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Antibody recognition of antigens is a critical element of adaptive immunity. One key class
of antibody-antigen complexes is comprised of antibodies targeting linear epitopes of
proteins, which in some cases are conserved elements of viruses and pathogens of
relevance for vaccine design and immunotherapy. Here we report a detailed analysis of the
structural and interface features of this class of complexes, based on a set of nearly 200
nonredundant high resolution antibody-peptide complex structures that were assembled
from the Protein Data Bank. We found that antibody-bound peptides adopt a broad range
of conformations, often displaying limited secondary structure, and that the same peptide
sequence bound by different antibodies can in many cases exhibit varying conformations.
Propensities of contacts with antibody loops and extent of antibody binding
conformational changes were found to be broadly similar to those for antibodies in
complex with larger protein antigens. However, antibody-peptide interfaces showed lower
buried surface areas and fewer hydrogen bonds than antibody-protein antigen
complexes, while calculated binding energy per buried interface area was found to be
higher on average for antibody-peptide interfaces, likely due in part to a greater proportion
of buried hydrophobic residues and higher shape complementarity. This dataset and
these observations can be of use for future studies focused on this class of interactions,
including predictive computational modeling efforts and the design of antibodies or
epitope-based vaccine immunogens.
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INTRODUCTION

Antigen recognition by antibodies is a key component of immunity in humans and other
vertebrates. Antibodies are highly diverse in sequence, and are able to recognize a vast array of
foreign antigens, including proteins, peptides, non-protein molecules, and combinations thereof (1).
High resolution structural characterization of antibody-antigen interactions can yield insights into
the basis of antibody breadth and protection (2–4), and can enable development of methods to
predict antibody epitopes (5, 6) or model antibody-antigen complexes (7), as well as structure-based
antibody (8, 9) and immunogen (10, 11) design efforts.

Antibody recognition of linear peptide epitopes is a highly important class of antibody-antigen
complexes. Such complexes include broadly neutralizing antibodies that target viruses such as
org July 2022 | Volume 13 | Article 9103671
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hepatitis C virus (HCV) and coronaviruses (12–14), as well as
immunotherapeutic antibodies targeting host proteins (15), and
structures of those complexes have led to immunogen designs for
HCV (16), human immunodeficiency virus (HIV) (17), and
respiratory syncytial virus (RSV) (18). Furthermore, antibody-
peptide interactions are the basis for many commonly used
protein purification and detection systems involving sequence
tags, including Myc, HA, and FLAG tag systems (19). Previous
studies have presented surveys and databases of protein-peptide
complex structures (20, 21), and others have assessed structures
of general antibody-antigen interfaces (1, 22, 23), providing
major insights into these interactions. One study, published in
the 1990’s, analyzed structures of six antibody-peptide complex
structures that were available at the time (24). These studies have
included either a limited or no representation of antibody-
peptide complexes, leaving open the question of whether
antibody-peptide complexes exhibit shared or distinct binding
strategies and interface features in comparison with antibody-
protein antigen complexes. One study from approximately five
years ago did compare antibody-peptide interfaces with
antibody-protein interfaces and other protein-protein
interfaces, but the analysis included a limited set of features
(hydrogen bonds and shape complementarity) (25).

Here we present a focused and updated analysis of antibody-
peptide interfaces and their key features, including interface size,
epitope secondary structure, antibody flexibility and epitope
flexibility. While in some cases there are broad similarities
between antibody-peptide and antibody-protein antigen
interfaces, we also identified notable differences, and we also
found a lack of regular secondary structure in many epitopes, as
well as several cases of pronounced epitope plasticity.
Collectively, our observations and structural dataset can inform
future predictive modeling algorithms focused on antibody-
peptide complexes, as with previously developed methods that
perform modeling of antibody-protein antigen complexes (26,
27) or general protein-peptide complexes (28–30).
METHODS

Dataset Assembly
A list of all experimentally determined antibody-peptide
complexes available in the Protein Data Bank (PDB) (31) was
downloaded from the SAbDab database (32) in December 2021.
That set was then filtered to retain only structures with 3.0 Å
resolution or better, structures without missing peptide residues
(except for missing N-terminus and/or C-terminus residues),
structures containing resolved peptide antigens of lengths
between 5 and 20 residues, and only structures containing
heavy-light chain antibodies (no single-chain nanobodies). A
nonredundancy filter of 90% sequence identity by heavy chain
variable domain (V domain) or 90% sequence identity for both V
domains was used to remove structures with identical or highly
related antibodies. To avoid inclusion of interactions mediated in
part by non-protein atoms, all structures with non-water
HETATM molecules within 4.5 Å of any atoms in the antigen
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and antibody were removed. ACE and NH2 atoms
(corresponding to acetylation and amidation, respectively),
which are commonly added to the termini of synthetic
peptides to avoid non-native terminal charges, were not
included for that filtering. The full antibody-peptide complex
set (N=188) was filtered to a “nr_epitope” set (N=121) by
agglomeratively grouping together pairs or sets of complexes
that contain peptide sequences that match, or that have the
smaller sequence contained in the larger peptide sequence, based
on peptide residues present in the structures. One representative
per set of paired or grouped complexes was selected for the
“nr_epitope” set, based on structural resolution.

Unbound antibody structures matching the antibodies in
antibody-peptide complexes were identified in the PDB
through an adaptation of the program previously to identify
unbound structures for Protein Docking Benchmark 5.5 (7).
Initially identified candidate unbound antibody structures were
filtered by resolution (3.0 Å or better) and lack of missing or
mutated residues for antibody residues proximal to the peptide
in the peptide-bound complex structures. As with Docking
Benchmark 5.5, antibody interface residues were defined as
those within 10 Å of the binding partner (i.e. the peptide) in
the complex structure.

Structural Analysis
Peptide residue secondary structure analysis was performed
using the DSSP program (33). Peptide structure classifications
were assigned as Helix [> 50% residues assigned a helix by DSSP,
as used by Trellet et al. (30)], Coil (> 60% residues with no
assigned DSSP secondary structure, “C”), Hairpin (or hairpin-
like; 2 or more extended, “E”, residues, followed by two or more
turn-like residues, “T”, “S”, or “C”, followed by two or more
extended, “E”, residues), or Other. Molecular solvent accessible
surface area (SASA) values for interface buried surface area
(DSASA) calculations were calculated using the NACCESS
program (34), by subtracting the complex SASA from the sum
of the individually calculated antibody and peptide SASA values,
as performed previously for complexes in the protein-protein
docking benchmark (7).

Interface hydrogen bonds were calculated using the hbplus
program (35), and antibody-peptide and antibody-antigen
interface atomic contacts were calculated using a 4.5 Å cutoff
distance between non-hydrogen atoms. Hydrophobic atom
contact calculations were performed using side chain atoms of
hydrophobic residues Trp, Tyr, Phe, Met, Ile, Leu, and Val; side
chain atoms of those residues were grouped together in a
previous analysis of transient protein-protein complex
structures and the resultant IFACE statistical potential (Atom
Types 6, 7, and 10) (36). Structure-based calculation of binding
energies (DG) was performed using Rosetta’s “score” executable
(weekly release 2020.25) and the Rosetta Energy Function 2015
(REF15) energy function (37), as performed previously (7).
Before complex structures were processed in Rosetta, they were
pre-processed with Rosetta’s FastRelax protocol to perform
constrained minimization and remove spurious unfavorable
geometries that would bias the Rosetta calculations. Flags used
for FastRelax (“relax” executable) were:
July 2022 | Volume 13 | Article 910367
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-ignore_unrecognized_res

-relax:constrain_relax_to_start_coords

-relax:coord_constrain_sidechains

-relax:ramp_constraints false

-ex1

-ex2aro

-no_optH false

-flip_HNQ

-renumber_pdb F

-nstruct 1

The Rosetta InterfaceAnalyzer protocol was used to calculate
the hydrophobic DSASA and shape complementarity (Sc)
interface features, after pre-processing with FastRelax as noted
above. The Sc calculation in Rosetta was based on the Lawrence
and Colman method (38).

For analysis of complementarity determining regions (CDR)
loop conformational changes and antigen contacts, antibody
variable domains were re-numbered using the ANARCI tool
(39) based on the AHo antibody numbering system (40). CDR
loops for both heavy and light chains were defined as residues 24-
42 (CDR1), 57-76 (CDR2), and 107-138 (CDR3). These
correspond to Kabat residue numbers 23-35 (CDRH1), 50-65
(CDRH2), 93-102 (CDRH3), 24-34 (CDRL1), 49-60 (CDRL2),
and 89-97 (CDRL3). Root mean square distance calculations for
antibody CDR, peptide conformations, and antibody-peptide
interface residues were performed using backbone atoms and
the ProFit program (41), and calculation of CDR loop binding
RMSDs were performed after superposition of the corresponding
full unbound and bound variable domain structures using
FAST (42).

Figures and Statistical Analyses
Figures of data were generated using R (r-project.org) and
ggplot2 (43), as well as gnuplot (gnuplot.info), and figures of
molecular structures were generated using PyMOL (Schrodinger,
LLC). All statistical comparisons were performed using the
Wilcoxon rank-sum test in R.
RESULTS

Antibody-Bound Peptide
Structural Features
We assembled a set of antibody-peptide complex structures from
the PDB based on nonredundancy, structural quality, and other
criteria, as detailed in the Methods, leading to a total of 188
antibody-peptide complexes (Table S1). These structures include
antibodies in Fab (fragment antigen-binding) and scFv (single
chain variable fragment) formats, and they have resolutions
ranging from 1.17-3.0 Å (median: 2.04 Å). A summary of the
of the observed antibody-bound peptide lengths and secondary
structures is shown in Figure 1. Lengths of the peptides in the
antibody-peptide complex structures ranged from 5-20 residues,
in accordance with the length cutoffs in selecting complexes for
Frontiers in Immunology | www.frontiersin.org 3
the set, yet these lengths were not evenly distributed, and many
complexes had peptides of length between 8-11 residues (median
length is 10 residues) (Figure 1A). While a subset of complexes
contained peptides with Helix or Hairpin (or hairpin-like)
classes, most antibody-bound peptides were classified as Coil
or Other (Figure 1B). Likewise, the majority of peptide residues
in the set were classified as having no regular secondary structure
(irregular/loop, “C”; 54%), followed by turn (“T”; 13%) and a-
helix (“H”, 13%) (Figure 1C). Representative structures of
antibody-peptide complexes with three peptide structural
classes (Helix, Hairpin, and Coil) are shown in Figure 2.

While the antibodies and therefore the antibody-peptide
interfaces in the set of complexes are not redundant, we
observed that some of the bound peptides had identical or
overlapping sequences. To avoid possible resultant bias in
peptide length or secondary structure, we grouped complexes
with shared peptide sequences, selecting one complex per group
based on resolution (“nr_epitope”, noted in Table S1). Analysis
of lengths and secondary structures of this subset of the
antibody-bound peptide structures is shown in Figures 1D–F);
these are generally in accordance with the distribution of peptide
lengths and secondary structure propensities of the full set of
antibody-bound peptides. As with the full set of antibody-
peptide complexes, the median length of the peptides in this
subset is 10 residues, and comparison of the length values
between the full and “nr_epitope” sets showed no statistically
significant difference (p = 0.52, Wilcoxon rank-sum test).

Interface Features and Comparison With
Antibody-Protein Antigen Complexes
We focused our next analysis on interface features of the
antibody-peptide complexes. First, we calculated binding
interface sizes for the set (DSASA, Figure 3), reflecting the
buried surface of both the antibody and peptide in the
complex structure, as calculated previously for antibody-
antigen interfaces (7). Interface buried surface areas ranged
from approximately 600 Å2 to over 2000 Å2, and as expected,
larger peptides were associated with larger buried interface
surface areas (Figure 3A). We compared the binding interface
sizes of these complexes with those of nonredundant non-
antibody protein-protein complexes and antibody-protein
antigen complexes from Docking Benchmark 5.5 (7). As only
heavy-light chain antibodies are present in the antibody-peptide
complexes in this study, single-chain nanobodies were excluded
from the antibody-protein antigen set for this comparison. There
was a pronounced observed difference in antibody-peptide
binding interface sizes versus antibody-protein interface sizes
(p ≤ 0.0001), whereas antibody-protein and non-antibody
complex interfaces exhibited no significant difference in
binding interface sizes (Figure 3B).

Due to the difference in protein/peptide antigen sizes and
interface buried surface areas, we examined the possibility that
antibody-peptide interactions exhibited chain contact or CDR
loop contact preferences that differed from those of antibody-
protein interactions, due for instance to the peptide size
preventing or limiting contacts with more peripheral and non-
July 2022 | Volume 13 | Article 910367
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A B

D E F

C

FIGURE 1 | Antibody-bound peptide lengths and secondary structures. (A) A histogram of the peptide residue lengths, (B) Peptide structural classes, and (C)
Peptide residue DSSP structural classes are shown for the full set of antibody-peptide complexes (N = 188). The (D) Peptide lengths, (E) Peptide structural classes,
and (F) Peptide residue structural classes are also shown for the “nr_epitope” complex set (N = 121), which corresponds to the full set of complexes filtered by
grouping pairs or sets of complexes with matching peptide sequences and retaining one representative per pair/group. Peptide structural classes (B, E) were
defined based on DSSP (33) residue-level secondary structure assignments, as noted in the Methods, and peptide residue secondary structure classes (C, F)
correspond to DSSP-assigned classes. Classes are a-helix (“H”), b-bridge (“B”), extended strand (“E”), 310 helix (“G”), turn (“T”), bend (“S”), and no regular secondary
structure (loop/irregular; “C”).
A B

D E F

C

FIGURE 2 | Examples of peptide-antibody complexes and structural classes. (A, D) SARS-CoV-2 spike stem in complex with antibody B6 (PDB code 7M53; Helix
peptide), (B, E) HCV E2 peptide in complex with antibody HCV1 (PDB code 4DGY; Hairpin peptide), (C, F) P. falciparum circumsporozoite protein junctional epitope
in complex with mAb668 (PDB code 6PBV; Coil peptide). Antibodies are shown in cyan (heavy chain) and tan (light chain), and peptides are magenta. (D–F) show
selected interface side chains as sticks, with oxygen atoms red, nitrogen atoms red, and sulfur atoms yellow.
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CDR3 loops, on average. However, we found that the preference
for contacts with the antibody heavy chain was similar to that for
the antibody-protein complexes, with many interfaces showing a
moderate preference for the heavy chain (50-75% of antibody
atomic contacts in most cases), and CDR loop contact
preferences likewise showed no pronounced differences
between the sets of antibody-protein and antibody-peptide
complexes (Figure 4), with the exception of a significant
decrease in percent of contacts involving CDRL2 for antibody-
peptide complexes (p ≤ 0.001), and a significant increase in
percent of contacts involving CDRL3 for antibody-peptide
complexes (p ≤ 0.001). This decrease in relative atomic
contacts by CDRL2 in antibody-peptide interfaces is likely due,
at least in part, to the smaller size of peptide antigens leading to a
lower likelihood of engaging the more peripheral CDRL2 loop on
the antibody light chain, versus the CDRL3 loop which is more
centrally located.

To assess and compare the sets of interfaces in more detail,
particularly with regard to energetically relevant features, we
calculated numbers of interface hydrogen bonds in the sets of
interfaces, and we used Rosetta (44) to calculate binding affinities
based on the complex structures (Figure 5). The numbers of
hydrogen bonds were markedly lower in antibody-peptide
interfaces, possibly due in part to the smaller interface sizes
providing fewer opportunities to form such contacts
(Figure 5A). However, Rosetta-predicted binding affinities,
based on the REF15 potential which includes a range of
energetic terms (37) and was recently found to be most
accurate among a series of DG prediction functions for
antibody-antigen affinity prediction (7), indicated that the
antibody-peptide interface structures had binding energies
similar to those of antibody-protein complexes (Figure 5B).
Normalizing the calculated DG values by the interface buried
surface area (DSASA) values to give energies per buried surface
Frontiers in Immunology | www.frontiersin.org 5
area showed there is significantly more energy density within the
antibody-peptide interfaces (Figure 5C). To investigate possible
reasons for this observation, we used Rosetta to calculate the
fractional amount of hydrophobic atom burial and shape
complementarity in antibody-peptide interfaces and antibody-
A B

FIGURE 3 | Buried solvent accessible surface area in antibody-peptide interfaces. (A) Change in accessible surface area (DSASA) for antibody-peptide interactions
in comparison with length of the peptide (in residues) in the structure. (B) Change in accessible surface area for non-antibody-antigen (N = 190), antibody-protein (N
= 54), and antibody-peptide (N = 188) interfaces. Non-antibody-antigen and antibody-protein complex structures are nonredundant sets previously reported in
Protein Docking Benchmark 5.5 (7). Statistical significance tests between sets of values were calculated with Wilcoxon rank sum test (ns: p > 0.05; ****: p ≤ 0.0001).
Two outlier points for the non-antibody-antigen set with very high DSASA values (6671 Å2, 6628 Å2) are not shown.
FIGURE 4 | Contacts with antibody heavy chain and CDR loops for sets of
antibody-protein (N = 54) and antibody-peptide (N = 188) interfaces. All
atomic-level contacts between antigenic protein or peptide and the antibody
(< 4.5 Å) were counted for each antibody-protein and antibody-peptide
interface, and percentages of atomic contacts within each interface including
the heavy chain (Heavy), light chain (Light), and the six heavy and light chain
CDR loops were calculated. Statistically significant differences between sets
of antibody-protein and antibody-peptide values (Wilcoxon rank sum test) are
indicated (***: p ≤ 0.001).
July 2022 | Volume 13 | Article 910367
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protein interfaces (Figure 6). For both metrics, there was a clear
and significant increase for antibody-peptide interfaces,
indicating that a higher proportion of hydrophobic atom burial
and improved shape complementarity allow antibody-peptide
Frontiers in Immunology | www.frontiersin.org 6
interactions to compensate for more limited interface sizes and
achieve affinities comparable to antibody interactions with larger
prote in ant igens . One caveat regarding the shape
complementarity observation was previously described by
A B C

FIGURE 5 | Interface and energetic features of antibody-peptide complexes in comparison with antibody-antigen complexes. (A) Interface hydrogen bonds, (B)
Calculated binding affinity (DG), and (C) Calculated affinity per unit interface surface area are represented for antibody-antigen (N = 54) and antibody-peptide (N =
188) complex structures. Statistical significance between sets of values are from Wilcoxon rank sum test (ns: p > 0.05; ****: p ≤ 0.0001).
A B

FIGURE 6 | Interface hydrophobicity and shape complementarity of antibody-peptide versus antibody-protein complexes. (A) Percent of hydrophobic buried
interface surface area (DSASA), calculated by Rosetta and (B) Shape complementarity values (Sc (38), calculated by Rosetta) from antibody-protein (N = 54) and
antibody-peptide (N = 188) interface structures are represented. Statistical significance between sets of values are from Wilcoxon rank sum test (****: p ≤ 0.0001).
July 2022 | Volume 13 | Article 910367
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Kuroda and Gray (25), who likewise found higher shape
complementarities for a set of antibody-peptide interfaces
versus antibody-protein interfaces, and noted that “edge
effects” can potentially lead to high Sc values for peptides
in particular.

To assess whether higher hydrophobic atom composition in
antibody-peptide interfaces is due to the antibody or antigen side
of the interface, we calculated hydrophobic atom contacts as a
total of all atom contacts for antibody and antigen sides of the
interface, within the sets of antibody-protein and antibody-
peptide interfaces (Figure 7). For these calculations,
hydrophobic atoms were defined based on atom type
classifications in the IFACE protein interface statistical
potential (36) (detailed further in the Methods). While the
antibody side of the interface did not show a change in
hydrophobic atom contact percent, there was a significant
increase (p ≤ 0.0001) in percent of hydrophobic atom contacts
for the antigen side of the interface in antibody-peptide
interfaces versus antibody-protein interfaces.

Antibody Binding Conformational Changes
Previously we found that antibody-antigen complexes exhibit
various levels of binding conformational changes, ranging from
relatively rigid “lock-and-key” recognition, to pronounced loop
conformational changes (7). To examine whether such
conformational changes are present in antibody-peptide
complexes, we identified a set of 32 unbound antibody
Frontiers in Immunology | www.frontiersin.org 7
structures with antibodies matching corresponding antibody-
peptide complexes in our set (Table S2), permitting us to
calculate binding RMSD of peptide-proximal interface residues,
as well as CDR loops (Figure 8). In spite of the smaller peptide
sizes and interface surface areas, we found that levels of antibody
binding conformational changes were similar between the
antibody-peptide and antibody-protein complexes.

Conformational Variability of Epitopes
As we observed several sets of antibody-peptide complexes with
shared epitope sequences or subsequences, we compared the
antibody-bound peptide conformations within those sets to
assess levels of conformational variability or rigidity of those
epitopes. Five sets (clusters) of complexes with shared epitopes
were found with five members or more in each cluster (shown in
Table S3). Those correspond to complexes with P. falciparum
circumsporozoite protein (PfCSP) NANP repeat (cluster 1, or
C1), HIV fusion peptide (C2), HCV E2 antigenic site 412
(AS412) (C3), PfCSP junctional epitope (C4), the HIV Env V3
loop (C5), and HIV Env membrane proximal external region
(MPER) (C6). Backbone RMSD calculations were performed
between common subsequences in all pairs of structures within
each set (bold residues in Table S3), and all clusters were found
to have a range of conformational variability (Figure 9). All
clusters contained one or more pairs of epitope structures with at
least moderate backbone RMSD (> 2 Å). Sets of peptide
structures from Clusters 2, 3 and 6 are shown in Figure 10,
FIGURE 7 | Hydrophobic atom contacts in antibody-peptide and antibody-protein complexes. Percent of total atom contacts (< 4.5 Å distance to binding partner)
for hydrophobic residue side chains were calculated separately for antibody and antigen in each antibody-protein (N=54) and antibody-peptide (N=188) interface.
Statistical significance between sets of values were determined by Wilcoxon rank sum test (ns: p > 0.05; ****: p ≤ 0.0001).
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FIGURE 8 | Antibody binding conformational changes in antibody-antigen and antibody-peptide complexes. Comparison of unbound and bound antibody
structures was performed for antibody-peptide (N = 32) and antibody-antigen (N = 54) structures. Calculated values are backbone atom root-mean-square
distances, using interface residues proximal (< 10 Å) of the bound antigen (Interface), or individual CDR loops.
FIGURE 9 | Peptide conformational variability in antibody-peptide complexes. Clusters of antibody-bound peptide structures (C1-C6), each with common epitope
sequences, were used to calculate pairwise backbone root-mean-square distance between the observed peptide conformations within each set. Each point
represents an RMSD value between two peptide conformations.
Frontiers in Immunology | www.frontiersin.org July 2022 | Volume 13 | Article 9103678
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and highlight the diversity of peptide structures within those
clusters, including two pairs of peptides within each set with
pronounced backbone conformational differences (~3 Å
backbone RMSD).
DISCUSSION

This study provides a focused analysis of antibody-peptide
complexes, highlighting features of that important class of
antibody recognition. While we found that several properties
of those interfaces are similar to those of antibody complexes
with larger protein antigens, we also noted intriguing distinctions
in calculated energy density, hydrophobicity, and shape
complementarity that likely represent strategies used by
antibodies to target smaller linear epitopes while retaining the
capability to bind at high affinity in vitro and in vivo. We also
observed considerable levels of peptide conformational
variability within sets of structures with shared peptide
epitopes; such conformational variability has been noted
previously to represent a possible mechanism of viral evasion
(45), while conversely it highlights the capacity of antibodies to
effectively target a variety of distinct conformations.

Although in many cases the antibody-bound peptides
represent the full epitopes of the corresponding antibodies,
such as the HCV1 antibody which is known to bind a linear
determinant in HCV E2 (12, 46), in some cases the native
antibody affinity and activity may require the full antigen
context, or indirect contributions of proximal residues or
molecules. For instance, antibodies 10E8, 2F5, and 4E10, which
engage the HIV Env MPER site, are known to be influenced by
membrane lipids (47, 48). Relatedly, it should be noted that some
antibodies represented in this analysis were obtained through
vaccination with full antigen proteins or natural infection, while
others were elicited by vaccination with designed or peptide
antigens. While structurally resolved HETATM molecules were
used to filter antibody-peptide interactions mediated in part by
non-protein molecules from our analysis, it is possible that
structurally unresolved molecules, including for instance N-
glycans, could be a factor in peptide recognition for some
antibodies. Prospective studies of these interfaces and
Frontiers in Immunology | www.frontiersin.org 9
structures could more explicitly account for experimentally
measured antibody-peptide affinities, where available,
analogous to the antibody-antigen affinities collected and
analyzed as part of Protein Docking Benchmark 5.5 (7).
Nevertheless, the high-quality set of interfaces considered here,
and their core residue-level and atom level interactions, are likely
reliable for comparative and/or dedicated analysis of antibody-
peptide interface features.

Previously reported modeling approaches for protein-peptide
interactions (28–30) and antibody-antigen interactions (26) have
highlighted the importance of the consideration of peptide
flexibility and antibody loop flexibility, respectively, thus
antibody-peptide modeling represents a challenging area that
requires the capability to sample peptide and antibody CDR loop
backbone conformations. A recently described end-to-end deep
learning approach (49) may be capable of effective sampling
during the antibody-peptide modeling process, yet
benchmarking has indicated that such approaches are not yet
capable of reliably modeling antibody recognition (50).
Development of comprehensive databases of antibody-peptide
structures and identification of key interface features, as
performed here, may enable future machine learning and data-
driven approaches to accurately model and design such
interactions, leading to development of next-generation
immunotherapeutics and vaccines.
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PDBs (A) 6PDU (blue) and 6NCP (magenta) (3.26 Å backbone RMSD), (B) 4DGY (green) and 4XVJ (salmon) (3.09 Å backbone RMSD), and (C) 1TJI (orange) and
5DD0 (cyan) (3.03 Å backbone RMSD).
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