cell activation decline 
between groups. Subjects starting ART 
with “moderate immune depression” 
(CD4 + 200- 350/μL) had a greater con-
trol over microbial translocation than 
those with “severe immune depres-
sion” (CD4+ < 100/μL).

Soria et al. 
[25]

24 pts TDF/FTC + EFV Peripheral blood and PBMCs Immune phenotypes 
on CD4±/CD8± T cells: total, naïve, and activated 
Treg   

Intracellular cytokine production: IL-2, IFN-γ

Pilot clinical trial 
(IMMUNEF)

EFV-based ART reduces the percentages 
of apoptotic and proliferating T cells at 
24 weeks.

cART-treated patients—switch studies

Villanueva-
Millàn et al. 
[94] 

45 cART HIV+ 
pts 5 un-
treated 
HIV+ pts 21 
HIV- pts

PIs vs NNRTIs vs 
INSTIs

Peripheral blood and fresh stool samples  
MT: sCD14, LBP   
Systemic inflammation: IL-6   
Vascular inflammation: ICAM, VCAM   
Gut microbiota composition 

Cross-sectional study INSTIs were associated with levels of 
systemic inflammation and microbial 
diversity similar to that of uninfected 
controls. NRTIs + PIs presented the 
highest reduction in bacterial species 
compared with other antiretrovirals and 
naive subjects. 

Merlini et al. 
[97]

30 pts Switch from TDF/
FTC + DVR/r or 
ATV/r to EVG/c/
FTC/TDF

Peripheral blood and PBMCs Peripheral immune 
activation: immune phenotypes on CD4+/CD8+ 
T cells T-cell responsiveness: IFN-γ/IL-2 after HIV/
SEB exposure   

Residual low-level viremia: HIV-RNA   
HIV reservoir: HIV-DNA

Observational cohort 
study

Switch to EVG/c/FTC/TDF decreased T-cell 
activation, increased CD4+ and CD8+ 
effector memory IFN-γ/IL-2 release, and 
reduced CD8+ terminally differentiated 
cytokine expression following SEB 
stimulation.

Cossarini 
et al. [108]

41 pts RAL, ETR, and 
MVC vs DRV/r

Peripheral blood and PBMCs Peripheral T-cell subsets DRV/r, RAL, ETR, and 
MVC Expanded Ac-
cess Programs

Similar decrease in activated CD4+ and 
CD8+ T cells. A greater loss of naive 
CD4+ T cells and a reduction in cells 
expressing CXCR4 were observed 
with RAL, ETR, and MVC, while DRV/r 
showed a greater loss of cells ex-
pressing CCR5.

cART-treated patients—immunological nonresponders

Lichtenstein 
et al. [122] 

30 pts RAL Peripheral blood and PBMCs Immune activation Pilot study The addition of RAL resulted in the re-
duction of several pro-inflammatory 
biomarkers. 

cART-treated patients—dual and mono therapies

Mussini et al. 
[132]

1241 pts Triple ART vs 
mono/dual ART

Peripheral blood T-cell subsets: CD4 and CD8 counts 
and their ratio

Retrospective study 
(ICONA Cohort)

An increase in CD8 T cells in dual regi-
mens was reported. Pts on mono-
therapy did not show significant 
differences. 

Abbreviations: (c)ART, (combination) antiRetroviralTherapy; ATV, atazanavir; c, cobicistat; CCR, C-C chemokine receptor; (s)CD, (soluble) cluster of differentiation; CMV, cytomegalovirus; 
CXCR, CXC, chemokine Receptor; DNA, deoxyribonucleic acid; DRV, darunavir; EFV efavirenz; ETV, etravirine; EVG, elvitegravir; FTC emtricitabine; HIV, human immunodeficiency virus; IFN, 
interferon; IL, interleukin; LBP, lipopolysaccharide binding protein; LPS, lipopolysaccharide; MT, microbial translocation; MVC, maraviroc; NNRTI, non-nucleoside reverse transcriptase inhibitor; 
NRTI, nucleoside reverse transcriptase inhibitor; PBMCs, peripheral blood mononuclear cells; PI, protease inhibitor; r, ritonavir; RAL, raltegravir; RNA, ribonucleic acid; SEB, Staphylococcus 
Enterotoxin B; TDF, tenofovir disoproxil fumarate; TNF, tumor necrosis factor; TNF-R, tumor necrosis factor receptor; Treg, Regulatory T cells;  (s)VCAM, vascular cell adhesion molecule. 
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infection in only a few cases. Finally, most research was con-
ducted in the peripheral blood and not tissues: given that drug 
penetration [145], viral replication [146], and immune resto-
ration differ widely among anatomical compartments [68], the 
study of the systemic circulation may have overlooked possible 
significant variations in inflammation, activation, and HIV per-
sistence biomarkers linked to the use of specific antiretroviral 
classes and/or regimens. In addition, recent studies have also 
shown that other factors, that is, the microbiota, may influ-
ence the degree and quality of immune recovery [147–149]. For 
these reasons, the reported findings are often contradictory and 
not consistent across studies and do not allow us to conclude 
that cART class and regimen account for true differences in im-
mune restoration parameters.

While we await results on the use of more recent antiretro-
viral classes and drugs, clinicians should recall that unequivocal 
evidence demonstrates that immune recovery is linked to an 
immediate start of cART rather than to the properties of spe-
cific antiretroviral drugs [73–75].
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