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Purinergic exposure induces epigenomic
and transcriptomic-mediated preconditioning
resembling epilepsy-associated microglial states

Ricardo Martins-Ferreira,1,2,3,4 Josep Calafell-Segura,1 João Chaves,3,4,5 Laura Ciudad,1

António Martins da Silva,3,4,6 Paulo Pinho e Costa,2,3,4,7 Bárbara Leal,2,3,4 and Esteban Ballestar1,8,9,*
SUMMARY

Microglia play a crucial role in a range of neuropathologies through exacerbated activation. Microglial in-
flammatory responses can be influenced by prior exposures to noxious stimuli, like increased levels of
extracellular adenosine and ATP. These are characteristic of brain insults like epileptic seizures and could
potentially shape subsequent responses through epigenetic regulation. We investigated DNA methyl-
ation and expression changes in human microglia-like cells differentiated from monocytes following
ATP-mediated preconditioning. We demonstrate that microglia-like cells display homeostatic microglial
features, shown by surface markers, transcriptome, and DNA methylome. After exposure to ATP, TLR-
mediated activation leads to an exacerbated pro-inflammatory response. These changes are accompanied
by methylation and transcriptional reprogramming associated with enhanced immune-related functions.
The reprogramming associated with ATP-mediated preconditioning leads to profiles found in microglial
subsets linked to epilepsy. Purine-driven microglia immune preconditioning drives epigenetic and tran-
scriptional changes that could contribute to altered functions of microglia during seizure development
and progression.

INTRODUCTION

Microglia, as the brain’s resident macrophage population, represent the first line of immune defense within the central nervous system (CNS).

Despite their low abundance in relation to other cell types (around 10%),1,2 consistent evidence has demonstrated an essential role of micro-

glia in maintaining overall brain function.3–5 Furthermore, mutations of microglia-specific genes have been associated with different neuro-

degenerative diseases.6,7 The involvement of microglia in neuropathology is often attributed to its aberrant activation. Recently, exacerbated

and uncontrolled pro-inflammatory activation has been proposed to be due to the existence of innate immune memory, in a process tightly

regulated by epigenetic reprogramming. In the literature, there has not been unanimous consensus on the nomenclature used to describe

innate immunememory. According to the model proposed by Neher and Cunningham (2019),8 microglia manifest a ‘‘primed’’ state in neuro-

pathological settings, reflected by an activated state or a state of elevated permissiveness to activation. This has been supported by an exac-

erbated pro-inflammatory response to lipopolysaccharide (LPS) in mice models of neurodegenerative diseases.9–11 The concept of immune

priming is now defined by a more precise nomenclature. Innate immune memory represents a conditioned response to a secondary stimulus

induced by prior exposure to initial stimuli. This response can be expressed in two directions: ‘‘immune training’’ (formerly priming) reflects an

exacerbated pro-inflammatory response, while ‘‘immune tolerance’’ is characterized by a desensitized response.12

The study of purinergic signaling may represent a promising pathway to better understand the role of microglial conditioning in epilepto-

genesis. Adenosine and ATP have been proposed to be essential mediators of epilepsy.13 However, there is no consensus on the precise

underlying mechanisms that are involved. Generally, adenosine is primarily considered under the light of its anticonvulsant effects through

activation of adenosine A1 receptors,14 andmay also exert excitatory and neurodegenerative effects associated with adenosine A2A receptor
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activation.15,16 Like adenosine, ATP is a ubiquitous endogenous molecule with multiple implications on the CNS through modulation of cell

survival, proliferation and differentiation, axonal growth and maturation, excitability and glial activation.17 The impact of ATP in epileptogen-

esis has mainly been studied in the context of the ionotropic P2X7 receptor (P2RX7), the activation of which is predominantly associated with

microglia activation and pro-inflammation. P2RX7 is generally increased in epilepsy with anticonvulsive effects attributed to its antagonistic

treatment.13 Purine metabolism is widely pleiotropic, with the respective receptors being expressed throughout all the major cell types in the

CNS, and therefore exerting potentially contrary effects depending on the cell type, the receptor, the brain region, the used model of

epilepsy, and genetic heterogeneity. Understanding in depth the intricacies of the impact of purinergic imbalance in epileptogenesis may

represent an overwhelming task. What appears to be more widely accepted is that both adenosine and ATP extracellular levels increase

significantly upon brain insult, including after the occurrence of seizures. It is also important to take into consideration that ATP has a short

half-life and is quickly converted into adenosine by ectonucleotidases. Therefore, the increased release of ATP also contributes to elevated

levels of adenosine.18–21

Humanmicroglia research has been significantly hampered by the low replicability of in vivo traits in cell culturemodels. The use of fetal or

adult brain biopsies for human primary microglia cultures is limited by ethical and logistic reasons, together with relatively low yields of isola-

tion.22 In addition, replicating the homeostatic microglia phenotype is particularly challenging due to the substantial transcriptomic and

epigenetic changes that cells undergo in culture,23 and may be influenced by postmortem conditions.24 To overcome these limitations in

experimental scalability of human microglia cultures, alternative protocols have been developed, including the differentiation of peripheral

blood monocytes into microglia-like cells. In this study, we aimed to investigate how ATP-driven preconditioning could influence posterior

inflammatory activation in microglia by using monocyte-derived microglia-like cells. We have characterized the DNA methylation and tran-

scriptional changes associated with inflammatory preconditioning, the associated features and its potential relationship with the phenotype

of microglia in epileptogenesis.

RESULTS

Monocyte-derived microglia-like cells show features of homeostatic microglia

We first differentiated microglia-like cells from peripheral blood monocytes using an adapted version of a previously described procedure.25

Monocytes were differentiated in serum-free culture medium supplemented with M-CSF, GM-CSF, b-NGF, IL-34, and CCL2. Moreover, we

added TGF-b2 and cholesterol solution, which have been shown to increase viability of mice microglia in vitro26 (Figure 1A). In parallel, we

differentiated monocytes to pro-inflammatory macrophages as a reference to validate the homeostatic nature of microglia-like cells. Micro-

glia-like cells acquired a stable phenotype at seven days. After three days, we observed that cells acquired an elongated and ramified

morphology resembling homeostatic microglia in vivo (Figure 1B). Gene expression evaluation by quantitative PCR demonstrated upregu-

lation of the canonical homeostatic microglia marker P2RY12 in microglia-like cells in comparison to monocytes (Figure 1C). We also per-

formed flow cytometry evaluation of a panel of markers consistently used to describe and distinguishmicroglia-like frommonocytes andmac-

rophages. Our gating strategy aimed to delimitate the CD11b+macrophage lineage population in the microglia-like andmonocyte-derived

macrophage samples (Figure S1A). We observed a decrease in CD14 and CCR2 in microglia-like cells in relation to monocytes and macro-

phages, as previously described.27We also determined an increase in CD68, a standardmicroglia marker in brain tissue that is also expressed

by othermacrophages, in relation tomonocytes. Finally, wemeasured a decrease in CD45 in relation tomacrophages (Figures 1D and S1B). It

is important to note that the dual CD11b/CD45 signal is themost predominantly used strategy to distinguish homeostaticmicroglia (CD11b+/

CD45low) from macrophages (CD11b+/CD45high), and this model successfully replicated these conditions.

To further assess the acquisition of the resting microglia phenotype at the transcriptomic level, we performed RNA-seq analysis of mono-

cytes and microglia-like cells. The differentiation of monocyte to microglia-like cells resulted in the upregulation of 6692 genes and down-

regulation of 6189 genes (adjusted p value [FDR] < 0.05) (Figure S2A and Table S1), with the involvement of a wide range of transcription

factors (TFs) (Figure S2B). In this process, we observed upregulation of P2RY12, P2RX7, C1QA, PROS1, TGFBR1, and GAS6 (Figure 1E and

Table S1), microglia markers previously shown to be increased in microglia-like cells.25 We integrated our RNA-seq data with public datasets

corresponding to microglia and other myeloid populations (Figure 1F). These were described by Rai et al. (2020),28 and included CD14+/

CD16- (classical) and CD14-/CD16+ (non-classical) monocytes, conventional dendritic cells, two sets of induced pluripotent stem cell

(iPSC)-derived microglia, monocyte-derived macrophages, the monocyte-derived microglia-like cells generated in that study, microglia

cell lines (C20 and HMC3) and primary human adult and fetal microglia. We observed that our monocytes clustered together with those

from the other datasets, and that themicroglia-like cells generatedwith ourmethod clustered closer to adult and fetalmicroglia. These results

support the validity of microglia-like cells to replicate microglial transcriptomic features.

DNA methylation changes during differentiation associate with the acquisition of microglial features

We next determined the DNA methylation changes associated with the differentiation to microglia-like cells. In comparison to monocytes,

homeostatic microglia-like cells had 2879 differentially methylated positions (DMPs) (adjusted p value [FDR] < 0.05 and absolute mean Beta

difference >0.2) (Table S2). Most DMPs (2799) corresponded to CpG sites that are hypomethylated in microglia-like cells in comparison to

monocytes (Figure 2A), which demonstrated prevalence in intergenic regions and were enriched in enhancer regions (Figures S2C and

S2D). Gene ontology (GO) analysis of hypomethylated DMPs revealed enrichment of terms associated with inflammation and leukocyte dif-

ferentiation (Figure 2B). Moreover, TF bindingmotif enrichment analysis yieldedmultiple TFs associatedwith themyeloid lineage (Figure 2C).

Within those, we were able to identify several TFs previously associated with microglia-specific epigenetic modeling in human brain
2 iScience 27, 110546, August 16, 2024
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Figure 1. Monocyte-derived microglia-like cells show features of homeostatic microglia

(A) Schematic representation of the in vitro differentiation protocol from freshly isolated monocytes to monocyte-derived microglia-like cells and monocyte-

derived macrophages. For microglia-like differentiation, monocytes were plated in serum-free conditions with medium supplemented with M-CSF, GM-CSF,

b-NGF, IL-34, CCL2, TGF-b2, and cholesterol. Macrophages were obtained by culturing monocytes in medium supplemented with 10% FBS and M-CSF;

plus, LPS treatment one day prior to collection.

(B) Representative optical microscopy images of microglia-like differentiation at days three and six of culture with 203 magnification.

(C) Barplot representation of the gene expression of P2RY12 in microglia-like cells in comparison to monocytes obtained by RT-qPCR. The significance was

calculated using a paired t test (*p < 0.05).

(D) Boxplot representation of themedian fluorescence intensity (MFI) values obtained by flow cytometry for CD14, CCR2, CD68, CD11b, and CD45 in monocytes,

macrophages, and microglia-like cells. The significance was calculated using a paired t test (*p < 0.05, **p < 0.01).

(E) Boxplot representation of RNA-seq normalized counts for P2RY12, P2RX7, C1QA, PROS1, TGFBR1, and GAS6 in monocytes and microglia-like cells. All six

genes were significantly upregulated in microglia-like cells in the regression model.

(F) Principal-component analysis (PCA), using variance stabilizing transformation (VST) values considering all transcriptome of the RNA-seq data generated in this

study for monocytes and microglia-like, together with public data of CD14+/CD16-and CD14-/CD16+ monocytes, dendritic cells, monocyte-derived

macrophages, monocyte-derived microglia-like, iPSC-derived microglia, microglial cell lines (C20 and HMC3), and primary adult and fetal microglia. See also

Figures S1 and S2, and Table S1.
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Figure 2. DNA methylation changes during differentiation associate with the acquisition of microglial features

(A) Heatmap representation of the DNAmethylation of the differentially methylated positions (DMPs) obtained for the microglia-like vs. monocytes comparison.

DNAmethylation is represented as the Z score of the beta values. The significance cutoff was of adjusted p value (FDR) < 0.05 and difference in mean beta values

>0.2.

(B) Selected list of significantly enriched gene ontology (GO) terms for the hypomethylated DMPs in microglia-like. The significance of enrichment is represented

by the negative of the log of the adjusted p value, the enrichment fold change and the number of gene hits.

(C) Motif enrichment of the most significant TFs (p value < 1E-21) from the list of hypomethylated DMPs. The TFs are annotated by family and the enrichment is

represented by the negative of the log of the p value and the percentage of sequences matching the motif.

(D) Barplot showing the TFmotif enrichment of a selected group of TFs previously show to be associated with microglia-specific chromatin accessibility. All show

a p value lower than 0.01. The enrichment is represented by the negative of the log of the p value.

(E) Principal-component analysis (PCA) considering the beta values corresponding to all pairwise DMPs between monocytes, microglia-like cells and primary

microglia from postmortem brain (GSE191200).

(F) Gene set enrichment analysis (GSEA) of the list of genes associated with hypomethylated DMPs in the differential expression comparison between microglia-

like and monocytes. Genes associated with hypomethylated DMPs are upregulated in microglia-like cells. The enrichment is represented by the positive

Normalized Enrichment Score (NES) and the statistical significance by the adjusted p value (FDR).

(G) Graphical representation of the beta values of the CpGs located nearby the CD68 and CSF1R genes for monocytes and microglia-like cells (left panels). The

genes and the individual probes are represented in relation to the annotated genes in the UCSC Ref Seq. The CpGs highlight in red demonstrate a statistically

significant hypomethylation in microglia-like vs. monocytes. Boxplot representation of RNA-seq normalized counts for CD68 and CSF1R in monocytes and

microglia-like cells (right panels). Both genes were significantly upregulated in microglia-like cells in the regression model. See also Figure S2 and Table S2.
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tissue.23,29 Notably, PU.1 emerged as the leading TF in this list (Figure 2D). To further validate the microglial nature of our microglia-like cells,

we integrated our DNA methylation profiles with public data from microglia isolated from 56 human brain tissue samples (GSE191200). We

observed that microglia-like cells clustered closer to primary microglia samples than to monocytes (Figure 2E). Integration of DNA methyl-

ation and RNA-seq showed that the genes associatedwith hypomethylatedDMPswere upregulated inmicroglia-like cells vs. monocytes (Fig-

ure 2F). Selected examples of genes displaying both hypomethylation near the transcription start sites (TSS) and upregulation during
4 iScience 27, 110546, August 16, 2024
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Figure 3. ATP-driven preconditioning promotes a posterior exacerbated pro-inflammatory response to LPS, coupled with bidirectional DNA

methylation modifications

(A) Schematic representation of the preconditioning and inflammatory stimulation strategy in microglia-like cells. The first set of conditions were collected at day

seven of culture and were either preconditioned (+ATP) or non-preconditioned (Naive) with 100 mM ATP for 24 h. The preconditioned and non-preconditioned

microglia-like were stimulated with 100 ng/mL LPS two days before collection and collected at day ten of culture (+ATP+LPS and +LPS, respectively).

(B) Barplot representation of the gene expression of IL1B and IL6 in Naive, +LPS, +ATP+ and +ATP+LPS microglia-like obtained by RT-qPCR.

(C) Boxplot representation of protein levels of IL-1B in the supernatant of +ATP+LPS vs. +LPS.

(D) Boxplot representation the median fluorescence intensity (MFI) values obtained by flow cytometry for CD14, CD68, CD45, and HLA-DR in Naive, +LPS, +ATP

and +ATP+LPS. The statistical significance for panels (B), (C), and (D) was calculated using a paired t test (*p < 0.05, **p < 0.01).

(E) Heatmap representation of the DNA methylation of the differentially methylated positions (DMPs) obtained for the pairwise comparison between all

microglia-like conditions. Unsupervised clustering originated eight modules of DMPs (M1-M8). DNA methylation is represented as the Z score of the beta

values. The significance cutoff was of p value <0.05 and absolute difference in mean beta values >0.1.

(F) Line plots representing the progression of DNA methylation from monocytes (MO) to non-activated microglia-like cells (No LPS) and to activated microglia-

like cells (LPS) separated by the presence (+ATP and +ATP+LPS) or absence (Naive, +LPS) of the ATP stimulus. DNA methylation is represented as the mean of

the Z score for all DMPs in each module for each group of cells.

(G) Selected list of significantly enriched gene ontology (GO) terms for each of the modules of DMPs. The significance of enrichment is represented by the

negative of the log of the p value, the enrichment fold change and the number of gene hits.

(H) Transcription factor (TF) motif enrichment of a selected list of TFs (p value <0.01) for each module of DMPs. The TFs are annotated by family and the

enrichment is represented by the negative of the log of the p value and the percentage of sequences matching the motif. See also Figure S3 and Tables S3

and S4.
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microglia-like differentiation include CD68 and CSF1R, which are implicated in differentiation within the macrophage lineage and are essen-

tial for microglia maintenance and survival in vivo30 (Figure 2G). We also compared the DNA methylation profile of the microglia-like cells

generated in vitrowithmacrophages, also differentiated in vitro frommonocytes31 (similar differentiation protocol; see STARmethoddetails).

For such dataset, we applied the same preprocessing and DMP calculation pipeline and observed a majority pattern of hypomethylation

(2806 DMPs) (Figure S2E). We next overlapped the lists of hyper and hypomethylated DMPs for macrophages vs. monocytes with the

ones determined for microglia-like cells vs. monocytes (Figure S2F). As expected, there was a substantial intersection between both sets

of DMPs, considering the macrophagic nature of both cell types and their similar monocyte-derived in vitro differentiation. In addition,

both microglia-like cells and macrophages present DMPs that are exclusive to each differentiation (Figure S2F). GO analysis of the hypome-

thylated DMPs exclusive to macrophages showed a higher enrichment of pro-inflammatory and activation-related terms such as ones asso-

ciated with wound healing, inflammatory response, and myeloid cell activation; while microglia-like exclusive methylation changes were en-

riched for cytokine synthesis and negative regulation of immune system (Figure S2G). These results support the acquisition of a homeostatic

phenotype by microglia-like cells in relation to other models of monocyte-derived macrophages.

Exposure to ATP in microglia-like cells leads to epigenetic and transcriptomic preconditioning

To interrogate whether an initial ATP stimulus influences microglia responses to secondary inflammatory activation, we stimulatedmicroglia-

like cells with ATP and then subjected them to TLR4-mediated activation with LPS (Figure 3A). To this end, after a 6-day microglia differen-

tiation, we treated a set of sampleswith ATPoneday before harvesting (+ATP), whereas in parallel we left a second set of sampleswithout ATP

treatment (Naive). In addition, we performed microglia activation using LPS for both microglia sample sets and collected the cells after two

days (+ATP+LPS and +LPS, respectively). These experiments were conducted with four biological replicates. Firstly, we observed upregula-

tion of the pro-inflammatory gene IL1B, and a similar trend for IL6, in the +ATP+LPS condition in comparison to +LPS (Figure 3B). The levels of

IL-1b protein in the supernatant of cells treated with +ATP+LPS also showed a non-significant increasing trend (Figure 3C). However, we

acknowledge the lack of strength in demonstrating a higher activation at the functional level and cannot exclude the possibility that IL-1b

might be released from non-inflammatory cell death. Therefore, additional functional assays would be required. The exacerbated pro-inflam-

matory profile of +ATP+LPS microglia-like cells was corroborated by flow cytometry. They showed higher levels of CD14, CD45, and HLA-DR

in comparison to +LPS (Figures 3D and S3A). Of note, the increase in HLA-DR appears to result from additive effect of the ATP and LPS stimuli,

as ATP alone significantly enhances its levels.

DNA methylation analysis of the four studied microglia conditions showed some differences (Figure 3E and Table S3). We performed a

pairwise comparison between all studied microglia-like groups. Significant DMPs were considered for a p value <0.05 and absolute mean

Beta difference >0.1. A total of 2440 DMPs were grouped by unsupervised clustering in eight modules (Figure 3E and Table S4). The progres-

sion of each module throughout the differentiation from monocytes to homeostatic microglia (no LPS) to activated microglia (LPS) was eval-

uated separately for microglia-like cells untreated (Naive and +LPS) and treated with ATP (+ATP and +ATP+LPS) (Figure 3F). Some modules

do not show visible differences caused by ATP treatment, such as M3 (573 DMPs) andM4 (347 DMPs) in which methylation increases with LPS

stimulation independently of the ATP treatment; and M5 (592 DMPs) which shows an opposite behavior, meaning decreased methylation

post-LPS invariably in ATP-treated and untreated cells. The impact of ATP is observed in M1 (148 DMPs), which exhibits the same trend of

increased methylation in response to LPS as untreated cells, but at reduced levels. The opposite tendency is observed for M2 (167 DMPs),

whose methylation also increased with LPS, but at higher levels in ATP treated cells. M7 (237 DMPs) shows an ATP-mediated decrease in

methylation and the trend post-LPS is toward demethylation. Moreover, M6 (185 DMPs) is characterized by a spike in methylation after

ATP treatment, but with no impact in the response to LPS. Lastly, in M8 (191 DMPs) the LPS-induced demethylation is impeded in ATP treated
6 iScience 27, 110546, August 16, 2024
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Figure 4. The pro-inflammatory response caused by ATP preconditioning is observed at the transcriptional level

(A) Volcano plots depicting the differential expression between +ATP and Naive, and between +ATP+LPS and +LPS microglia-like cells. Differentially expressed

genes (DEGs) are considered for adjusted p value (FDR) < 0.05. Upregulated DEGs (log2(fold change) > 0) are highlighted in red, and downregulated DEGs

(log2(fold change) < 0) in green.

(B) Venn diagram of the overlap between the list of genes up and downregulated in the two comparisons.

(C) Heatmap representation of the DEGss obtained for the pairwise comparison between all microglia-like conditions. Gene expression is represented as the

Z score of the normalized counts. The significance cutoff was of adjusted p value (FDR) < 0.05. Unsupervised clustering divided the DEGs in twelve modules

(E1-E12). DEGs associated with differentially methylated positions (DMPs) are highlighted (black lines).

(D) Violin plot representation of the mean Z score of the normalized counts of each DEG module in monocytes and in all microglia-like cell groups.

(E) Selected list of significantly enriched gene ontology (GO) terms for each of modules of DEGs. The significance of enrichment is represented by the negative of

the log of the adjusted p value, the enrichment fold change and the number of gene hits.

(F) Transcription factor (TF) enrichment of all significant TF (adjusted p value (FDR) < 0.05) in both differential expression comparisons (+ATP vs. Naive

and +ATP+LPS vs. +LPS). Significance is represented by the NES (Normalized Enrichment Score) and the negative of log of the adjusted p value (FDR). See

also Figure S3 and Tables S5 and S6.

ll
OPEN ACCESS

iScience
Article
cells. Moreover, we evaluated the distribution of these modules in relation to gene location and CpG islands, as well as the association with

chromatin states (Figures S3B and S3C). We highlight M6 and M8 which demonstrated higher prevalence near TSS. GO analysis showed that

the modules of DMPs not influenced by ATP preconditioning present a striking enrichment of terms associated with pro-inflammatory acti-

vation, like glucocorticoid receptor binding and positive regulation of transforming growth factor b production (M3), negative regulation of

chronic inflammatory response andmicroglial cell activation involved in immune response (M4), andmonocyte chemotaxis and positive regu-

lation of T cell differentiation (M5), thus representing general LPS-mediated patterns. ATP treatment hampers the methylation levels of DMPs

enriched for pathways involved in response to DNA damage and hypoxia, and inflammation (e.g., inflammatory response to antigen stimulus;

interleukin-4 secretion) (M1); andmitochondrial membrane fission, lipid modification, excitatory signaling (kainite selective glutamate recep-

tor complex) and interleukine-7-mediated signaling pathway (M7). Plus, ATP treatment demonstrated the opposite effect (increased methyl-

ation) in DMPs involved in regulation of response to reactive oxygen species and phagocytic vesiclemembrane (M2). ModuleM6, which expe-

rience a spike in methylation solely as response to ATP, shows enrichment for synapse-related processes and purine phosphorylation. Finally,

DMPs inM8were associatedwithmechanisms involved in synaptic function (excitatory synapse and synapse organization), purinemetabolism

(dADP metabolic process), and neurotransmission (alpha-2B adrenergic receptor binding) (Figure 3G). TF motif enrichment analysis also

generated distinct profiles between methylation modules (Figure 3H). M2, M3, and M4 showed analogous TF enrichment; namely, Etv2

and ERG. In addition, both M1 and M5 demonstrated enrichment of multiple NFKB iterations and members of the AP-1 family (e.g., Jun,

Fos, and ATF), which are known to regulate the surveillant microglia phenotype, but also immune activation.32 Examining the modules

that showed amore striking influence by ATP-treatment, we observed enrichment inM6 (ATP-drivenmethylation) of E2F3, a factor associated

with proliferation and migration in glioma cells.33 M8, which shows the clearest preconditioning-related effect, uniquely showed significant

enrichment for Rfx1, mostly known as a transactivator of hepatitis B virus enhancer I, and also described to regulate MHC class II genes.34 In

the context of microglia, increased levels of Rfx1 have been shown to downmodulate APOE expression, and, consequently, impair Ab up-

take.35 Furthermore, Rfx1 presents site-specific and DNA methylation-dependent binding activity.36

ATP-preconditioning resulted in significant changes in gene expression. We detected 378 differentially expressed genes (DEGs) (205

upregulated and 173 downregulated) in +ATP vs. Naive microglia-like cells; and 1223 DEGs (667 upregulated and 556 downregulated)

in +ATP+LPS vs. +LPS (Figure 4A). Of note, a significant proportion of the upregulated and downregulated DEGs were coincident in

both comparisons (Figure 4B), suggesting that exposure to ATP by itself promotes gene expression changes that are maintained after acti-

vation. Moreover, we performed unsupervised clustering of all DEGs from all pairwise comparisons (Table S5) between the four microglia-

like study conditions, consisting in a total of 7362 genes. Unsupervised clustering of all DEGs from pairwise comparisons separated them

into twelve modules (E1-E12) (Figures 4C and 4D, and Table S6). Similar to the described in themethylation modules, a large portion of the

identified DEGs were unaffected by the ATP stimulus, behaving similarly in response to LPS, namely the ones belonging to expression

modules E1 (1330 genes), E2 (924 genes), E8 (450 genes), E9 (371 genes), E11 (819 genes), and E12 (1166). The remaining modules demon-

strated ATP-mediated patterns, including E3 (227 genes) in which the expression increases in both ATP-treated conditions (+ATP, +ATP+

LPS), and E7 (339 genes) in which ATP and LPS present an additive effect by progressively causing downregulation. In E5 (471 genes) and

E10 (403) gene expression upregulated in response to LPS, but exponentiated in +ATP+LPS. E4 genes (424) demonstrated a hampered

upregulation following LPS in +ATP+LPS cells. In the opposite direction, the downregulation of E6 genes (438) post-LPS is also impeded

by ATP. In this regard, the behaviors observed in E4, E5, E6, and E10 are interpreted as a potential preconditioning effect of ATP (Fig-

ure 4D). From the GO analysis of the expression modules, the most prominent results include the enrichment of inflammation-related

terms in the aforementioned preconditioning modules (E5, cytokine activity; E10, regulation of leukocyte mediated cytotoxicity and

phagocytic vesicle). In addition, immunologic terms were not observable for E4, which was enriched for pathways involved in vesicle trans-

port; however, E6 demonstrated high enrichment of pro-inflammatory terms such as immune response-activating signaling pathway and

phagocytosis (Figure 4E). Analysis of regulon enrichment based on gene expression of TF targets demonstrated a higher activation of

inflammation-related TFs caused by ATP pre-exposure, such as a member of the interferon-regulatory factor (IRF1), NF-kB subunits

(RELA and NFKB1), and STAT proteins (STAT1 and STAT5B) in the +ATP+LPS vs. +LPS comparison (Figure 4F). To integrate the transcrip-

tomics and DNA methylation data, we calculated the enrichment of the overlap between the genes from each gene expression module
8 iScience 27, 110546, August 16, 2024
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Figure 5. ATP-mediated preconditioning induces a molecular signature in microglia-like cells that correspond to subsets expanded in epilepsy

(A) UMAP representation of the integrated single-cell (sc)RNA-seq object composed of 36,927 microglia cells from epilepsy patients and healthy individuals,

distributed across twelve clusters.

(B) Dot plot representation of the expression of genes associated with homeostatic (P2RY12 and CX3CR1) and pathological (SPP1 and APOE) microglial

phenotypes, and the module score expression of gene signatures characteristic of ‘‘disease-associated microglia’’ (DAM) and ‘‘disease inflammatory-

macrophages’’ (DIMs), and the gene expression modules from our analysis.

(C) UMAP representation, split by pathological conditions (Epilepsy and Controls), of only the cells from cluster 7 which represent the DIMs. Reclustering of the

DIM population resulted in five subclusters (DIM cluster 0–4). The object accounts for 1569 cells from epilepsy patients and 622 cells from controls.

(D) Differential composition analysis of each DIM subpopulation in epilepsy patients vs. controls using sccomp. Population expansion (right-shift) or depletion

(left-shift) are represented by the credible interval of the slope (95% confidence). The dashed lines represent the default threshold for consideration of

significance (�0.2–0.2). Statistical significance is considered for an adjusted p value (FDR) < 0.05 and is highlighted in red. Boxplot representation of the

proportion distribution of the five DIM subpopulations in each individual sample from the epilepsy patients and controls groups. Cluster 0 is significantly

expanded in epilepsy in comparison to controls. The blue boxes represent the posterior predictive check, which consists of a simulation from the fitted

model. The overlap of the stimulated proportions with the real data validates the adequacy of the model. The red triangles represent predicted outliers.
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Figure 5. Continued

(E) Dot plot representation of the expression of the module score of the genes from the DNA methylation and the gene expression modules, the overlapping

genes between M8 and E5 (7 genes), E10 (7 genes) and E4 (10 genes), and a selected list of immune-related genes from E5 (P2RX4, LILRB4) and E10 (OTUD1,

SIGLEC10).

(F) Boxplot representation of the normalized counts (RNA-seq) of four DEGs from the +ATP+LPS vs. +LPS comparison in the four studied microglia-like

conditions (Naive, +LPS, +ATP and +ATP+LPS), and belonging to E5 (P2RX4 and LILRB4) and E10 (OTUD1 and SIGLEC10). All four genes are significantly

upregulated in +ATP+LPS vs. +LPS (adjusted p value (FDR) < 0.05).
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(E1-E12) and the genes associated with the methylation modules (M1-M8). (Figure S3D). Of note, no significant enrichment was observed

for the main modules that we deemed previously as related to preconditioning.

ATP-mediated preconditioning induces a molecular signature in microglia-like cells that correspond to subsets expanded in

epilepsy

Finally, we examined the transcriptomic changes observed in ATP preconditioned microglia-like cells in the context of human microglia sub-

populations in patients with epilepsy and healthy individuals. To this end, we used an integrated single-cell (sc)RNA-seq object consisting of

36,927 microglia cells from both patients with epilepsy and healthy controls without any diagnosed neuropathology.37–41 The integrated ob-

ject consisted of twelve clusters of microglial cells (Figure 5A), expressing high levels of canonical markers, P2RY12 and CX3CR1, and were

obtained after exclusion of cells expressing markers for macrophages, T cells and other CNS cell types (see STAR Methods). Each subpop-

ulation showed variable expression of known homeostatic genes (P2RY12 and CX3CR1) and pathology-related microglia markers (SPP1 and

APOE). In addition, we investigated the average expression of gene signatures characterizing the phenotypes of ‘‘disease-associate micro-

glia’’ (DAM) and ‘‘disease-inflammatory macrophages’’ (DIMs), described elsewhere,42 and the module score expression of the genes in the

expressionmodules described in our study.We observed a high expression of the E5 and E10modules, described as upregulated in ATP pre-

exposed cells, in cluster 7, which also demonstrated a specific upregulation of the DIM signature (Figure 5B). We then subsetted the scRNA-

seq object, considering only cluster 7, which consisted of 1569 and 622 cells from epilepsy patients and controls, respectively. Reclustering of

these cells resulted in five clusters, one of which (cluster 0) was expanded in epilepsy in comparison to controls (Figure 5D). To further explore

the association of both the DNA methylation and the gene expression modules obtained in our microglia-like experiment, we investigated

the module score expression of the genes within each methylation and expression module in the DIM subpopulations, with special attention

to DIM cluster 0 (Figure 5E). The expression modules E5 and E10 showed high expression in DIM cluster 0. We acknowledge the lack of as-

sociation between the DNAmethylationmodules and the gene expression analysis, and the scRNA-seq validation. Even when inspecting lists

of genes shared between E5 and E10 and the methylation module 8 (inhibition of demethylation by ATP pre-exposure), no clear pattern of

high expression in DIM cluster 0 was observed (Figure 5E). Of note, genes from M8 were considered here based on the abovementioned

closer location to TSS and potential influence in transcriptomic regulation. However, at the transcriptomic level we were able to observe

the replication of the expression patterns observed in ourmicroglia-like experiment and the scRNA-seq validation. In particular, we represent

four genes belonging to E5 (P2RX4, LILRB4) and E10 (OTUD1, SIGLEC10) that have been described in microglia activation and immune regu-

lation and demonstrated high levels of expression in the epilepsy-associated DIM cluster 0 and were significantly upregulated in +ATP+LPS

vs. +LPS (Figures 5E and 5F). Therefore, these data demonstrate that an exacerbated inflammatory activation of microglia-like cells promoted

by ATP preconditioning is replicated in a population of inflammatory microglia-like cells that infiltrate the brain during injury and are

expanded in epilepsy patients.

DISCUSSION

In this study, we have shown that ATP-mediated preconditioning of microglia-like cells is accompanied by epigenetic and transcriptional re-

programming that is associated with their subsequent inflammatory responses. The occurrence of innate immune memory and the partici-

pation of epigenetic changes in this context provides new potential mechanisms to explain some of the roles of microglia in neuropathology.

In this case, in the context of epileptogenesis. Secondary immune responses following a first insult can exhibit different outcomes depending

on the nature of the stimuli. In the case of trained immunity, the response is more pronounced or exacerbated, whereas in the case of toler-

ance, the response is diminished.8 Evidence supporting the existence of memory in microglia remains limited. Nevertheless, studies have

shown that sequential treatment of microglia with LPS can influence the production of cytokines and reactive oxygen species, phagocytic

activity, and persistent alterations in gene expression profiles.43,44 Processes leading to the acquisition of innate immunememory are thought

to be tightly regulated by epigenetic modifications. Two studies have conducted RNA-seq, ATAC-seq, and ChIP-seq of multiple histone

marks onmicroglia, revealing epigenetically dependent transcriptomic changes associated with immune preconditioning.45,46 The participa-

tion of DNAmethylation was not explored in these studies, despite its relevance in myeloid differentiation. DNAmethylation is the most sta-

ble and one of the best studied epigenetic modifications. It consists of the addition of a methyl group to cytosine nucleotides in the DNA and

contributes and/or reflects the transcriptional competence of chromosomal regions47,48

As mentioned previously, the use of humanmicroglia models is necessary to study the molecular mechanisms involved in pathogenesis. A

common concern regarding the use of microglia-like models is their distinct ontogeny compared to in vivomicroglia, which differentiate from

precursor cells that migrate into the brain in early embryogenesis and are independent from peripheral monocytes.49,50 A common in vitro

approach to study human microglia is iPSC-derived microglia, which aims at emulating the microglial ontogeny.51 Using microglia-like cells
10 iScience 27, 110546, August 16, 2024
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derived frommonocytes offers the advantage of a simpler and quicker experimental protocol in comparison to iPSC-derivedmicroglia, which

consists of a longer multi-step procedure.52 Furthermore, the use of the differentiation of microglia-like cells frommonocytes has gainedmo-

mentum due to the recent discovery of a novel myeloid population within the cerebral microglial population. Using single-cell transcriptom-

ics, Silvin and colleagues (2022), described a subset of cells known as ‘‘disease-inflammatory macrophages’’ (DIMs). Although DIMs share fea-

tures with microglia, what made them be annotated under the microglia spectrum, they are actually derived from infiltrating monocytes.

These DIMs present a general pro-inflammatory profile with neurotoxic implications in neurodegeneration and aging.42

In vitro models of microglia-like cells have been shown to mimic in vivo microglia features, including morphology, specific surface

protein expression, expression of specific canonical homeostatic markers, and overall transcriptomic profile.25,27,28,52–54 In this study, we

have performed a multi-level characterization of microglia-like cells differentiated from monocytes demonstrating the acquisition of the

elongated and ramified structure, and the acquisition of standard microglia surface markers. At the transcriptomic level, our microglia-

like cells showed high resemblance with primary human microglia, outperforming those generated by previous protocols. Furthermore,

we obtained the DNA methylation profiles of microglia-like cells, which also support its cellular identity, given their cell type speci-

ficity.55 In this analysis, we have demonstrated a successful replication of microglial DNA methylation patterns. The DNA methylation

profiles of microglia-like cells cluster closer to in vivo primary microglia than to primary monocytes and are enriched for TF binding

motifs associated not only with myeloid cells but also with microglia. In an encompassing study, Gosselin et al. performed transcrip-

tomic and epigenomic characterization of mice and human microglia, including ATAC-seq (defines open chromatin), and ChIP-seq

for H3K4me2 (dimethylation of histone H3 lysine 4, annotates regulatory regions like enhancers) and H3K27ac (acetylation of histone

H3 lysine 27, annotates regions with high transcriptional activity). ATAC-seq peaks associated with H3K4me2 and H3K27ac in microglia

were predominantly enriched for PU.1, denoted as the main driver of microglial identity, but also for IRF, MEF2, SMAD, and MAF fac-

tors.23 Our results indicate that these same factors, with prominence for PU.1, are associated with the DNA methylation changes in mi-

croglia-like differentiation.

Our model of microglia preconditioning aligns with the pathogenesis landscape observed in various neurodegenerative diseases, char-

acterized by the presence of widespread primed/activated/trained microglia states reported in these conditions.8 In addition, we recognize

the specific relevance of integrating purinergic signaling within this framework, particularly when considering its implications in the context of

epileptogenesis. Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) is particularly relevant considering the high incidence

of reported initial precipitating injuries in early childhood, namely trauma, hypoxia, intracranial infection, and febrile seizures.56–59 It could be

postulated that purine-driven microglia preconditioning caused by the initial insult may influence posterior microglia responses in ways that

could influence the structural and molecular changes associated with the latent phase of epilepsy development. Furthermore, considering

the progressive nature ofMTLE, seizure activitymay preconditionmicroglia activation through the release of extracellular ATP and adenosine,

with impact on the continuous aggravation of neuroinflammation and prognosis worsening. An important aspect that deserves attention

in this discussion is the previously described adenosine kinase (ADK) hypothesis of epileptogenesis, which proposes that, in epileptogenic

conditions, the levels of ADK, an enzyme responsible for converting endogenous adenosine into AMP, increase. This elevation of ADK

results in the extracellular depletion of adenosine.60 This mechanism is directly associated with DNA methylation. The conversion of

S-adenosylmethionine (SAM) to S-adenosylhomocysteine (SAH) serves as a major source of methyl groups. Subsequently, SAH is hydrolyzed

to produce homocysteine and adenosine. Hence, any disturbance in the intracellular and extracellular balance of adenosine levels can directly

impact DNA methylation by altering the thermodynamics of the SAM metabolism. In the early stages, this process was proposed to be uni-

directional leading to overall DNA hypermethylation due to increased adenosine consumption by ADK in the context of epileptogenesis.61,62

However, studies have demonstrated that in complex and heterogeneous pathologies such as epilepsy, DNAmethylation alterations occur in

a region-specificmanner, with somemethylation sites showing hypermethylation and others hypomethylation. In a recent study conducted by

our group, we observed that DNAmethylation of multiple sites associated with neuroinflammation correlate with disease duration, suggest-

ing the implication of microglia in epilepsy progression.63

In the present study, we have observed that ATP-driven preconditioning is associated with the acquisition of a more pro-inflammatory

phenotype. This shift in the phenotype is accompanied by bidirectional changes in both transcriptomic and DNA methylation profiles,

with a tendency towardDNA hypomethylation in pathways associated with inflammation. Furthermore, we were able to replicate the changes

caused by ATP preconditioning in vitro in scRNA-seq data from epilepsy patients and controls. These results provide support for the repli-

cability of these mechanisms described in the context of epileptogenesis. Additionally, we have determined that genes upregulated in acti-

vated and preconditioned microglia-like cells, as well as the genes associated with immune training, are elevated in subpopulations of DIMs

that are expanded in epilepsy. P2RX4 codes a purinergic receptor, expected to be directly modulated by ATP that has been shown to be

increased in a reactive microglia phenotype with implications in neuropathic pain.64 In addition, LILRB4 and SIGLEC10 code two immune

checkpoints,65,66 andOUTD1, a regulator of inflammatory responses,67 close the list of candidate genes that depict an ATP-preconditioned

pro-inflammatory enhancement in microglia-like cells and a potential implication in epileptogenesis. In any case, we acknowledge the min-

imal relationship betweenDNAmethylation and transcriptomic changes. This could be due to the short time interval between the two stimuli,

which may not allow for the slower DNA methylation changes to occur.

Our in vitro model utilizing microglia-like cells has demonstrated that exposure to ATP, which mimics the conditions observed during

brain insults such as epileptic seizures, leads to a concurrent increase in inflammatory activation and alterations in transcriptional pat-

terns. Various studies have used similar models in patients to study pathological mechanisms related to microglia.25,68–72 By comparing

our ATP-mediated preconditioning model with microglia subsets from scRNA-seq data derived from epilepsy patients and healthy
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donors, we provide evidence for the involvement of purinergic conditioning in the acquisition of disease associated microglial states.

Activated preconditioned microglia-like cells resemble subpopulations of DIMs that are expanded in the brains of epilepsy patients,

potentially contributing to the heightened neuroinflammatory profile associated with epileptogenesis. Further epigenetic and func-

tional analysis of microglia cells from patients with MTLE-HS compared to controls will shed light on the distinct responsiveness of mi-

croglia in epilepsy.

Limitations of the study

We acknowledge the limitations of this model, particularly regarding the use of LPS to induce pro-inflammatory activation. This method may

not fully replicate the in vivo epileptogenic process, as neuroinflammation does not imply the presence of infectious agents. Nevertheless,

exposure to LPS is intended here to induce a general pro-inflammatory activation and is commonly used in the literature as a secondary stim-

ulus to study innate immune memory in microglia.43,44 We must also recognize that the demonstration of the ATP-driven pro-inflammatory

profile in microglia-like cells would benefit from functional experiments, like phagocytosis assays and quantification of the secretion of acti-

vated cytokines.
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Antibodies

FITC anti-human CD14 Biolegend Cat# 367116; RRID: AB_2571929

PE anti-human CX3CR1 Biolegend Cat# 341604; RRID: AB_1595456

PE-Cy5 anti-human CD11b Biolegend Cat# 301308; RRID: AB_314160

PE-Cy7 anti-human HLA-DR Biolegend Cat# 307616; RRID: AB_493588

APC anti-human CD192 (CCR2) Biolegend Cat# 357208; RRID: AB_2562239

APC-Cy7 anti-human CD68 Biolegend Cat# 333822; RRID: AB_2571965

PE anti-human P2RY12 Biolegend Cat# 392104; RRID: AB_2716007

APC anti-human MERTK Biolegend Cat# 367612; RRID: AB_2687289

KO anti-human CD45 BeckmanCoulter Life Sciences Cat# B36294

Biological samples

Peripheral blood from healthy donors Catalan Blood and Tissue Bank N/A

Chemicals, peptides, and recombinant proteins

RPMI Medium 1640+ GlutaMAXTM Gibco, Thermo Fisher Cat# 61870036

a-minimal essential medium (a-MEM) Invitrogen Cat# 32561-029

Penicillin – Streptomycin Labclinics, S.A. L0022-100

Human M-CSF Peprotech Cat# 300-25

Human GM-CSF Peprotech Cat# 300-03

Human beta-NGF Peprotech Cat# 450-01

Human MCP-1/MCAF (CCL2) Peprotech Cat# 300-04

Human IL-34 Peprotech Cat# 200-34

Human TGF-beta 2 (Mammalian) Peprotech Cat# 100-35B

Cholesterol Merck Cat# C3045-5G

ATP (adenosine 50-triphosphate disodium salt) InvivoGen Cat# tlrl-atpl

LPS (lipopolysaccharide) Merk Cat# C3045-5G

FBS (Fetal Bovine Serum) ThemoFisher Scientific Cat# 10270106

PBS ThemoFisher Scientific Cat# 20012019

Paraformaldehyde Aname, SL Cat# 15710-S

Versene ThemoFisher Scientific Cat# 15040033

Critical commercial assays

CD14+ MicroBeads Miltenyi Biotec Cat# 130-050-201

Maxwell RSC simplyRNA Cells Kit Promega Cat# AS1390

Transcriptor First Strand cDNA Synthesis Kit Roche Cat# 4897030001

LightCycler� 480 SYBR Green Mix Roche Cat# 4887352001

IL-1 beta Human ELISA Kit Invitrogen Cat# KHC0011

LIVE/DEADTM Fixable Violet ThemoFisher Scientific Cat# L34964

Deposited data

DNA methylation and gene expression This paper GSE235104

Oligonucleotides

qRT-PCR primers, see STAR method details This paper N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Primer3 Koressaar et al.73 https://primer3.ut.ee/

shinyÉpico Morante-Palacios et al.74 https://github.com/omorante/shinyepico

Minfi Aryee et al.75 https://bioconductor.org/packages/

release/bioc/html/minfi.html

Limma Ritchie et al.76 https://bioconductor.org/packages/

release/bioc/html/limma.html

Sva Leek et al.77 https://bioconductor.org/packages/

release/bioc/html/sva.html

HISAT2 Kim et al.78 https://daehwankimlab.github.io/hisat2/

featureCounts Liao et al.79 https://subread.sourceforge.net/

featureCounts.html

DESeq2 Love et al.80 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html

Seurat Hao et al. (2021 and 2023)81,82 https://satijalab.org/seurat/

DoubletFinder McGinnis et al.83 https://github.com/chris-mcginnis-

ucsf/DoubletFinder

Sccomp Mangiola et al.84 https://github.com/MangiolaLaboratory/sccomp

Gplots Warnes et al.85 https://cran.r-project.org/web/

packages/gplots/index.html

ComplexHeatmap Gu et al.86 https://bioconductor.org/packages/release/

bioc/html/ComplexHeatmap.html

Gviz Hahne et al.87 https://bioconductor.org/packages/

release/bioc/html/Gviz.html

VennDiagram Chen et al.88 https://cran.r-project.org/web/packages/

VennDiagram/index.html

HOMER Heinz et al.89 http://homer.ucsd.edu/homer/motif/

GREAT McLean et al.90 http://great.stanford.edu/public/html

DoRothEA Garcia-Alonso et al.91 https://saezlab.github.io/dorothea/

articles/dorothea.html

clusterProfiler Wu et al.92 https://guangchuangyu.github.io/

software/clusterProfiler/

GeneOverlap Shen et al.93 https://github.com/shenlab-sinai/GeneOverlap

Fgsea Korotkevich et al.94 https://www.bioconductor.org/packages/

release/bioc/html/fgsea.html
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Esteban Ballestar

(eballestar@carrerasresearch.org).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� All DNAmethylation and expression datasets for this publication have been deposited in the NCBI Gene ExpressionOmnibus and are

accessible through a GEO accession numbers GSE235104 and GSE272030 respectively.
� This paper does not report original code.
� Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Monocyte purification and in vitro differentiation to microglia-like cells

Peripheral blood was collected under the form of buffy coats obtained from anonymous adult male donors through the Catalan Blood and

Tissue Bank. All donors signed an informed consent and sample collections were performed as per the guidelines of the World Medical As-

sociation (WMA) Declaration of Helsinki.

Peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll-Paque gradient centrifugation. Monocytes were then purified us-

ing positive selection with CD14+ MicroBeads (Miltenyi Biotec). For microglia-like differentiation, monocytes were cultured in RPMI Medium

1640+ GlutaMAX (Gibco, Thermo Fisher) containing 100 units/mL penicillin, 100 mg/mL streptomycin, and supplemented with 10 ng/mL hu-

man M-CSF, 10 ng/mL human GM-CSF, 10 ng/mL human b-NGF, 100 ng/mL human IL-34, 100 ng/mL human CCL2, 2 ng/mL human TGF-b2

(PeproTech) and 1.5 mg/mL cholesterol solution dissolved in ethanol. Microglia-like plating density was of 1.5 M cells per well (6-well plates).

Homeostatic (Naive) microglia-like cells were obtained after seven days of culture without media changes. For monocyte-derived macro-

phage differentiation, monocytes were attached to plates by incubation with serum-freemedium and posteriorly cultured in a-minimal essen-

tial medium (a-MEM; Invitrogen, Carlsbad, CA, USA) containing 10% fetal bovine serum, 100 units/mL penicillin, 100 mg/mL streptomycin and

supplemented with 25 ng/mL human M-CSF. Plating density for monocyte-derived macrophages was 3 M cells per well (6-well plates). No

media changes were performed for the macrophage culture, and cells were activated with 10 ng/mL of LPS at day six of culture and collected

24h after.

Activation and preconditioning of microglia-like cells

The design of the preconditioning analysis consisted in the development of the following four microglia-like activation states: microglia-like

without any stimuli and collected at day seven (Naive); microglia-like stimulated with 100 mM ATP at day six and collected 24h after (+ATP);

microglia-like stimulated with 100 ng/mL LPS at day eight and collected 48h after (+LPS); Microglia-like stimulated with 100 mMATP at day six

and with 100 ng/mL LPS at day eight, and collected at day ten of culture (+ATP+LPS).

METHOD DETAILS

Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR)

Total RNAwas isolated using theMaxwell RSC simplyRNACells Kit (Promega) and reverse-transcribed to cDNAwith Transcriptor First Strand

cDNA Synthesis Kit (Roche) per the manufacturer’s instructions. qRT-PCR primers were designed with Primer3 software73 (P2RY12: forward –

CCACTCTGCAGGTTGCAATA; reverse – GGCTTGCATTTCTTGTTGGT; CX3CR1: forward – CACAAAGGAGCAGGCATGGAAG; reverse –

CAGGTTCTCTGTAGACACAAGGC; RPL38 (housekeeping): forward – TGGGTGAGAAAGGTCCTGGTC; reverse - CGTCGGGCTGTGAGCA

GGAA). Technical triplicates were run for each sample using LightCycler 480 SYBR Green Mix (Roche) and analyzed with a LightCycler instru-

ment (Roche).

RNA-seq

RNA-seq libraries of monocytes and microglia-like cells were generated and sequenced by Novogene (Cambridge), in 150-bp paired-end,

with the Illumina NovaSeq 6000 platform, using four biological replicates for each group. An average of more than 65 million reads were ob-

tained for all samples.

DNA methylation profiling

Genomic DNA was isolated from cell lysates in Proteinase K using an in-house salting out protocol. We then performed bisulfite conversion

with the EZDNAMethylation-Gold Kit (Zymo Research, Irvine, CA, USA) andDNAmethylation profiling using InfiniumMethylationEPIC Bead-

Chips. These arrays cover 850,000 single-nucleotide positions, accounting for 99% of the annotated RefSeq genes.

Quantification of supernatant cytokines

Supernatants from cell cultures were collected and stored at - 80�C. Before use, frozen samples were thawed at room temperature. Enzyme-

linked immunosorbent assays (ELISA) were performed to detect IL-1b (Invitrogen, Thermo Fisher Scientific).

Flow cytometry

Levels of cell surface proteinmarkers were evaluated by flow cytometry using a BD LSR Fortessa cytometer. Cells were washed once with PBS,

after which Versene, a non-enzymatic dissociation buffer (ThermoFisher), was added for detachment. After the addition of RPMI Medium

1640 + GlutaMAXTM (Gibco, Thermo Fisher) containing 100 units/mL penicillin, 100 mg/mL streptomycin and 10% FBS to the wells, cells

were gently scrapped and collected. After collection, cells were resuspended in the staining buffer (PBS with 4% FBS and 2 mM EDTA). Cells

were incubated at 4�C with the viability dye LIVE/DEAD Fixable Violet (ThermoFisher), following the manufacturer’s protocol. Cell staining

followed a protocol developed in-house consisting of two separate panels of antibodies [Panel 1: CD14 (FITC) (#367116 BioLegend),

CX3CR1 (PE) (#341604 BioLegend), CD11b (PE-Cy5) (#301308 BioLegend), HLA-DR (PE-Cy7) (#307616 BioLegend), CD192 or CCR2 (APC)

(#357208 BioLegend), CD68 (APC-Cy7) (#333822 BioLegend), CD45 (KO) (#B36294 BeckmanCoulter Life Sciences); Panel 2: CD14 (FITC),
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P2RY12 (PE) (#392104 BioLegend), CD11b (PE-Cy5), HLA-DR (PE-Cy7), MERTK (APC) (#367612 BioLegend), CD45 (KO)]. After staining, cells

were fixed in PBS +4% paraformaldehyde and analyzed within the following 24 h. A compensation matrix was developed from single-positive

experiments with beads.Median fluorescence intensity (MFI) valueswere calculated by subtracting the value from the unstained control to the

stained sample.
QUANTIFICATION AND STATISTICAL ANALYSIS

Processing and analysis of DNA methylation data

Methylation data were preprocessed and analyzed using R language with the shinyÉPICo web interface74 base on the minfi75 and limma76

packages. Beta values, comprised between 0 and 1 (0 and 100% ratio of methylated probe intensity/sum of methylated and unmethylated

probe intensities), were used for visualization purposes. M values consist of the log2 ratio of the intensities of the methylated and unmethy-

lated probes and were used for statistical purposes, since beta values are heteroscedastic for highly methylated and unmethylated sites.95

Normalization was performed by the Noob andQuantile methods fromminfi. Probes with a detection significance of p < 0.01 were removed.

CpHs positions were kept in the dataset. Since all subjects were male, methylation sites from X and Y chromosomes were kept, whereas all

positions located at single nucleotide polymorphisms (SNP) loci were removed (minimum allele frequency (MAFs) = 0). Differentially meth-

ylated positions (DMPs) were calculated using an eBayes-moderated t test from limma. Donor was used as covariate. The same preprocessing

and DMP calculation pipeline was applied for the analysis of the DNA methylation data on monocyte-derived macrophages vs. monocytes

obtained fromGSE131177.31 Public DNAmethylation data of primarymicroglia (n= 56) isolated frompostmortembrain samples (GSE191200)

was integrated in the in-house generated data, pre-processed, and normalized all together and batch corrected with the ComBat function

from the sva package.77
Processing and analysis of RNA-seq data

Fastq files were align to the hg19 transcriptome using HISAT278 with default settings, and read counts by gene were assigned with feature-

Counts.79 All the posterior analysis was performed using R language. Differentially expressed genes (DEGs) were calculated usingDESeq2.80

Only genes with more than ten raw counts in at least three samples were included. Donor was used as a covariate in the model. Significant

DEGswere considered for adjustedp value (FDR) < 0.05. Variance Stabilizing Transformation (VST) and normalized count values were used for

representation.

For the integrationwith public RNA-seq, raw count values weremerged and adjusted for dataset using theComBat_seq function of the sva

package.77 Raw count data for primary adult and fetal humanmicroglia, C20 and HMC3 cell lines, CD14 and CD16monocytes, dendritic cells,

monocyte-derived macrophages, monocyte-derived microglia-like cells, and iPSC-derived microglia was collected from Rai et al. (2020).28

This study included data from other public datasets, namely GSE89189 and GSE117829.
Pre-processing, integration, and analysis of single-nucleus (sn) and single-cell (sc)RNA-seq data

We used public snRNA-seq37–40 and single-cell (sc)RNA-seq41 data from brain tissue samples of surgically treated epilepsy patients and au-

topsied individuals. The data were obtained in the count matrix format, at the raw or preprocessed stages. Demultiplexing had already been

done and the sequences had been aligned to the human reference genome (GRCh38), accounting for intronic and exonic regions. The in-

dividual samples in each dataset were concatenated into a single count matrix, and the subsequent processing was performed using the

Seurat (v4.0.2 and v5) R package.81,82 Genes were only considered if detected in at least three nuclei, and nuclei were excluded if presented

unique genes inferior to 200 or superior to 5,000, total UMI counts less than 500 and over 20,000, mitochondrial RNA content superior to 20%

and ribosomal RNA content superior to 5%. The latter was only applied to snRNA-seq datasets. In addition, a list of 105 genes shown to be

influenced by postmortem interval in cerebral cortex were filtered out.96 Potential doublets were estimated using the doubletFinder_v3 func-

tion83 for each individual subject and removed. The individual Seurat objects for each dataset were normalized using SCTransform normal-

ization97 with default 3000 variable genes. Dimensionality reduction was performed with Principal Component Analysis (PCA) and Uniform

Manifold Approximation and Projection (UMAP) accounting for the 30 main principal components (PCs). The annotation for the main cell

types (neurons, oligodendrocytes, OPCs, astrocytes, endothelial cells, and immune cells) in the CNS was performed for each dataset using

the FindNeighbors (30 PCs) and FindClusters (res = 0.05) functions, after which known canonical gene markers were identified within the lists

of cluster markers obtained using FindAllMarkers (min.pct = 0.1 and logfc.threshold = 0.25, test.use =Wilcox). The immune cell clusters were

annotated based on high expression ofCD74, DOCK8, APBB1IP, HLA-DRA, PTPRC, P2RY12, C1QB, CX3CR1, C3, CSF1R andAIF1. Individual

subjects with unproportionally low nuclei number in relation to the other subjects in each dataset were removed before integration. The im-

mune cell clusters from all datasets were integrated using the Seurat v5 pipeline82 adapted for SCTransform normalization. Of note, nomajor

bias was observed between snRNA-seq and scRNA-seq samples. The main 20 PCs and the 3000 most variable features across all datasets

were considered for the FindIntegrationAnchors and IntegrateData functions. Dimensionality reduction was performed using PCA and

UMAP (50 PCs). Clusteringwas performed using FindNeighbors (50 PCs) and FindClusters (res = 0.5). Clusters corresponding tomacrophages

(based on MRC1 expression), T cells (based on CD247 expression) and potential doublets (based on SLC1A2, PLP1 and VCAN expression)

were removed, and the final integrated object with 36,927 microglia nuclei and cells was reclustered using the aforementioned settings, re-

sulting in twelve populations. For the visualization of gene expression, we used the normalized counts of the ‘‘RNA’’ assay. The average

expression of the lists of genes was obtained with AddModuleScore. Reclustering of the DIM subset was once again done with the
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abovementioned settings. To infer on the significance of the differential distribution of DIM subpopulations in epilepsy patients vs. controls

we used the sccomp package.84 The sccomp_glm function calculates the differential composition using a Bayesian method based on sum-

constrained independent Beta-binomial distributions. The results are presented by of a credible interval of the slope (95% confidence) and

FDR. A credible interval of the slope (95% confidence) higher or lower than zero represents expansion or depletion, respectively, of a cluster

for a determined category. A significant differential composition is considered for FDR<0.05. The ‘‘contrasts’’ optionwas used to calculate the

differential composition of epilepsy patients in relation to the control group.

Statistics, data analysis and representation

The R 4.2.0. software was used for statistical analyses. Group means were compared using the paired t-test for numeric variables. Fisher’s

exact test was used to calculate the significance of non-random association between two categorical variables. Heatmaps were developed

with heatmap.2 function of the gplots package,85 for Z score estimation, followed by the Heatmap function of the ComplexHeatmap pack-

age.86 The representation of DNA methylation in relation to genomic coordinates was obtained using the Gviz package.87 Overlaps were

obtained using either the VennDiagram package.88 Transcription factor (TF) motif enrichment for DMPs was obtained using the findMotifs-

Genome.pl function of HOMER (Hypergeometric Optimization of Motif EnRichment),89 considering a window of G250 bp. Gene ontology

(GO) enrichment for DMPs and determination of CpG-gene pairs were performed using the GREAT online tool (http://great.stanford.

edu/public/html),90 with default settings. All EPIC array coordinates were used as background for motif enrichment and GO analyses of

methylation data. Functional enrichment of differential expression data from the RNA-seq was performed using the Discriminant Regulon

Expression Analysis (DoRothEA)91 for TF activity, and the enrichGO function from the clusterProfiler package,92 for GO. DNA methylation

and RNA-seq results were integrated by evaluating the enrichment of the overlap between DEGs and DMP-related genes using a Fisher’s

exact test withinGeneOverlap93 and Gene Set Enrichment Analysis (GSEA) using fgsea.94 The association of the lists of DMPs with chromatin

states was evaluated by enrichment analysis using ChromHMMcategories of monocytes (Roadmap Epigenomics Project). Fisher’s exact tests

were calculated using all the positions annotated in the EPIC array as background.
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