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Simple Summary: Cardiovascular disease is the leading cause of death for people of most ethnicities
in the United States. The human ether-a-go-go-related gene (hERG) potassium channel plays a
pivotal role in cardiac rhythm regulation, and cardiotoxicity associated with hERG inhibition by
drug molecules and environmental chemicals is a major public health concern. An evaluation of the
effect of environmental chemicals on hERG channel function can help inform the potential public
health risks of these compounds. To assess the cardiotoxic effect of diverse drugs and environmental
compounds, the Tox21 federal research program has screened a collection of 9667 chemicals for
inhibitory activity against the hERG channel. A set of molecular descriptors covering physicochemical
and structural properties of chemicals, self-organizing maps, and hierarchical clustering were applied
to characterize the chemicals inhibiting hERG. Machine learning approaches were applied to build
robust statistical models that can predict the probability of any new chemical to cause cardiotoxicity
via this mechanism.

Abstract: Chemical inhibition of the human ether-a -go-go-related gene (hERG) potassium channel
leads to a prolonged QT interval that can contribute to severe cardiotoxicity. The adverse effects of
hERG inhibition are one of the principal causes of drug attrition in clinical and pre-clinical develop-
ment. Preliminary studies have demonstrated that a wide range of environmental chemicals and
toxicants may also inhibit the hERG channel and contribute to the pathophysiology of cardiovascular
(CV) diseases. As part of the US federal Tox21 program, the National Center for Advancing Transla-
tional Science (NCATS) applied a quantitative high throughput screening (qHTS) approach to screen
the Tox21 library of 10,000 compounds (~7871 unique chemicals) at 14 concentrations in triplicate to
identify chemicals perturbing hERG activity in the U2OS cell line thallium flux assay platform. The
qHTS cell-based thallium influx assay provided a robust and reliable dataset to evaluate the ability of
thousands of drugs and environmental chemicals to inhibit hERG channel protein, and the use of
chemical structure-based clustering and chemotype enrichment analysis facilitated the identification
of molecular features that are likely responsible for the observed hERG activity. We employed sev-
eral machine-learning approaches to develop QSAR prediction models for the assessment of hERG
liabilities for drug-like and environmental chemicals. The training set was compiled by integrating
hERG bioactivity data from the ChEMBL database with the Tox21 qHTS thallium flux assay data.
The best results were obtained with the random forest method (~92.6% balanced accuracy). The
data and scripts used to generate hERG prediction models are provided in an open-access format
as key in vitro and in silico tools that can be applied in a translational toxicology pipeline for drug
development and environmental chemical screening.

Keywords: cardiovascular; hERG; Tox21 high-throughput screening; environmental chemicals; in
silico modeling; QSAR models
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1. Introduction

The human ether-a-go-go-related gene (hERG) potassium channel, a member of the
family of voltage-gated potassium channels (KCNH2), plays a pivotal role in cardiac
rhythm regulation, especially in the repolarization of the cardiac action potential. Inhi-
bition of hERG can lead to a prolongation of the QT interval, which, in the worst case,
triggers torsade de pointes arrhythmia, which progresses to ventricular fibrillation and
sudden death [1–3].

In the drug discovery field, predicting hERG inhibition is a pressing issue since
many low molecular weight drug-like molecules are reported to have varying levels of
inhibitory potential [4,5]. In addition, many drugs have been withdrawn from the market
due to cardiotoxicity via high affinity to, and inhibition of, the hERG channel [6]. The
regulatory basis for safety pharmacology studies is defined by the international conference
on harmonization (ICH) guidelines, e.g., the non-clinical guideline S7B [7], and the first
cardiotoxicity guideline for drugs was adopted in 2005 [8]. Today, testing compounds
with off targets, such as the hERG channel, during early drug development has become
routine [9], and the FDA requires almost all new low molecular weight drugs to be assessed
in a “thorough QT” clinical study to determine their potential to prolong the heart-rate-
corrected QT interval [10]. However, most screening methods use animal or ex vivo
modeling, which is distinctly low-throughput, costly, requires relatively large quantities of
chemicals, and presents both ethical and species extrapolation issues. Over the last 20 years,
a large number of in silico methods have been developed [11,12], and the FDA recently
launched a major initiative via the Comprehensive In Vitro Pro-Arrhythmia Assay (CiPA)
program to join such in silico models with in vitro data from engineered human cells and
stem cell-derived cardiomyocytes to provide faster and cheaper approaches to estimate
cardiotoxicity in early drug development steps [13].

Drug-like molecules are not unique in their ability to interact with the hERG target
and produce cardiotoxic effects. It has been reported that some natural products are also
able to inhibit hERG [9], as well as environmental chemicals such as quaternary ammonium
compounds [14]. In fact, a wide range of environmental toxicants may have the potential
to contribute to the pathophysiology of CV diseases [15], but the underlying mechanisms
and consequences of real-world exposures require further investigation. To date, more
than 100,000 chemicals have been introduced into commerce without substantive, or any,
toxicological testing [16]. These synthetic chemicals are widely used in transportation,
manufacturing, agriculture, food, and pharmaceutical industries, and may cause environ-
mental pollution and human exposure via contamination of air, soil, water, and food. An
evaluation of the effect of environmental chemicals on hERG channel function can provide
critical information regarding the potential CV risks of these compounds on public health.

To meet the needs of toxicity testing in the 21st century, the US federal Tox21 re-
search program was established. This partnership, between the Division of the National
Toxicology Program (NTP) at the National Institute of Environmental Health Sciences,
the Environmental Protection Agency (EPA), the National Center for Advancing Trans-
lational Science (NCATS), and the Food and Drug Administration (FDA), focuses on
driving the evolution of toxicology by developing methods to rapidly and efficiently
evaluate the safety of commercial chemicals, pesticides, food additives/contaminants,
personal care product ingredients, and medical products. The goals of Tox21 are to iden-
tify the mechanisms of compound action at the molecular and cellular level, prioritize
chemicals for further toxicological evaluation, and develop useful predictive models of
in vivo biological responses [14,17,18].

To assess the effect of environmental chemicals on hERG channels as part of the Tox21
program, NCATS has screened the Tox21 10K chemical library, a collection of 9667 chemi-
cals representing 7871 unique structures [19], using a cell-based thallium influx assay in a
quantitative high-throughput screening (qHTS) format [14]. Here, we present the results of
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this screening effort, and, utilizing a set of molecular descriptors covering physicochem-
ical and 1D and 2D chemical properties, we applied Self-Organizing Maps (SOM) and
hierarchical clustering to characterize chemicals inhibiting hERG. Machine learning and
deep learning approaches were applied to build statistical quantitative structure-activity
relationship (QSAR) models to predict the probability of a chemical inhibiting hERG in
this thallium flux assay. This tiered clustering and predictive modeling approach will
assist in the detection of environmental chemicals that merit more extensive evaluation
for cardiotoxicity and provides potentially useful structural information for predicting the
ability of new chemical entities to induce hERG inhibition.

2. Materials and Methods
2.1. Cell Culture

The hERG-U2OS cell line was purchased from Codex BioSolution, Inc. (Gaithersburg,
MD, USA). All the cell culture reagents were obtained from Invitrogen (Life Technologies,
Madison, WI, USA). The hERG-U2OS cells were cultured in DMEM with Glutamax contain-
ing 10% fetal bovine serum (FBS), 1% of Non-Essential AA (NEAA), 50 U/mL penicillin,
50 µg/mL streptomycin, and 1 µg/mL puromycin. The cells were maintained at 37 ◦C
under a humidified atmosphere and 5% CO2.

2.2. Thallium Flux Assay

A FluxORTM thallium flux assay was performed in hERG-U2OS cells with stable hERG
expression, as previously described [20]. In this assay, thallium ions are used as surrogates
for K+ ions to monitor the activity of the hERG K+ channel. Astemizole purchased from
Sigma–Aldrich (St. Louis, MO, USA), a known hERG channel blocker, was used as the
positive control to monitor assay performance. The hERG-U2OS cells suspended in culture
medium were dispensed at 1000 cells/well/3µL into 1536-well, black wall/clear-bottom
plates using a Multidrop Combi dispenser (Thermo Fisher, Waltham, MA, USA). After the
assay plates were incubated at 37 ◦C overnight, 3 µL of Loading Buffer provided from
FluxOR II Potassium Ion Channel Assay Kit (Life Technologies, Carlsbad, CA, USA) was
added to each assay well. The assay plates were then incubated at room temperature in the
dark for 1 h, followed by the addition of 23 nL of compound, dissolved in DMSO, DMSO
only, or positive control, to the assay plate. Each compound was tested at 15 concentrations
in three independent runs. After the plates were incubated at room temperature for 10 min,
1 µL of Stimulus Buffer from FluxOR II Potassium Ion Channel Assay Kit was added into
each assay well, and the fluorescence intensity (480 nm excitation/540 nm emission) was
measured continuously for 2 min at 1 s intervals using a Functional Drug Screening System
(FDSS) 7000EX kinetic plate reader (Hamamatsu, Japan).

The Tox21 chemical library contains approximately 10,000 (8947 unique) small molecules,
including pesticides, drugs, industrial chemicals, and food additives commercially sourced
by NCATS, NTP, and the EPA [18]. At the time when the hERG assay was screened, the
library contained 7871 unique compounds with physical samples available for screening.
Multiple criteria were used to select each small molecule, including properties allowing for
high-throughput screens (HTS) (molecular weight, volatility, solubility, logP), commercial
availability, possible and definite environmental hazards, or exposure concerns, and cost. A
diverse group of 88 compounds was selected to be used as an internal control and plated in
duplicate on each library plate to perform reproducibility analysis as well as to determine
positional plate effects. Each compound in the Tox21 10K compound library was subjected
to analytical chemistry quality control (QC), which provides information on the purity and
identity of each sample. The QC results and other annotations for each individual com-
pound were made publicly available at https://tripod.nih.gov/tox21/samples; accessed
on 14 January 2022. The compounds were serially diluted in Dimethylsulfoxide (DMSO) to
15 concentrations in 1536-well plates, covering a concentration range of up to four orders
of magnitude.

https://tripod.nih.gov/tox21/samples
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2.3. Active Chemical Identification

From the Tox21 chemical library, 7871 unique chemicals were tested on FluxOR thal-
lium influx assay in U20S cells in triplicate. Many of these chemicals were sourced inde-
pendently by NTP/EPA/NCATS from different vendors or the same vendor but different
batches; these chemicals have been tested in replicates. Compound concentration-response
data analysis was performed as previously described [21,22]. First, raw plate reads for each
titration point were normalized relative to the positive control compound (Astemizole:
−100%) and DMSO-only wells (0%) as follows:

% Activity = [(Vcompound − VDMSO)/(VDMSO − Vpos)] × 100,

where Vcompound denotes the compound well values, Vpos denotes the median value of
the positive control wells, and VDMSO denotes the median values of the DMSO-only wells.
The dataset was then corrected using the DMSO-only compound plates at the beginning
and end of the compound plate stack by applying an in-house pattern correction algo-
rithm [23]. The half-maximum inhibition values (IC50) for each compound and maximum
response (efficacy) values were obtained by fitting the concentration-response curves of
each compound to a four-parameter Hill equation [24]. Compounds were designated as
Classes 1–4 according to the type of concentration-response curve observed [22]. Curve
classes were further combined with efficacy and converted to a numeric rank such that
more potent and efficacious compounds with higher quality curves were assigned a higher
rank. The curve rank is a value ranging from −9 to +9, with −9 to −1 indicating an
inhibitory ability, 1 to 9 indicating an activating ability, and 0 meaning inactivity [25,26]. In
this study, activity outcomes were defined based on curve ranks as follows: inactive, rank 0;
active antagonist −5 to −9, agonist 9 to 5, inconclusive 4 to −4 [21]. To identify chemicals
with the potential to inhibit the hERG channel, we selected only antagonist chemicals with
curve rank −5 to −9. To increase the confidence of the measurements, only IC50 with
efficacies above 30% were considered. Next, we analyzed the concentration-response curve
for each chemical manually and identified a limited number of chemicals for which the
dose-response curve was not significant. Concentration-response curves for these chemi-
cals are available in Supplementary Material File S1 (in red color). Chemical affinity and
active/inactive classifications are available in Supplementary Material File S2.

2.4. Data Preparation for Molecular Modeling

The chemicals used in the study were represented by a unique SMILES string for-
mat and Chemical Abstract Services Registry Number (CASRN). Structure preparation
and curation followed the best practices in the field [27,28]. The standardization of the
dataset was performed using the following steps: removal of hydrogen atoms, sanitiza-
tion, removal of any metal ions, stereochemistry check, desolvation, and sieving of salt
fragments. Mixtures were excluded in an early step. From the 7871 unique chemicals
tested, 7186 chemicals passed through the structure curation process and were used for
clustering and QSAR modeling.

From each curated structure, a set of 1D and 2D descriptors were computed using
the RDKit package (v. 2020_09_5) in Python 3.7 (https://www.rdkit.org/; accessed on
20 January 2022). An additional set of physicochemical descriptors were predicted on each
chemical using the OPERA models (v. 2.7) [29].

Only informative and non-correlated descriptors were selected from the initial set
of descriptors. First, descriptors having a null variance or the same value for more than
90% of the chemicals were removed. Subsequently, for the remaining descriptors, the
pairwise Pearson’s correlation coefficient (ρ) was computed. These were clustered based
on ρ > 0.9, and only one descriptor from each cluster was randomly selected for further
analysis. Molecular descriptor computation was performed in Python 3.7.

https://www.rdkit.org/
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2.5. Chemical Category Assignments

To further examine patterns of chemical activity based on the assay outcomes, we
assigned a descriptive category type to each chemical based on information obtained
from the US EPA Consumer Products Database [30], the Toxic Substances Control Act
chemical list (TSCA), and approved drugs lists are available in the EPA chemical dashboard
(https://comptox.epa.gov/dashboard; accessed on 20 January 2022).

2.6. Structural Clustering

The Tox21 chemical library was clustered into 225 clusters based solely on structural
similarity using the selected descriptors and SOM algorithm [31]. The number of clusters
was chosen to achieve a balance between cluster number and the number of chemicals by
cluster, in accordance with previous studies [32,33]. Hierarchical clustering was performed
based on a Euclidian distance matrix and a Ward linkage. Clustering was developed using
the R (v. 4.1.0) libraries kohonen (v. 3.0.10), factoextra (v. 3.0.2), ggtree (v. 2.4.1), ape (v. 5.5),
and phangorm (v. 2.7.1).

2.7. Chemotype Enrichment Analysis

Both active and inactive chemicals were described using structural chemotypes for
further exploration and characterization of assay activity patterns. We examined the
chemotypes represented in the top active drug chemicals and other environmental chemi-
cal categories with the ChemoTyper application (available at: https://chemotyper.org/;
accessed on 20 January 2022), developed by Molecular Networks GmbH and Altamira
LLC [34] and compared those trends relative to inactive chemicals to identify structural
feature enrichment. The search included both generic structural fragments and Ashby
Tennant structural alerts for DNA reactivity [35,36]. One-tailed two-proportion Z-tests
were conducted using the continuity correction to compare the proportion of each chemo-
type (n = 723) in the active chemicals (n= 549) with the proportion in inactive chemicals
(n = 6627) to identify significantly enriched chemotypes in the active chemical space.

2.8. QSAR Modeling

Classification QSAR models were developed to discriminate active and inactive
chemicals based on (a) the NCATS thallium flux assay and (b) an expanded dataset,
including curated results from the ChEMBL database. The QSAR modeling workflow
was conducted according to the best practices in the fields [37–39]; details are provided
in subsequent sections.

2.9. Machine Learning

Five machine learning-based approaches were used to generate QSAR classification
models to predict chemical hERG inhibition potential: (i) classification and regression
tree (CART) [40]; (ii) neural network (NN) [41]; (iii) support vector machine (SVM) with
a linear, radial, and sigmoid kernel [42]; (iv) random forests (RF) [43]; and (v) linear
discriminant analysis (LDA) based on Fisher’s linear discriminant methods [44]. These
five approaches have been chosen to cover a large set of methods, including linear and
non-linear approaches. QSAR models were built using R (4.1.0) packages: pls (v. 2.8-0),
random forest (v. 4.6-14), rpart (v. 3.1.0), e1071 (v. 1.7-8), nnet (v. 7.3-16), and caret
(v. 6.0-88). In addition to the classic machine learning approaches, a classification deep
neural network (DNN) model was developed [45]. The models were built using Keras
2.3.1 (2020) python deep learning library with TensorFlow 2.1.0 (2020) as the background.
Hyperparameters were optimized using a grid optimization on 10-fold cross-validation.
Supplementary Information Table S1 reports grids of optimization and parameters and
hyperparameters chosen.

A similar protocol to that applied in [32] was used. Briefly, each model was tuned
via a grid optimization as appropriate for the machine learning algorithm, and parame-
ters/models were chosen to maximize 10-fold cross-validation performance using Matthew’s

https://comptox.epa.gov/dashboard
https://chemotyper.org/
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correlation coefficient (MCC). The MCC criterion is considered optimal to analyze the QSAR
model performance, as it represents the correlation between the observed and predicted
classification with value ranges from −1 (random prediction) to +1 (perfect prediction) and
is a statistical metric that is least affected by the imbalance in the dataset.

2.10. Under-Sampling Protocol

For the NCATS assay results, considering the unbalanced dataset, i.e., more inactive
chemicals (6598 inactive and 549 active chemicals), under-sampling was applied via random
selection of inactive chemicals to yield a ratio of 75% inactive and 25% active chemicals.
This under-sampling was applied to the training set (covering 85% of the dataset), where
each model was built five times with a different inactive set (1556 inactive chemicals
and 467 active chemicals) to cover the full training set of chemicals. Model performance
was reported as mean with standard deviation on the five repetitions for the training set,
cross-validation, and external (hold-out) test set (the remaining 15% of the data).

2.11. Evaluation of the Classification Model Performance

The generated models were evaluated for their performance by calculating the num-
ber of true positives (TP), true negatives (TN), false positives (FP), and false negatives
(FN). TP is the number of hERG antagonists that were predicted as antagonists by the
generated models, TN is the number of inactive chemicals that were predicted as inactive,
FP represents the inactive chemicals predicted as hERG antagonists, and FN represents
the number of hERG antagonists predicted incorrectly as inactive molecules. From those
numbers, performance was computed using sensitivity (SE), specificity (SP), the overall
prediction accuracy (Q), the balanced accuracy (Qb, average of sensitivity and specificity),
and the Matthews’s correlation coefficient (MCC):

SE = TP/(TP + FN)

SP = TN/(TN + FP)

Q = (TP + TN)/(TP + TN + FP + FN)

Qb = (SE + SP)/2

MCC = (TP.TN − FP. FN)/
√

((TP + FP) (TP + FN)(TN + FP)(TN + FN))

2.12. Dataset Enrichment

To further develop and test the QSAR models, the Tox21 dataset was enriched
using the ChEMBL database (Version 27) [46], processed using a similar approach as that
applied in [47], Figure 1. First, activities on the hERG target (ChEMBL240) were extracted
from the database. Only IC50, Ki, and EC50, with exact activity values, were considered.
In the case of multiple activity values for one chemical, activities from patch-clamp
assays, considered as the golden standard for hERG studies [48,49], were prioritized.
If multiple patch-clamp activity values were still available for one chemical, activities
were averaged, or the chemical was removed in case of more than one log10 difference
between activity values. Then, chemical structures were prepared in a QSAR-ready
format, see previous section. Chemicals without QSAR-ready structures were removed,
and in the case of duplicates, only one structure was chosen randomly. Finally, only
active chemicals with an activity ≤ 1 µM, i.e., with pAffinity (−log10(affinity)) ≥ 6 [50],
were retained and used to enrich the Tox21 chemical dataset. Only 48 active chemicals
were found to be overlapping in both sets. The coefficient of correlation between the
−log10 activities is equal to 0.65 (or 0.85) if only patch-clamp assays in ChEMBL are
considered), Figure S1.
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2.13. Validation Sets

A first test set was built from the initial chemical set using a random selection of
15% of all data, taking into consideration the balance between active and inactive chem-
icals. Next, two external validation test sets were extracted from the literature. The first
was a qHTS dataset generated using the comparable protocol, U2OS cell lines using the
FluxORTM thallium flux approach, and the same NCATS laboratory, previously applied
to identify small molecule inhibitors of the human hERG channel activity (PubChem ID:
AID588834) [14]. It included 5381 substances, where 3894 were shared with the dataset
analyzed here. Only non-overlapping chemicals with the Tox21 chemical library were used
for the external test set. For the second test set, we performed a literature review using the
SysRev platform (https://sysrev.com/u/2376/p/35538; accessed on 20 January 2022). The
search strategy included the terms (“herg” or “ether-à-go-go-related potassium channel”
or “KCNH”) and “inhibition” in the PubMed database. The search returned 915 articles,
which were screened by title/abstract screening using a Sysrev data extraction form to
determine inclusion/exclusion and the affinity of the tested agents for hERG inhibition
(https://sysrev.com/; accessed on 20 January 2022).

2.14. Applicability Domain (AD)

For each chemical, the model applicability domain was determined using a Z-score
computed from the distribution of the Euclidian distances between the centroid of the
principal component analysis (PCA) from the training set. The PCA was computed on
the Tox21 chemical library using the selected descriptors set, see Figure 2 panel A. The
PCA centroid was computed in n dimensions covering at least 80% of the descriptor
variability. Next, a distribution of all distances between chemicals and the centroid was
used to compute a Z-score for each chemical using the formula:

Zi =
(
xi − X

)
/S

where Zi is the Z-score for chemical i, xi is the Euclidean distance between chemical i and
the centroid, X is the average of all Euclidean distances to the centroid, and S is the standard
deviation of all Euclidian distances to the centroid.

https://sysrev.com/u/2376/p/35538
https://sysrev.com/
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Initial Outcome 

Curve Rank 
(−9 to −5) 

Efficacy (> 30%) Manual Activity 
Curve Check 

Chemical 
Standardization 

Count of active chemicals 896 655 655 647 549 7.78% 

Figure 2. (A) PCA plot in the two first dimensions computed using the filtered set of descriptors on
the training set. Blue represents chemicals in the training set, and green is the internal test set. PCA
covered, in the first two dimensions, 28.3% of the descriptor variability. (B,C) Z-score distributions
for the training and internal test sets, respectively.

Figure 2, panels B and C, show the Z-score distribution for the training and internal test
sets. Distributions were remarkably similar, with an average Z-score equal to 0.71 ± 0.73
for the training set and 0.71 ± 0.74 for the internal test set, which demonstrates good
segregation of the chemicals between the two sets. Roughly, a chemical with a Z-score < 2
was fully inside the AD, a Z-score between 2 and 4 was at the border of the AD, and a
Z-score > 4 was out of the AD.

All scripts used for this project were developed using python 3.7 and R > 3.6 and
are available on GitHub: (https://github.com/ABorrel/cardiotox_hERG; accessed on
20 January 2022) for data mining and clustering, and (https://github.com/ABorrel/QSAR-
QSPR; accessed on 20 January 2022) for QSAR modeling. Supplementary Material File
S3 contains descriptor sets for the 7180 chemicals used in the modeling. Supplementary
Material File S4 contains the activity of the enriched dataset. Supplementary Material
File S5 includes all descriptor sets used for both the Tox21 tested chemical library and the
enriched set.

3. Results
3.1. Chemical Activity for hERG Inhibition

Of the 7871 unique chemicals evaluated from the Tox21 10K chemical library,
896 chemicals (11.38%) inhibited hERG channel activity, referred to as antagonists. Eighty-four
percent of the tested chemicals (6616) did not alter hERG activity, and 4.3% (339 chemicals)
exhibited responses that were considered inconclusive because of incomplete responses or
missing signals. Table 1 summarizes the number of active chemicals filtered through each
step. In the end, 549 antagonist chemicals representing 7.78% of the Tox21 chemical library
were considered reliable hERG inhibitors in this assay and utilized for structural analysis.
The average IC50 was equal to 7.59 µM ± 5.64 µM. The distribution of the pIC50 is shown
in Figure 3. Peak activity was observed around pIC50 (−log10(IC50)) equal to 4.8, which is
equivalent to an IC50 equal to 15.85 µM. In Supplementary Material File S6, active chemicals
are presented, ranked by activity and class.

3.2. Active Chemical Categories

To characterize active chemicals by substance type and use case, the Tox21 10K chem-
ical library was classified using the US EPA consumer products database [30], the Toxic
Substances Control Act chemical list (TSCA), and lists of approved drugs available via
the EPA chemical dashboard (https://comptox.epa.gov/dashboard; accessed on 20 Jan-
uary 2022). Based on these resources, 4950 of the 8305 unique chemicals included in the
Tox21 chemical library could be classified into 80 classes. The most populated classes of
active chemicals are represented in Supplemental Figure S2, Panel A. From the 549 active

https://github.com/ABorrel/cardiotox_hERG
https://github.com/ABorrel/QSAR-QSPR
https://github.com/ABorrel/QSAR-QSPR
https://comptox.epa.gov/dashboard
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chemicals, we were able to classify 216 chemicals, Supplemental Figure S2 Panel B. Most
of the active chemicals are drug chemicals (125/549), followed by toxic substances in the
TSCA (65/549) list, and pesticides (50/549). Interestingly, five UV absorber chemicals were
found to be active in this assay. However, there is an important risk that those chemicals
are interferent chemicals because they absorb light (around 400 nm) at a wavelength close
to the fluorescence technology measurements (480 nm).

Table 1. Assay results summary: number of active antagonist chemicals sequentially selected in
each step.

Filtering Step
% of Active
ChemicalsFiltering Step

Applied Sequentially
Initial

Outcome
Curve Rank
(−9 to −5)

Efficacy
(>30%)

Manual Activity
Curve Check Chemical Standardization

Count of active chemicals 896 655 655 647 549 7.78%
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3.3. Most Active Chemicals

The 896 compounds that decreased hERG channel activity had IC50 values rang-
ing from 0.075 µM to 72 µM, with 65 chemicals having an IC50 < 1 µM. The selective
dopamine reuptake inhibitor GBR 12909 dihydrochloride (Vanoxerine) was the most po-
tent compound, with an IC50 of 0.075 µM. Other potent compounds included Eliprodil
(IC50 = 0.09 µM), Amperozide hydrochloride (IC50 = 0.91 µM), Lidoflazine (IC50 = 0.11 µM),
Dofetilide IC50 = 0.13 µM), Ritanserin (IC50 = 0.18 µM), Astemizole (IC50 = 0.22 µM), Ter-
fenadine (IC50 = 0.27 µM), Cisapride (IC50 = 0.32 µM), Domperidone (IC50 = 0.32 µM),
Haloperidol (IC50 = 0.57 µM), Bepridil (IC50 = 0.55 µM), Loperamide (IC50 = 0.62 µM), and
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Amiodarone (IC50 = 0.64 µM). In the literature, all of these drugs are reported to cause
hERG inhibition [51–53]. However, very few environmental chemicals were in the list of
chemicals with IC50 < 1 µM. The concentration response curve of these chemicals is pre-
sented in Supplementary Material File S1 (blue color). The 65 chemicals with IC50 < 1 µM
are listed in Supplementary Material File S2.

3.4. Assay Dependent Potency Shift

A subset of chemicals in our dataset had both thallium flux assay results and patch-
clamp assay data reported in ChEMBL (Figure S3). Figure 4 depicts a distribution plot of
pIC50 values for 28 chemicals with both assay types, demonstrating a clear linear relation-
ship between both assays. We fit a regression model with this limited set of chemicals to
characterize the relationship between the patch-clamp and thallium flux assay outcomes
(Figure 4). The model fit is below:

Patch Clamp = −0.1953 + (1.17 ∗ Thallium Flux)
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assays for a small subset of chemicals. The regression line and the non-parametric regression line are
represented in green and red colors, respectively.

The values of R-squared and adjusted R-squared were 0.5256 and 0.5074, respectively.
The p-value was 1.279 × 10−5. From these results, we confirm a significant linear relation-
ship, showing a potency shift from the thallium flux assay (less potent) to the patch-clamp
(more potent). This linear relationship can be used as an adjustment factor when applied
to the pIC50 obtained from the Thallium flux assay to predict the activity of chemicals in
patch-clamp assays.
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3.5. Structural Activity Patterns

The 7187 unique chemicals from the Tox21 10K library were clustered using a SOM
approach from a set of non-correlated and informative 1D-2D structural descriptors. Chem-
icals were clustered in 225 clusters to optimize segregation. The SOM with all chemicals
from the set is presented in Figure 5 panel A. On average, each cluster was composed of
36 ± 14 chemicals. Cluster 91 had the minimum number with four chemicals, and Cluster
39 had the maximum number with 67 chemicals. In Figure 5, panel B, the structural clusters
are colored based on the number of active chemicals. The hERG inhibitors are largely
grouped into one corner of the SOM map, demonstrating that these chemicals share some
structural patterns and motivating the construction of QSAR models.
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in total, colored based on the number of chemicals included in each cluster (A) for all Tox21 structure-
curated chemicals, and (B) on active chemicals (7.78%) in the hERG inhibition assay. The serial
numbers of clusters are given inside the circles (Cluster 1-Cluster 225).

In Figure 6, the same SOM map is colored using the percentage of active chem-
icals by cluster for drugs (A), pesticides (B), and TSCA chemicals (C). In Figure 6A,
the structural clusters 14 and 74 are highlighted because they are enriched in hERG
inhibitors that are drugs. Cluster 74 includes 64% of the drugs, such as Droperidol
(1. 548-73-2), Raloxifene (2. 84449-90-1), or Sertindole (3. 106516-24-9). Structurally,
those chemicals include a benzimidazole group ramified with oxygen groups, such as
ketones or alcohols, or with chlorine-derived groups. Adjacently in the SOM, similar
sub-structures were found in Cluster 59, which was also enriched with drugs that are
hERG inhibitors. Cluster 14 includes drugs, such as Cyproheptadine (4. 129-03-3),
Tamoxifen (5. 10540-29-1), and Butenafine (6. 101828-21-1). Structurally, chemicals in
this cluster include tertiary/secondary amines and have substitutions on nitrogen with
bulky groups, as well as aromatic ring substructures.

Clusters 16 and 223 are the most enriched in TSCA chemicals active for hERG in-
hibition. In Cluster 223, most of the chemicals included a long aliphatic chain ramified
with a tertiary amine, e.g., Dodecyltrimethylammonium chloride (7. 112-00-5) and Ben-
zyldimethyldodecylammonium chloride (8. 139-07-1). Chemicals can also include a sec-
ondary amine, for example, N-Methyldioctylamine (9. 4455-26-9). These chemicals are
mostly used as lubricants in the hydraulic manufacturing field. Cluster 16 includes bromine
chemicals, such as Tris(2,3-dibromopropyl) phosphate (10. 126-72-7) or Hexabromocyclodo-
decane (11. 3194-55-6), used as flame retardants or thermal insulators.
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colored in green, are drugs clustered on the top of the tree, while most of the pesticides 
are in the bottom. The ranking of all active chemicals is available in Supplementary Ma-
terial B. 

Figure 6. Structure-based SOM on the structure-curated Tox21 chemicals, including 225 clusters in
total, color scales represent (A) percentage of active chemical in drug class, (B) percentage of active
chemical in TSCA class, and (C) percentage of active chemical in pesticide class. Examples of chemical
structures for enriched clusters are displayed. Cluster 74: 1. 548-73-2, 2. 84449-90-1, 3. 106516-24-9;
cluster 14: 4. 129-03-3, 5. 10540-29-1, 6. 101828-21-1; Cluster 223: 7. 112-00-5, 8. 1119-94-4, 9. 4455-26-9;
Cluster 16: 10. 126-72-7, 11. 3194-55-6; Cluster 148: 12. 584-79-2, 13. 7696-12-0, 14. 23031-36-913;
Cluster 33: 15. 19666-30-9, 16. 119446-68-3; and Cluster 32: 17. 115-32-2 and 18. 2003-17-5.

Pesticide antagonists for hERG are mostly found in clusters 148, 32, and 33. Clus-
ter 148 contains pyrethroids, characterized by a pyran core, ramified with an ether
group, such as Allethrin (12. 584-79-2), Tetramethrin (13. 7696-12-0), and prallethrin
(14. 23031-36-9). Cluster 33 includes mostly chemicals ramified with benzo chlorine
groups, e.g., Oxadiazon (15. 19666-30-9) and Difenoconazole (16. 2003-17-5). Finally,
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Cluster 32 is populated with organochlorine pesticides such as Dicofol, a DDT derivative
(17. 115-32-2), or Tri-alate (18. 2303-17-5).

Hierarchical clustering using Euclidean distance and Ward linkage shows that active
chemicals in the same class are clustered together (Figure 7). The most active chemicals,
colored in green, are drugs clustered on the top of the tree, while most of the pesticides
are in the bottom. The ranking of all active chemicals is available in Supplementary
Material File S2.
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Figure 7. Hierarchical clustering of antagonist chemicals for hERG. Hierarchical clustering is applied
using Euclidean distance computed from a set of non-redundant molecular descriptors and Ward
linkage, see Methods. Potency in terms of pIC50 (M) for each chemical is represented using a
continuous color scale from red to green and chemical classes are displayed via a discrete color scale.

3.6. Chemotype Enrichment

We identified chemotypes, or structural features, that are present at significantly
higher proportions in the active set relative to the inactive chemicals. The 106 en-
riched chemotypes are listed in Supplementary Material File S7. We noted that multiple
heterocyclic ring-like chemotypes were included in the drug chemicals, for instance,
hetero_[6]_N_piperazine and hetero_[6]_N_piperidine. Additionally, drug chemicals
also demonstrated the presence of small-chain chemotypes, such as aromaticAlkane_Ph-
C1_acyclic_generic and aromaticAlkane_Ph-C1_acyclic_connect_noDblBd. The enriched
chemotypes in the drug class also included multiple CN bond chemotypes, such as
CN_amine_ter-N_aliphatic. Many environmental chemicals demonstrated the presence
of quaternary ammonium bond-like chemotypes, including quaternary ammonium
chemicals (QAC), domiphen bromide, didecyldimethylammonium chloride, and ben-
zyldimethyldodecylammonium chloride. Our data are consistent with a previous study
identifying QACs as potent inhibitors of hERG potassium channels [14]. These chemi-
cals also contained bulky alkyl chain-like chemotypes, such as alkaneLinear_hexyl_C6,
alkaneLinear_octyl_C8, and alkaneLinear_decyl_C10, relative to pharmaceuticals. The
details and definitions of these chemotypes can be found in Supplementary Material File
S7. Figure 8 shows the enriched chemotypes in active chemicals with examples from
both drug and environmental chemical classes.
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Figure 8. Active chemicals enriched for specific chemotypes. One-tailed two-proportion Z-tests were
conducted with the continuity correction of the 729 chemotypes to compare the proportion of each
chemotype in the active chemicals and inactive chemicals. Few of the 106 enriched chemotypes in
active chemicals are shown here with the example chemicals, color-coded to link the chemotype
name with the example chemical structure. Purple: chain, blue: bond, and red: rings.

3.7. QSAR Classification Models for hERG Inhibition Using the Tox21 FluxOR Thallium Influx
Assay Dataset

It is evident from the above unsupervised statistical analyses that chemicals exhibiting
hERG inhibition have common structural properties. Based on selected structural and
physico-chemical molecular descriptors, QSAR models were developed to predict chemical
hERG inhibition potential. We applied multiple linear and non-linear machine learning
algorithms, including decision trees and deep learning, see Methods, to build classification
models. To handle the imbalanced set, i.e., only 7.8% active chemicals, an under-sampling
approach was used, and each model was a combination of five models built with 467 active
and 1556 inactive chemicals randomly chosen from 85% of the dataset used for the training.
QSAR performances are reported in Table 2 for 10-fold cross-validation (CV) on the training
sets and on the test set (15% of the dataset).

The evaluation of performance criteria revealed that RF, SVM-radial, and DNN
models outperformed other models. The MCCs obtained for the RF models were 0.657
± 0.014 and 0.557 ± 0.019 for the 10-fold CV of the full training set and the internal test
set, respectively. These results confirm the reliability of the model and dispel concerns
of overfitting, despite the relatively high performance of the undersampled training
set (0.999 ± 0.005). Models based on DNN and SVM-radial exhibit close performance
with CV MCCs of 0.659 ± 0.021 and 0.685 ± 0.016, and test set MCCs of 0.517 ± 0.041
and 0.563 ± 0.02, respectively. SVM models with a radial kernel outperformed other
SVM models with linear or sigmoid kernels (CV MCC of 0.629 ± 0.013 and 0.587 ± 0.009,
respectively). The CART, NN, and LDA models were weaker, with CV MCCs equal to
0.561 ± 0.019, 0.526 ± 0.057, and 0.629 ± 0.008.
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Table 2. Performance of QSAR classification models based on the Tox21 dataset. Each model building
process was repeated 5 times, each with distinct data splitting. The mean and standard deviation
of each performance criterion are reported: Q, accuracy; Qb, balanced accuracy; Sp, specificity; Se,
sensitivity; and MCC, Matthew coefficient correlation.

10-Fold Cross-Validation (for five Undersampled Training Set, n = 2023)
Q Qb Sp Se MCC

CART 0.88 (+/−0.005) 0.757 (+/−0.011) 0.948 (+/−0.003) 0.566 (+/−0.018) 0.561 (+/−0.019)
NN 0.868 (+/−0.008) 0.75 (+/−0.058) 0.933 (+/−0.013) 0.566 (+/−0.103) 0.526 (+/−0.057)

DNN 0.88 (+/−0.005) 0.824 (+/−0.017) 0.927 (+/−0.007) 0.721 (+/−0.039) 0.659 (+/−0.021)
SVM-linear 0.896 (+/−0.004) 0.803 (+/−0.008) 0.947 (+/−0.004) 0.658 (+/−0.011) 0.629 (+/−0.013)
SVM-radial 0.913 (+/−0.004) 0.82 (+/−0.009) 0.964 (+/−0.002) 0.676 (+/−0.016) 0.685 (+/−0.016)

SVM-sigmoid 0.89 (+/−0.002) 0.758 (+/−0.007) 0.962 (+/−0.002) 0.553 (+/−0.012) 0.587 (+/−0.009)
RF 0.907 (+/−0.004) 0.795 (+/−0.006) 0.969 (+/−0.003) 0.621 (+/−0.009) 0.657 (+/−0.014)

LDA 0.895 (+/−0.002) 0.805 (+/−0.004) 0.944 (+/−0.002) 0.666 (+/−0.005) 0.629 (+/−0.008)

Fitting (for five undersampled training set, n = 2023)
Q Qb Sp Se MCC

CART 0.914 (+/−0.002) 0.86 (+/−0.011) 0.961 (+/−0.005) 0.759 (+/−0.017) 0.751 (+/−0.005)
NN 0.895 (+/−0.01) 0.852 (+/−0.029) 0.931 (+/−0.016) 0.773 (+/−0.041) 0.704 (+/−0.028)

DNN 0.983 (+/−0.005) 0.975 (+/−0.005) 0.927 (+/−0.007) 0.962 (+/−0.014) 0.951 (+/−0.014)
SVM-linear 0.921 (+/−0.004) 0.881 (+/−0.008) 0.955 (+/−0.004) 0.806 (+/−0.012) 0.773 (+/−0.011)
SVM-radial 0.972 (+/−0.008) 0.958 (+/−0.015) 0.983 (+/−0.002) 0.933 (+/−0.028) 0.92 (+/−0.023)

SVM-sigmoid 0.884 (+/−0.004) 0.805 (+/−0.008) 0.952 (+/−0.005) 0.658 (+/−0.011) 0.657 (+/−0.011)
RF 0.997(+/−0.002) 0.996 (+/−0.004) 0.998 (+/−0.001) 0.993 (+/−0.006) 0.99 (+/−0.005)

LDA 0.902 (+/−0.005) 0.849 (+/−0.006) 0.948 (+/−0.005) 0.749 (+/−0.006) 0.718 (+/−0.013)

External validation (test set, n = 1072)
Q Qb Sp Se MCC

CART 0.898 (+/−0.005) 0.775 (+/−0.016) 0.92 (+/−0.006) 0.629 (+/−0.026) 0.447 (+/−0.016)
NN 0.893 (+/−0.008) 0.791 (+/−0.019) 0.911 (+/−0.009) 0.671 (+/−0.028) 0.456 (+/−0.021)

DNN 0.913 (+/−0.007) 0.812 (+/−0.027) 0.931 (+/−0.006) 0.693 (+/−0.052) 0.517 (+/−0.041)
SVM-linear 0.906 (+/−0.005) 0.802 (+/−0.012) 0.925 (+/−0.006) 0.678 (+/−0.017) 0.492 (+/−0.014)
SVM-radial 0.929 (+/−0.004) 0.818 (+/−0.011) 0.948 (+/−0.003) 0.688 (+/−0.018) 0.563 (+/−0.02)

SVM-sigmoid 0.92 (+/−0.004) 0.784 (+/−0.005) 0.944 (+/−0.004) 0.624 (+/−0.005) 0.505 (+/−0.012)
RF 0.928 (+/−0.004) 0.814 (+/−0.021) 0.948 (+/−0.005) 0.68 (+/−0.037) 0.557 (+/−0.019)

LDA 0.909 (+/−0.007) 0.795 (+/−0.015) 0.93 (+/−0.006) 0.659 (+/−0.024) 0.491 (+/−0.028)

3.8. QSAR Classification Models for hERG Inhibition Using the Enriched Dataset

The Tox21 chemical set was enriched with identified hERG inhibitors from ChEMBL
(v.27). The final set includes 8311 chemicals with 1970 active chemicals and 6341 inactive
chemicals. Figure 9 shows the projection of the active chemicals from ChEMBL onto a
principal component analysis (PCA) plot based on the Tox21 10K chemical library, where
active chemicals from both source databases clustered together (top left quadrant), as did
inactive chemicals (bottom right). It is important to note that most of the chemicals are
drugs or drug-like molecules in accordance with the database composition [46].

The same QSAR protocol was applied on this dataset, except that undersampling
was not performed due to the high range of active chemicals in the set (24%). Model
performance is reported in Table 3, and most algorithms demonstrated elevated statistics
in comparison to the previous models. The average 10-fold CV accuracy for this dataset
was 0.935, while that of the QSAR models developed using the Tox21 10K chemical library
was only 0.891. The performance discrepancy between machine learning approaches was
less than the QSAR models built using the non-enriched chemical set. As previously, RF
performed slightly better than other models with a CV MCC of 0.863 and the tested MCC
of 0.857. SVM with a radial kernel performed better (CV MCC of 0.870) than other SVM
models using a linear and sigmoid kernel (CV MCC of 0.847 and 0.831, respectively). CART
and NN machine learning remained weaker than other models with CV MCC equal to



Biology 2022, 11, 209 16 of 26

0.684 and 0.779, respectively. LDA and DNN performed well with CV MCC equal to 0.828
and 0.836.
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3.9. Significant Molecular Descriptors

One advantage of the RF model is the ability to see which descriptors have the most
influence on model performance. The top 10 most important descriptors in RF models
built using the Tox21 chemical library and the enriched set are shown in Figure 10, with
details in Table 4. Using the original chemical set, Panel A, values are reported for each
of the five sub-models built with the undersampling approach. Here, a balance between
physico-chemical and structural descriptors achieved significant segregation between
active and inactive chemicals and allowed profiling of the active chemicals. Chemicals
predicted as hERG inhibitors were bigger than inactive chemicals, as indicated by the
number of heavy atoms (average of 25 vs. 16 for inactive), increased aromatic bond count,
i.e., ~16 for active and only ~6 for inactive chemicals, and burden descriptors (bcut,
directly correlated with the chemical mass). Partition coefficient-related descriptors
(LogP_pred, MolLogP, and MolLogP2) were higher for active chemicals, as were the
charge-type descriptors (QNss and QNmin), indicating that active chemicals included
more charged nitrogen atoms.

3.10. External Validation of the QSAR Models

To further check model robustness and practical applicability, additional external
chemical test sets were predicted (Table 5), beginning with PubChem (ID: AID588834). This
dataset was developed using a similar assay protocol applied to the Tox21 chemicals library.
An overlap of 3894 chemicals was found in both sets. The correlation between pIC50s on
the active chemicals found in both sets was 0.86 (Supplemental Figure S4), confirming that
these datasets, generated at different points in time using similar protocols, gave close
results for overlapping compounds.
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Table 3. Performance of generated QSAR classification models built using the enriched set. Q, accuracy;
Qb, balanced accuracy; Sp, specificity; Se, sensitivity; and MCC, Matthew coefficient correlation.

10-Fold Cross-Validation (Full Training Set, n = 7064)
Q Qb Sp Se MCC

CART 0.921 0.887 0.822 0.951 0.779
NN 0.890 0.826 0.707 0.947 0.684

DNN 0.941 0.917 0.962 0.873 0.836
SVM-linear 0.945 0.924 0.885 0.963 0.847
SVM-radial 0.953 0.932 0.893 0.972 0.870

SVM-sigmoid 0.939 0.916 0.873 0.959 0.831
RF 0.951 0.925 0.875 0.975 0.863

LDA 0.938 0.911 0.861 0.962 0.828

Fitting (training set, n = 7064)
Q Qb Sp Se MCC

CART 0.930 0.900 0.845 0.956 0.805
NN 0.935 0.922 0.897 0.947 0.826

DNN 0.930 0.984 0.994 0.974 0.971
SVM-linear 0.952 0.932 0.895 0.970 0.867
SVM-radial 0.981 0.970 0.951 0.990 0.946

SVM-sigmoid 0.941 0.920 0.881 0.960 0.838
RF 0.999 0.998 0.996 0.999 0.997

LDA 0.939 0.913 0.863 0.963 0.831

External validation (test set, n = 1247)
Q Qb Sp Se MCC

CART 0.929 0.904 0.858 0.951 0.804
NN 0.929 0.917 0.895 0.939 0.810

DNN 0.933 0.909 0.956 0.861 0.816
SVM-linear 0.949 0.926 0.882 0.970 0.857
SVM-radial 0.958 0.937 0.895 0.978 0.884

SVM-sigmoid 0.942 0.924 0.889 0.959 0.842
RF 0.949 0.926 0.882 0.970 0.857

LDA 0.937 0.906 0.848 0.964 0.823

Biology 2022, 11, x FOR PEER REVIEW 17 of 26 
 

 

CART 0.930 0.900 0.845 0.956 0.805 
NN 0.935 0.922 0.897 0.947 0.826 

DNN 0.930 0.984 0.994 0.974 0.971 
SVM-linear 0.952 0.932 0.895 0.970 0.867 
SVM-radial 0.981 0.970 0.951 0.990 0.946 

SVM-sigmoid 0.941 0.920 0.881 0.960 0.838 
RF 0.999 0.998 0.996 0.999 0.997 

LDA 0.939 0.913 0.863 0.963 0.831 
External validation (test set, n = 1247) 

 Q Qb Sp Se MCC 
CART 0.929 0.904 0.858 0.951 0.804 

NN 0.929 0.917 0.895 0.939 0.810 
DNN 0.933 0.909 0.956 0.861 0.816 

SVM-linear 0.949 0.926 0.882 0.970 0.857 
SVM-radial 0.958 0.937 0.895 0.978 0.884 

SVM-sigmoid 0.942 0.924 0.889 0.959 0.842 
RF 0.949 0.926 0.882 0.970 0.857 

LDA 0.937 0.906 0.848 0.964 0.823 

3.9. Significant Molecular Descriptors 
One advantage of the RF model is the ability to see which descriptors have the most 

influence on model performance. The top 10 most important descriptors in RF models 
built using the Tox21 chemical library and the enriched set are shown in Figure 10, with 
details in Table 4. Using the original chemical set, Panel A, values are reported for each of 
the five sub-models built with the undersampling approach. Here, a balance between 
physico-chemical and structural descriptors achieved significant segregation between ac-
tive and inactive chemicals and allowed profiling of the active chemicals. Chemicals pre-
dicted as hERG inhibitors were bigger than inactive chemicals, as indicated by the number 
of heavy atoms (average of 25 vs. 16 for inactive), increased aromatic bond count, i.e., ~16 
for active and only ~6 for inactive chemicals, and burden descriptors (bcut, directly corre-
lated with the chemical mass). Partition coefficient-related descriptors (LogP_pred, Mol-
LogP, and MolLogP2) were higher for active chemicals, as were the charge-type de-
scriptors (QNss and QNmin), indicating that active chemicals included more charged ni-
trogen atoms. 

 

Figure 10. Variable importance plots for the top 10 descriptors involved in the RF models predicting
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Table 4. Details of the Top 10 descriptors from the best RF models, including average (M) of
the descriptor values for each group of active and inactive chemicals, with an associated p-value
significance (*** < 0.005). Student-test or Wilcoxon test (if descriptor distribution was not normal)
were applied.

Descriptor Description M Active M Inactive p-Value

Physicochemical descriptors

BP_pred Boiling point prediction 358.27 279.15 ***

LogKoc_pred
Log of soil adsorption coefficient of organic compounds. The ratio of the

amount of chemical adsorbed per unit weight of organic carbon in the soil or
sediment to the concentration of the chemical in solution at equilibrium.

3.56 2.53 ***

MolLogP2 Crippen method to estimate log(P)2 22.12 8.76 ***

MolLogP Crippen method to estimate log(P) 4.41 2.19 ***

MOE type

SMR_VSA3 MOE-type descriptors using molecular refractivity contributions and surface
area contributions 13.05 3.29 ***

Topological

BalabanJ Balaban’s J index (J) 1.52 2.65 ***

Charge descriptor

QNss Sum of squares of charges on N atoms 0.16 0.1 ***

QNmin Most negative charge on N atoms −0.32 −0.16 ***

Burden descriptors

bcutm2 Highest eigenvalue 2 for burden matrix/weighted by atomic masses 3.89 3.59 ***

bcutm3 Highest eigenvalue 3 for burden matrix/weighted by atomic masses 1.73 1.37 ***

bcutm5 Highest eigenvalue 5 for burden matrix/weighted by atomic masses 3.15 2.52 ***

bcutm4 Highest eigenvalue 4 for burden matrix/weighted by atomic masses 3.36 2.85 ***

bcutm11 Highest eigenvalue 11 for burden matrix/weighted by atomic masses 1.73 1.37 ***

Composition descriptor

HeavyAtomCount Count of heavy atom 25.14 16.18 ***

ArBoundCount Count of aromatic bonds 15.74 5.84 ***

Only non-overlapping chemicals with defined structures (n = 859), not included in
the Tox21 dataset, were predicted. This (PubChem) external test set included 113 actives
and 741 inactive chemicals. The second (Lit-based) external test set was extracted from
a literature search that identified 392 potential hERG inhibitors with defined structures.
Figure 11 shows the PCA plot computed using the Tox21 chemical library with the external
test set projections. Most of the active chemicals from both the PubChem set (Figure 11A)
and Lit-based set (Figure 11B) are found in the left top quadrant overlapping chemicals
found active from the Tox21 chemical library, as confirmed with the applicability domain
score. The average Z-score for the PubChem set was equal to 1.27 ± 1.30 (0.71 ± 0.75 for
Tox21 chemical library set), with only 104 chemicals with a Z-score above four, and for the
Lit-based set, the average Z-score was equal to 0.879 ± 0.963, with only 37 chemicals with a
Z-score above two.

The best QSAR models developed previously were applied to predict the activity
of these sets of chemicals. For the PubChem test set, the RF models built using the
Tox21 chemical library and the enriched set performed well with MCCs equal to 0.631
and 0.641, respectively. QSAR models built using the enriched set performed slightly
better with an improvement of the specificity criteria, from 0.966 to 0.984, explained by
the fact that more active chemicals were used to train the model. DNN-based models
underperformed RF models using both training sets with MCCs equal to 0.245 and
0.248 for models built with the original and enriched set, due primarily to the specificity
criteria that drop from 0.966 and 0.984 to 0.661 and 0.690 from the RF to the DNN
models. However, these DNN models had better sensitivity, i.e., ability to predict active
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chemicals, on both models (0.690 and 0.717 versus 0.619 and 0.549 with the RF models).
SVM models that exhibited good performance in cross-validation and in internal test
sets underperformed RF and DNN models with a weak sensitivity, below 0.20, and are
reported in Supplementary Information Table S2.

Table 5. Performance of the RF and DNN QSAR classification models on the external test sets.
Consensus models built using the average probability of each active chemical.

PubChem (ID: AID588834) (135 Actives and 876 Inactives)
TOX21 Model Q Qb Sp Se MCC

DNN 0.665 0.676 0.661 0.690 0.245
RF 0.920 0.793 0.966 0.619 0.631

Consensus 0.873 0.788 0.904 0.673 0.518
TOX21-ChEMBL

DNN 0.693 0.703 0.690 0.717 0.286
RF 0.926 0.766 0.984 0.549 0.641

Combined (RF + DNN) 0.900 0.791 0.945 0.637 0.582
Lit-based hERG inhibitors (393 actives)

TOX21 model Q TP FN
DNN 0.41 161 231

RF 0.40 157 235
Combined (RF + DNN) 0.40 157 235

TOX21-ChEMBL
DNN 0.389 153 249

RF 0.341 134 258
Combined (RF + DNN) 0.341 134 258
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Figure 11. Projection of the external sets AID58834 (A) and external inhibitors set (B) on the PCA
computed using the Tox21 chemicals library. Active chemicals in the Tox21 chemical library are
represented in blue dots, inactive chemicals in grey dots, and external set chemicals are represented
using a rhombus shape in light green for active and dark green for inactive chemicals.

For the Lit-based dataset, the best model was only able to well predict 161 active
chemicals (TP) out of the 392. DNN models performed better than RF models, which
confirms the ability of the DNN to predict better active chemicals than RF models. On this
dataset, models trained with only the Tox21 chemical library gave better performances than
models trained using the enriched set, 161 TP and 157 TP, respectively.

Consensus models built using the average probability for each chemical of the DNN
and RF prediction were also attempted and applied for both external test sets. These models
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performed as an average of the RN and DNN for the PubChem test set and did not improve
the RF performances on the Lit-based test set.

4. Discussion

Here, we report results from a high-throughput chemical screen in a cell-based thallium
influx assay to profile the hERG inhibition potential of the diverse Tox21 10K chemical
library, including drugs, environmental and industrial chemicals, and personal care product
ingredients, and the application of artificial intelligence to train predictive models based on
these data. The compounds were screened in triplicate, providing a robust assessment of
the assay technical performance and building assurance in the chemical activity calls. The
approach utilized in this study applies a qHTS approach combined with QSAR analysis
to build in silico screening tools for predictive safety assessment and identification of
structural features modulating hERG channel activity.

The Tox21 10K chemical library used for this screening effort was a far more diverse
chemical space than previously reported in the literature with respect to understanding
potential chemical effects on cardiac action potential, covering not only drugs but also
environmental and industrial chemicals with widespread potential human exposure. Of
the total active chemicals (n = 549) identified in this study, 63 had an IC50 < 1 µM against
the hERG channel. We found that many of the active chemicals belonged to categories
of chemicals designed to be bioactive (i.e., pharmaceuticals, insecticides, surfactants,
and fungicides), with the majority of highly active chemicals being drugs. The most
potent compound in this assay was the GBR 12909 dihydrochloride (Vanoxerine), with an
IC50 of 0.075 µM. Vanoxerine, a piperazine derivative, a potent and selective dopamine
reuptake inhibitor, initially developed as an antipsychotic and antidepressant. Our
results are consistent with previous reports that it was evaluated as an antiarrhythmic
drug and is a potent cardiac hERG channel blocker with IC50 reported as 0.22 and 0.00084
µM in thallium flux [54] and patch-clamp assay, respectively [55]. Eliprodil, Pimozide,
Fluspirilene, Sertindole, Ritanserin, Bromperidol, Trifluperidol, and Haloperidol are
some of the most active drugs found in the assay. All of these are used as antipsychotic
drugs and, interestingly, contain a piperidine moiety, which may be identified as a flag in
lead compound selection. There are multiple studies reporting various adverse clinical
CV effects of these drugs, ranging from alteration in heart rate (HR) and changes in
blood pressure (BP) to more severe effects such as QT prolongation and congestive heart
failure [56–60]. In addition to this, we found several other classes of drugs showing
activity against hERG in the present assay, such as antihistamine drugs (Astemizole,
Terfenadine, Clemastine, Ebastine), prokinetic drugs (Cisapride, Domperidone), and
some chemotherapeutic agents (Lapatinib, Bosutinib methanoate). The ability of these
non-CV drugs to induce QT interval prolongations or arrhythmias has been established
by various studies [61–68]. One of the most well-known chemotherapeutic agents with
cardiotoxic effects is 5-fluorouracil, which was tested here, but was inactive, consistent
with the hypothesized mechanisms of direct cellular damage and/or ischemia, rather
than hERG channel inhibition [69]. As expected, several antiarrhythmic drugs, such as
Lidoflazine, Dofetilide, Bepridil, and Amiodarone, demonstrated activity here. Multiple
beta-blockers used as antiarrhythmic drugs, such as Sotalol and Labetalol, were also
found to be active in the analysis [70].

Methyltrioctylammonium trifluoromethanesulfonate, tributyltetradecylphospho-
nium chloride, tetraoctylphosphonium bromide, hydramethylnon, 3-Didecyl-2-
methylimidazolium chloride, basic blue 7, didecyldimethylammonium chloride, tetra-N-
octylammonium bromide, and benzethonium chloride are some of the environmental
chemicals found to be most active in the assay. Many of these chemicals are quaternary
ammonium compounds (QACs). QACs are highly hydrophobic chemicals, possessing
surfactant properties and, due to their detergent properties, are frequently utilized in
disinfectants [71,72]. Three of these chemicals, namely didecyldimethylammonium chlo-
ride, tetra-N-octylammonium bromide, and benzethonium chloride, were previously
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known to exert hERG inhibitory effects in reported studies [14,73,74]. QACs have seen a
dramatic increase in use and human exposure potential due to increased disinfection and
cleaning protocols resulting from the SARS-CoV-2 outbreak and associated COVID-19
pandemic [75–77]. Many other pesticides and flame retardants, such as Kepone, Endo-
sulfan, Pyridaben, Dinocap, o p’-DDT, allethrin, lindane, parathion, prallethrin, and
triphenyl phosphate, also demonstrated inhibitory activity against the hERG channel in
the assay.

By applying structure-based clustering and cheminformatics analyses, we identified
enriched chemotypes that may be important structural features contributing to activity
in the hERG inhibition assays. Multiple enriched chemotypes in drug molecules con-
tained piperidine, piperazine-like heterocyclic rings, and CN bonds, while environmental
chemicals contained quaternary N bonds and long alkyl chain-like chemotypes.

In recent years, many articles on the prediction of cardiotoxicity based on machine
learning algorithms have been published, and several computational methods have been
established for predicting the cardiotoxicity of chemicals [78–81]. Most of them focus
on drug-like or drug optimization molecules. Multiple QSAR models are available for
hERG. However, model comparisons are challenging due to the use of in-house test sets,
lack of available code to generate external predictions or incompatible assay technologies.
For example, in [78], the authors used a ChEMBL v22 dataset (n = 8705) to generate
three classification models, i.e., random forest, multi-layer perceptron, and sequential
minimal optimization. The best performing consensus model was validated by an in-
house external test set (n = 585) with an accuracy of 0.93, which was not available for
us to compare our model predictions against. Another study describes the generation of
SVM, RF, and extreme gradient boosting classification models using ChEMBL v24 and
a threshold of 30 µM to define hERG blockers and non-blockers (n = 1865) [80]. In [79],
authors also generated ensemble models by fusing a subset of base classifiers via averaging
their predictive probability. The accuracy of the best performing ensemble model on the
external set (n = 407) was found to be 0.79. Using the benchmark models developed in [47],
models are available and performed better on the dataset built using the assays AID588834
with an MCC equal to 0.87. However, this set is fully included in its training set. On the
second set, this model is only able to find 133 active chemicals, compared to 161 using our
developed models. In [81], support vector classification (SVC) models were generated using
4324 compounds screened for hERG channel inhibition in a thallium flux assay in qHTS
format with the averaged area under the receiver operator characteristics curve (AUC-ROC)
of 0.93 for the tested compounds. The external validation for the generated models was
performed using a set of 66 drug molecules that exhibited an AUC-ROC of 0.86. The
majority of these studies were inclined towards drug discovery and/or lead optimization
projects and included chemicals with more drug-like, drug derivate structures. Here we
developed a model with a broader chemical space diversity, including drug-like structures
as well other environmental chemicals such as pesticides, biocides, surfactants, etc.

To validate the outcome of the hERG channel assay in thallium ion flux assay format,
we compared several known hERG inhibitors for their activity on the hERG channel in thal-
lium flux and whole-cell patch-clamp collected from literature sources. For the functional
screening of hERG channels, the patch-clamp method is traditionally used and considered a
gold standard. However, patch-clamp assay and other assays are low-throughput. The thal-
lium flux assay provides vastly improved throughput for functional measurement of hERG
activity. Unlike other ion channels that interact only with ligands of specific structural
classes, the hERG potassium ion channel can be altered or modulated by a broad spectrum
of structurally diverse compounds. Therefore, a functional assay of hERG channels is the
ultimate methodology for examining the hERG activity of compounds. We found that
the activities of many hERG channel inhibitors in this thallium flux assay are consistent
with those obtained in automated patch-clamp experiments, albeit shifted towards lower
potencies. For instance, under our assay conditions, dofetilide and cisapride, two struc-
turally distinct hERG inhibitors, had IC50 values of 0.139 and 0.325 µM, respectively, in
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contrast to reported IC50 values in standard patch-clamp assays of 0.015 and 0.085 µM,
respectively [51]. Several reports have suggested varying degrees of potency shift depend-
ing on the assay platform and the given compound tested for hERG activity [51–53]. It is
well established that surrogate ions have a remarkable difference in permeabilities relative
to physiological ions. This could lead to a right shift of affinity for many known hERG
inhibitors [53]. Further advancement of the thallium-based flux assay could result in a
better correlation with electrophysiology. Thus, thallium flux assay is proposed as an
effective and alternative method for large-scale compound screens to assess compound
activity on the hERG channel in vitro.

5. Conclusions

An essential goal of the Tox21 collaboration is the generation of a robust, reliable
dataset to rank chemicals for more comprehensive but lower throughput toxicological stud-
ies and to generate reliable computational models. Using a multiplexed qHTS-based assay
strategy, we profiled > 7600 unique environmental, industrial, and drug-like compounds
for their ability to modulate hERG channel activity. Predicting changes in hERG activity is
a critical first cardiotoxicity screen, because chemicals that directly or indirectly alter hERG
channel activity may affect cardiac action potential, cause QT prolongation, and lead to
arrhythmia and/or the more fatal Torsade de pointes condition. The combination of evalu-
ating each compound in a 15-point concentration-response, in triplicate, provided a robust
screening dataset, which in turn allowed us to identify > 500 compounds that inhibited
hERG channel activity based on thallium flux in U2OS cells. Additionally, we characterized
chemical structural features that were frequently related to an alteration in hERG channel
activity and constructed several computational models to predict new chemical structures
capable of disrupting hERG activity. This work may serve as the foundation for a tiered
approach for selecting compounds for more costly, lower throughput mechanistic studies.

Supplementary Materials: The following are available online at: https://www.mdpi.com/article/
10.3390/biology11020209/s1, Figure S1: Correlation between pIC50 from the results using the NCATS
assay with the pIC50 extracted on the same chemicals found in the ChEMBL library. Patch-clamp
IC50 from ChEMBL are reported with a different color; Figure S2: Classification of active chemicals
for the most populated chemical classes (from 80 classes). (A) Chemical counts for the 4950 chemicals
classified from Tox21 chemicals library. (B) Top chemical classes with active chemicals for hERG;
Figure S3: Scatter Plot (for a small subset of chemicals) between the pIC50 obtained in thallium flux
assay from NCATS (yellow triangles) and patch-clamp assay from ChEMBL (blue circles); Figure S4:
Correlation plot between the pIC50 on chemicals included in both the PubChem set (AID588834) and
the Tox21 chemical library. Line in red shows the perfect correlation. The correlation between the two
sets is reported in the figure and is equal to 0.86; Table S1: Parameters and hyperparameters screened
for each machine learning developed. For the models built using the Tox21 library, an under-sampling
was applied, and several combinations of parameters are reported; Table S2: performance of the SVM
classification models on the external test sets. Supplementary data material File S1–S7 have been
provided containing following information. Supplementary Material File S1: A .pdf file, including
concentration-response curves for most active chemicals (IC50 < 1 µM) in blue and for the chemicals
removed due to suspicious CR curve, in red and in green; Supplementary Material File S2: A .csv file
containing all 7871 chemicals screened using the Tox21 chemical library for each of them with the
−logIC50 and affinity classification (0: inactive and 1: active) are reported. The NA in the activity
column (−log10(IC50)) stands for inconclusive chemicals; Supplementary Material File S3: A .csv
file containing the descriptor table for the 7180 QSAR-ready structures of Tox21 chemical library
screened; Supplementary Material File S4: A .csv file containing the activity (µM) of the enriched
dataset (Tox21 and ChEMBL) for 8311 chemicals used for the QSAR modeling. The NA in the activity
column stands for inactive chemicals; Supplementary Material File S5: A .csv file containing the
descriptor table for the 8311 QSAR ready structures for enriched dataset (Tox21 chemical library and
ChEMBL); Supplementary Material File S6: A .pdf file containing the structure of active chemicals
ranked by activity and class; Supplementary Material File S7: A .csv file containing the enriched
chemotypes found in active chemicals.

https://www.mdpi.com/article/10.3390/biology11020209/s1
https://www.mdpi.com/article/10.3390/biology11020209/s1


Biology 2022, 11, 209 23 of 26

Author Contributions: Conceptualization, M.X. and N.K.; data curation, S.K., A.B., R.H., J.Z., and
M.X.; formal analysis, S.K., A.B., J.Z., R.H., and M.X.; funding acquisition, M.X. and N.K.; investiga-
tion, A.B., R.H., and N.K.; methodology, S.K., A.B., and M.X.; project administration, M.X. and N.K.;
resources, M.X. and N.K.; software, S.K. and A.B.; supervision, M.X. and N.K.; validation, A.B.; visu-
alization, S.K. and A.B.; writing—original draft, S.K.; writing—review and editing, S.K., A.B., R.H.,
J.Z., M.X., and N.K. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported in part by the Intramural Research Program of the National
Center for Advancing Translational Sciences (NCATS), and Interagency Agreement IAA #NTR 12003
from the National Institute of Environmental Health Sciences/Division of the National Toxicology
Program to the NCATS, National Institutes of Health. The views expressed in this paper are those of
the authors and do not necessarily reflect the statements, opinions, views, conclusions, or policies of
the National Center for Advancing Translational Sciences, National Institutes of Health and National
Institute of Environmental Health Sciences. Mention of trade names or commercial products does not
constitute endorsement or recommendation for use.

Institutional Review Board Statement: Not applicable as the study does not involve humans
or animals.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data generated or analyzed during this study are included in
this article. Scripts used for this project are included in a GitHub repository available at https:
//github.com/ABorrel/cardiotox_hERG (latest accessed on 20 January 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brown, A.M. Drugs, hERG and sudden death. Cell Calcium 2004, 35, 543–547. [CrossRef] [PubMed]
2. Curran, M.E.; Splawski, I.; Timothy, K.W.; Vincen, G.M.; Green, E.D.; Keating, M.T. A molecular basis for cardiac arrhythmia:

HERG mutations cause long QT syndrome. Cell 1995, 80, 795–803. [CrossRef]
3. Sanguinetti, M.C.; Jiang, C.; Curran, M.E.; Keating, M.T. A mechanistic link between an inherited and an acquired cardiac

arrhythmia: HERG encodes the IKr potassium channel. Cell 1995, 81, 299–307. [CrossRef]
4. Kalyaanamoorthy, S.; Barakat, K.H. Development of Safe Drugs: The hERG Challenge. Med. Res. Rev. 2018, 38, 525–555.

[CrossRef] [PubMed]
5. Priest, B.T.; Bell, I.M.; Garcia, M.L. Role of hERG potassium channel assays in drug development. Channels 2008, 2, 87–93.

[CrossRef] [PubMed]
6. Siramshetty, V.B.; Nickel, J.; Omieczynski, C.; Gohlke, B.O.; Drwal, M.N.; Preissner, R. WITHDRAWN—a resource for withdrawn

and discontinued drugs. Nucleic Acids Res. 2016, 44, D1080–D1086. [CrossRef] [PubMed]
7. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. ICH Harmonized

Tripartite Guideline “Safety Pharmacology Studies for Human Pharmaceuticals S7A”. In Proceedings of the International Confer-
ence on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Geneva, Switzerland,
8 November 2000.

8. Committee for Medicinal Products. ICH E14 Note for Guidance on the Clinical Evaluation of QT/Qtc Interval Prolongation and
Proarrhythmic Potential for Non-Antiarrhythmic Drugs (CHMP/ICH/2/04), in Committee for Medicinal Products for Human Use (CHMP);
European Medicines Agency: London, UK, 2005.

9. Kratz, J.M.; Grienke, U.; Scheel, O.; Mann, S.A.; Rollinger, J.M. Natural products modulating the hERG channel: Heartaches and
hope. Nat. Prod. Rep. 2017, 34, 957–980. [CrossRef]

10. Witchel, H.J. Drug-induced hERG block and long QT syndrome. Cardiovasc. Ther. 2011, 29, 251–259. [CrossRef]
11. Garrido, A.; Lepailleur, A.; Mignani, S.M.; Dallemagne, P.; Rochais, C. hERG toxicity assessment: Useful guidelines for drug

design. Eur. J. Med. Chem. 2020, 195, 112290. [CrossRef]
12. Villoutreix, B.O.; Taboureau, O. Computational investigations of hERG channel blockers: New insights and current predictive

models. Adv. Drug Deliv. Rev. 2015, 86, 72–82. [CrossRef]
13. Strauss, D.G.; Gintant, G.; Li, Z.; Wu, W.; Blinova, K.; Vicente, J.; Turner, J.R.; Sager, P.T. Comprehensive In Vitro Proarrhythmia

Assay (CiPA) Update from a Cardiac Safety Research Consortium / Health and Environmental Sciences Institute / FDA Meeting.
Innov. Regul. Sci. 2019, 53, 519–525. [CrossRef] [PubMed]

14. Xia, M.; Shahane, S.A.; Huang, R.; Titus, S.A.; Shum, E.; Zhao, Y.; Southall, N.; Zheng, W.; Witt, K.L.; Tice, R.R.; et al. Identification
of quaternary ammonium compounds as potent inhibitors of hERG potassium channels. Toxicol. Appl. Pharm. 2011, 252, 250–258.
[CrossRef] [PubMed]

15. Krishna, S.; Berridge, B.; Kleinstreuer, N. High-Throughput Screening to Identify Chemical Cardiotoxic Potential.
Chem. Res. Toxicol. 2021, 34, 566–583. [CrossRef] [PubMed]

https://github.com/ABorrel/cardiotox_hERG
https://github.com/ABorrel/cardiotox_hERG
http://doi.org/10.1016/j.ceca.2004.01.008
http://www.ncbi.nlm.nih.gov/pubmed/15110144
http://doi.org/10.1016/0092-8674(95)90358-5
http://doi.org/10.1016/0092-8674(95)90340-2
http://doi.org/10.1002/med.21445
http://www.ncbi.nlm.nih.gov/pubmed/28467598
http://doi.org/10.4161/chan.2.2.6004
http://www.ncbi.nlm.nih.gov/pubmed/18849661
http://doi.org/10.1093/nar/gkv1192
http://www.ncbi.nlm.nih.gov/pubmed/26553801
http://doi.org/10.1039/C7NP00014F
http://doi.org/10.1111/j.1755-5922.2010.00154.x
http://doi.org/10.1016/j.ejmech.2020.112290
http://doi.org/10.1016/j.addr.2015.03.003
http://doi.org/10.1177/2168479018795117
http://www.ncbi.nlm.nih.gov/pubmed/30157676
http://doi.org/10.1016/j.taap.2011.02.016
http://www.ncbi.nlm.nih.gov/pubmed/21362439
http://doi.org/10.1021/acs.chemrestox.0c00382
http://www.ncbi.nlm.nih.gov/pubmed/33346635


Biology 2022, 11, 209 24 of 26

16. Belpomme, D.; Irigaray, P.; Hardell, L.; Clapp, R.; Montagnier, L.; Epstein, S.; Sasco, A.J. The multitude and diversity of
environmental carcinogens. Environ. Res. 2007, 105, 414–429. [CrossRef]

17. Collins, F.S.; Gray, G.M.; Bucher, J.R. Toxicology. Transforming environmental health protection. Science 2008, 319, 906–907.
[CrossRef]

18. Thomas, R.S.; Paules, R.S.; Simeonov, A.; Fitzpatrick, S.C.; Crofton, K.M.; Casey, W.M.; Mendrick, D.L. The US Federal Tox21
Program: A strategic and operational plan for continued leadership. ALTEX 2018, 35, 163–168. [CrossRef]

19. Richard, A.M.; Huang, R.; Waidyanatha, S.; Shinn, P.; Collins, B.J.; Thillainadarajah, I.; Grulke, C.M.; Williams, A.J.; Lougee, R.R.;
Judson, R.S.; et al. The Tox21 10K Compound Library: Collaborative Chemistry Advancing Toxicology. Chem. Res. Toxicol. 2021,
34, 189–216. [CrossRef]

20. Zhao, J.; Xia, M. Cell-based hERG Channel Inhibition Assay in High-throughput Format. In High-Throughput Screening Assay in
Toxicology, 2nd ed.; Unpublished Work; 2022; ISBN 978-1-0716-2212-4.

21. Huang, R. A Quantitative High-Throughput Screening Data Analysis Pipeline for Activity Profiling. Methods Mol. Biol. 2016,
1473, 111–122.

22. Inglese, J.; Auld, D.S.; Jadhav, A.; Johnson, R.L.; Simeonov, A.; Yasgar, A.; Zheng, W.; Austin, C.P. Quantitative high-throughput
screening: A titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc. Natl. Acad.
Sci. USA 2006, 103, 11473–11478. [CrossRef]

23. Wang, Y.; Huang, R. Correction of Microplate Data from High-Throughput Screening. Methods Mol. Biol. 2016, 1473, 123–134.
24. Wang, Y.; Jadhav, A.; Southal, N.; Huang, R.; Nguyen, D.T. A grid algorithm for high throughput fitting of dose-response curve

data. Curr. Chem. Genom. 2010, 4, 57–66. [CrossRef] [PubMed]
25. Huang, R.; Xia, M.; Cho, M.H.; Sakamuru, S.; Shinn, P.; Houck, K.A.; Dix, D.J.; Judson, R.S.; Witt, K.L.; Kavlock, R.J.; et al.

Chemical genomics profiling of environmental chemical modulation of human nuclear receptors. Env. Health Perspect. 2011, 119,
1142–1148. [CrossRef] [PubMed]

26. Huang, R. A Quantitative High-Throughput Screening Data Analysis Pipeline for Activity Profiling. In High-Throughput Screening
Assays in Toxicology; Zhu, H., Xia, M., Eds.; Humana Press: Totova, NJ, USA, 2016.

27. Fourches, D.; Muratov, E.; Tropsha, A. Trust, but verify: On the importance of chemical structure curation in cheminformatics and
QSAR modeling research. J. Chem. Inf. Model. 2010, 50, 1189–1204. [CrossRef] [PubMed]

28. Fourches, D.; Muratov, E.; Tropsha, A. Trust, but Verify II: A Practical Guide to Chemogenomics Data Curation. J. Chem. Inf. Model.
2016, 56, 1243–1252. [CrossRef]

29. Mansouri, K.; Grulke, C.M.; Judson, R.S.; Williams, A.J. OPERA models for predicting physicochemical properties and environ-
mental fate endpoints. J. Cheminform 2018, 10, 10. [CrossRef]

30. Dionisio, K.L.; Phillips, K.; Price, P.S.; Grulke, C.M.; Williams, A.; Biryol, D.; Hong, T.; Isaacs, K.K. The Chemical and Products
Database, a resource for exposure-relevant data on chemicals in consumer products. Sci. Data 2018, 5, 180125. [CrossRef]

31. Kohonen, T. Essentials of the self-organizing map. Neural Netw. 2013, 37, 52–65. [CrossRef]
32. Borrel, A.; Huang, R.; Sakamuru, S.; Xia, M.; Simeonov, A.; Mansouri, K.; Houck, K.A.; Judson, R.S.; Kleinstreuer, N.C. High-

Throughput Screening to Predict Chemical-Assay Interference. Sci. Rep. 2020, 10, 3986. [CrossRef]
33. Lynch, C.; Mackowiak, B.; Huang, R.; Li, L.; Heyward, S.; Sakamuru, S.; Wang, H.; Xia, M. Identification of Modulators That

Activate the Constitutive Androstane Receptor From the Tox21 10K Compound Library. Toxicol. Sci. 2019, 167, 282–292. [CrossRef]
34. Yang, C.; Tarkhov, A.; Marusczyk, J.; Bienfait, B.; Gasteiger, J.; Kleinoeder, T.; Magdziarz, T.; Sacher, O.; Schwab, C.H.; Schwoebel,

J.; et al. New publicly available chemical query language, CSRML, to support chemotype representations for application to data
mining and modeling. J. Chem. Inf. Model. 2015, 55, 510–528. [CrossRef]

35. Ashby, J.; Tennant, R.W. Definitive relationships among chemical structure, carcinogenicity and mutagenicity for 301 chemicals
tested by the U.S. NTP. Mutat. Res. 1991, 257, 229–306. [CrossRef]

36. Kroes, R.; Renwick, A.G.; Cheeseman, M.; Kleiner, J.; Mangelsdorf, I.; Piersma, A.; Schilter, B.; Schlatter, J.; Van Schothorst, F.;
Vos, J.G.; et al. Structure-based thresholds of toxicological concern (TTC): Guidance for application to substances present at low
levels in the diet. Food Chem. Toxicol. 2004, 42, 65–83. [CrossRef] [PubMed]

37. Cherkasov, A.; Muratov, E.N.; Fourches, D.; Varnek, A.; Baskin, I.I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y.C.;
Todeschini, R.; et al. QSAR modeling: Where have you been? Where are you going to? J. Med. Chem. 2014, 57, 4977–5010.
[CrossRef] [PubMed]

38. Golbraikh, A.; Muratov, E.; Fourches, D.; Tropsha, A. Data set modelability by QSAR. J. Chem. Inf. Model. 2014, 54, 1–4. [CrossRef]
39. Tropsha, A.; Golbraikh, A. Predictive QSAR modeling workflow, model applicability domains, and virtual screening.

Curr. Pharm. Des. 2007, 13, 3494–3504. [CrossRef]
40. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Monterey, C., Ed.; Brooks/Cole Publishing:

Monterey, CA, USA.
41. Ripley, B. (Ed.) Pattern Recognition and Neural Networks; Cambridge University Press: Cambridge, UK, 1996.
42. Vapnik, C. Support-vector networks. Mach. Learn. 1995, 3, 273–297.
43. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
44. Fisher, R. The Use of Multiple Measurements in Taxonomic Problems. Ann. Eugen. 1936, 7, 179–188. [CrossRef]
45. Basheer, I.A.; Hajmeer, M. Artificial neural networks: Fundamentals, computing, design, and application. J. Microbiol. Methods

2000, 43, 3–31. [CrossRef]

http://doi.org/10.1016/j.envres.2007.07.002
http://doi.org/10.1126/science.1154619
http://doi.org/10.14573/altex.1803011
http://doi.org/10.1021/acs.chemrestox.0c00264
http://doi.org/10.1073/pnas.0604348103
http://doi.org/10.2174/1875397301004010057
http://www.ncbi.nlm.nih.gov/pubmed/21331310
http://doi.org/10.1289/ehp.1002952
http://www.ncbi.nlm.nih.gov/pubmed/21543282
http://doi.org/10.1021/ci100176x
http://www.ncbi.nlm.nih.gov/pubmed/20572635
http://doi.org/10.1021/acs.jcim.6b00129
http://doi.org/10.1186/s13321-018-0263-1
http://doi.org/10.1038/sdata.2018.125
http://doi.org/10.1016/j.neunet.2012.09.018
http://doi.org/10.1038/s41598-020-60747-3
http://doi.org/10.1093/toxsci/kfy242
http://doi.org/10.1021/ci500667v
http://doi.org/10.1016/0165-1110(91)90003-E
http://doi.org/10.1016/j.fct.2003.08.006
http://www.ncbi.nlm.nih.gov/pubmed/14630131
http://doi.org/10.1021/jm4004285
http://www.ncbi.nlm.nih.gov/pubmed/24351051
http://doi.org/10.1021/ci400572x
http://doi.org/10.2174/138161207782794257
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1111/j.1469-1809.1936.tb02137.x
http://doi.org/10.1016/S0167-7012(00)00201-3


Biology 2022, 11, 209 25 of 26

46. Mendez, D.; Gaulton, A.; Bento, A.P.; Chambers, J.; De Veij, M.; Félix, E.; Magariños, M.P.; Mosquera, J.F.; Mutowo, P.;
Nowotka, M.; et al. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res. 2019, 47, D930–D940. [CrossRef]

47. Siramshetty, V.B.; Nguyen, D.T.; Martinez, N.J.; Southall, N.T.; Simeonov, A.; Zakharov, A.V. Critical Assessment of Artificial
Intelligence Methods for Prediction of hERG Channel Inhibition in the "Big Data" Era. J. Chem. Inf. Model. 2020, 60, 6007–6019.
[CrossRef] [PubMed]

48. Kiss, L.; Bennett, P.B.; Uebele, V.N.; Koblan, K.S.; Kane, S.A.; Neagle, B.; Schroeder, K. High throughput ion-channel pharmacology:
Planar-array-based voltage clamp. Assay Drug Dev. Technol. 2003, 1 (Suppl. 2), 127–135. [CrossRef]

49. Polonchuk, L. Toward a New Gold Standard for Early Safety: Automated Temperature-Controlled hERG Test on the PatchLiner.
Front. Pharm. 2012, 3, 3. [CrossRef]

50. Siramshetty, V.B.; Chen, Q.; Devarakonda, P.; Preissner, R. The Catch-22 of Predicting hERG Blockade Using Publicly Accessible
Bioactivity Data. J. Chem. Inf. Model. 2018, 58, 1224–1233. [CrossRef] [PubMed]

51. Dubin, A.E.; Nasser, N.; Rohrbacher, J.; Hermans, A.N.; Marrannes, R.; Grantham, C.; Van Rossem, K.; Cik, M.; Chaplan, S.R.;
Gallacher, D.; et al. Identifying modulators of hERG channel activity using the PatchXpress planar patch clamp. J. Biomol. Screen.
2005, 10, 168–181. [CrossRef] [PubMed]

52. Bridal, T.R.; Margulis, M.; Wang, X.; Donio, M.; Sorota, S. Comparison of human Ether-a-go-go related gene screening assays
based on IonWorks Quattro and thallium flux. Assay Drug Dev. Technol. 2010, 8, 755–765. [CrossRef]

53. Rezazadeh, S.; Hesketh, J.C.; Fedida, D. Rb+ flux through hERG channels affects the potency of channel blocking drugs:
Correlation with data obtained using a high-throughput Rb+ efflux assay. J. Biomol. Screen. 2004, 9, 588–597. [CrossRef]

54. Weaver, C.D. Thallium Flux Assay for Measuring the Activity of Monovalent Cation Channels and Transporters. Methods Mol. Biol.
2018, 1684, 105–114.

55. Lacerda, A.E.; Kuryshev, Y.A.; Yan, G.X.; Waldo, A.L.; Brown, A.M. Vanoxerine: Cellular mechanism of a new antiarrhythmic.
J. Cardiovasc. Electrophysiol. 2010, 21, 301–310. [CrossRef]

56. Olsen, R.E.; Kroken, R.A.; Bjorhovde, S.; Aanesen, K.; Jorgensen, H.A.; Loberg, E.M.; Johnsen, E. Influence of different second
generation antipsychotics on the QTc interval: A pragmatic study. World J. Psychiatry 2016, 6, 442–448. [CrossRef]

57. Polcwiartek, C.; Kragholm, K.; Schjerning, O.; Graff, C.; Nielsen, J. Cardiovascular safety of antipsychotics: A clinical overview.
Expert Opin. Drug Saf. 2016, 15, 679–688. [CrossRef] [PubMed]

58. Silke, B.; Campbell, C.; King, D.J. The potential cardiotoxicity of antipsychotic drugs as assessed by heart rate variability.
J. Psychopharmacol. 2002, 16, 355–360. [CrossRef] [PubMed]

59. Suessbrich, H.; Schonherr, R.; Heinemann, S.H.; Attali, B.; Lang, F.; Busch, A.E. The inhibitory effect of the antipsychotic drug
haloperidol on HERG potassium channels expressed in Xenopus oocytes. Br. J. Pharmacol. 1997, 120, 968–974. [CrossRef]
[PubMed]

60. Mitcheson, J.S.; Chen, J.; Lin, M.; Culberson, C.; Sanguinetti, M.C. A structural basis for drug-induced long QT syndrome.
Proc. Natl. Acad. Sci. USA 2000, 97, 12329–12333. [CrossRef] [PubMed]

61. Redfern, W.S.; Carlsson, L.; Davis, A.S.; Lynch, W.G.; MacKenzie, I.; Palethorpe, S.; Siegl, P.K.S.; Strang, I.; Sullivan, A.T.; Wallis, R.;
et al. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a
broad range of drugs: Evidence for a provisional safety margin in drug development. Cardiovasc. Res. 2003, 58, 32–45. [CrossRef]

62. Ridley, J.M.; Milnes, J.T.; Hancox, J.C.; Witchel, H.J. Clemastine, a conventional antihistamine, is a high potency inhibitor of the
HERG K+ channel. J. Mol. Cell. Cardiol. 2006, 40, 107–118. [CrossRef]

63. Rossi, M.; Giorgi, G. Domperidone and long QT syndrome. Curr. Drug Saf. 2010, 5, 257–262. [CrossRef]
64. Suessbrich, H.; Schonherr, R.; Heinemann, S.H.; Attali, B.; Lang, F.; Busch, A.E. Blockade of HERG channels expressed in Xenopus

oocytes by the histamine receptor antagonists terfenadine and astemizole. FEBS Lett. 1996, 385, 77–80. [CrossRef]
65. Tanaka, H.; Takahashi, Y.; Hamaguchi, S.; Iida-Tanaka, N.; Oka, T.; Nishio, M.; Ohtsuki, A.; Namekata, I. Effect of terfenadine

and pentamidine on the HERG channel and its intracellular trafficking: Combined analysis with automated voltage clamp and
confocal microscopy. Biol. Pharm. Bull. 2014, 37, 1826–1830. [CrossRef]

66. Walker, B.D.; Singleton, C.B.; Bursill, J.A.; Wyse, K.R.; Valenzuela, S.M.; Qiu, M.R.; Breit, S.N.; Campbell, T.J. Inhibition of the
human ether-a-go-go-related gene (HERG) potassium channel by cisapride: Affinity for open and inactivated states. Br. J. Pharm.
1999, 128, 444–450. [CrossRef]

67. Coppola, C.; Rienzo, A.; Piscopo, G.; Barbieri, A.; Arra, C.; Maurea, N. Management of QT prolongation induced by anti-cancer
drugs: Target therapy and old agents. Different algorithms for different drugs. Cancer Treat. Rev. 2018, 63, 135–143. [CrossRef]
[PubMed]

68. Duan, J.; Tao, J.; Zhai, M.; Li, C.; Zhou, N.; Lv, J.; Wang, L.; Lin, L.; Bai, R. Anticancer drugs-related QTc prolongation, torsade
de pointes and sudden death: Current evidence and future research perspectives. Oncotarget 2018, 9, 25738–25749. [CrossRef]
[PubMed]

69. Sara, J.D.; Kaur, J.; Khodadadi, R.; Rehman, M.; Lobo, R.; Chakrabarti, S.; Herrmann, J.; Lerman, A.; Grothey, A. 5-fluorouracil
and cardiotoxicity: A review. Adv. Med. Oncol. 2018, 10, 1758835918780140. [CrossRef] [PubMed]

70. Zhang, Y.H.; Dempsey, C.E.; Hancox, J.C. The Basis for Low-affinity hERG Potassium Channel Block by Sotalol. J. Pharm. Pharm.
2017, 8, 130–131.

71. Heir, E.; Sundheim, G.; Holck, A.L. Identification and characterization of quaternary ammonium compound resistant staphylo-
cocci from the food industry. Int. J. Food Microbiol. 1999, 48, 211–219. [CrossRef]

http://doi.org/10.1093/nar/gky1075
http://doi.org/10.1021/acs.jcim.0c00884
http://www.ncbi.nlm.nih.gov/pubmed/33259212
http://doi.org/10.1089/154065803321537845
http://doi.org/10.3389/fphar.2012.00003
http://doi.org/10.1021/acs.jcim.8b00150
http://www.ncbi.nlm.nih.gov/pubmed/29772901
http://doi.org/10.1177/1087057104272295
http://www.ncbi.nlm.nih.gov/pubmed/15799960
http://doi.org/10.1089/adt.2010.0267
http://doi.org/10.1177/1087057104264798
http://doi.org/10.1111/j.1540-8167.2009.01623.x
http://doi.org/10.5498/wjp.v6.i4.442
http://doi.org/10.1517/14740338.2016.1161021
http://www.ncbi.nlm.nih.gov/pubmed/26934282
http://doi.org/10.1177/026988110201600410
http://www.ncbi.nlm.nih.gov/pubmed/12503835
http://doi.org/10.1038/sj.bjp.0700989
http://www.ncbi.nlm.nih.gov/pubmed/9138706
http://doi.org/10.1073/pnas.210244497
http://www.ncbi.nlm.nih.gov/pubmed/11005845
http://doi.org/10.1016/S0008-6363(02)00846-5
http://doi.org/10.1016/j.yjmcc.2005.09.017
http://doi.org/10.2174/157488610791698334
http://doi.org/10.1016/0014-5793(96)00355-9
http://doi.org/10.1248/bpb.b14-00417
http://doi.org/10.1038/sj.bjp.0702774
http://doi.org/10.1016/j.ctrv.2017.11.009
http://www.ncbi.nlm.nih.gov/pubmed/29304463
http://doi.org/10.18632/oncotarget.25008
http://www.ncbi.nlm.nih.gov/pubmed/29876021
http://doi.org/10.1177/1758835918780140
http://www.ncbi.nlm.nih.gov/pubmed/29977352
http://doi.org/10.1016/S0168-1605(99)00044-6


Biology 2022, 11, 209 26 of 26

72. McDonnell, G.; Russell, A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999, 12, 147–179.
[CrossRef]

73. Long, Y.; Chen, W.; Lin, Z.; Sun, H.; Xia, M.; Zheng, W.; Li, Z. Inhibition of HERG potassium channels by domiphen bromide and
didecyl dimethylammonium bromide. Eur. J. Pharm. 2014, 737, 202–209. [CrossRef]

74. Long, Y.; Lin, Z.; Xia, M.; Zheng, W.; Li, Z. Mechanism of HERG potassium channel inhibition by tetra-n-octylammonium bromide
and benzethonium chloride. Toxicol. Appl. Pharm. 2013, 267, 155–166. [CrossRef]

75. Baker, N.; Williams, A.J.; Tropsha, A.; Ekins, S. Repurposing Quaternary Ammonium Compounds as Potential Treatments for
COVID-19. Pharm. Res. 2020, 37, 104. [CrossRef]

76. Ogilvie, B.H.; Solis-Leal, A.; Lopez, J.B.; Poole, B.D.; Robison, R.A.; Berges, B.K. Alcohol-free hand sanitizer and other quaternary
ammonium disinfectants quickly and effectively inactivate SARS-CoV-2. J. Hosp. Infect 2021, 108, 142–145. [CrossRef]

77. Schrank, C.L.; Minbiole, K.P.C.; Wuest, W.M. Are Quaternary Ammonium Compounds, the Workhorse Disinfectants, Effective
against Severe Acute Respiratory Syndrome-Coronavirus-2? ACS Infect Dis. 2020, 6, 1553–1557. [CrossRef] [PubMed]

78. Konda, L.S.K.; Praba, S.K.; Kristam, R. hERG liability classification models using machine learning techniques. Comput. Toxicol.
2019, 12, 100089. [CrossRef]

79. Liu, M.; Zhang, L.; Li, S.; Yang, T.; Liu, L.; Zhao, J.; Liu, H. Prediction of hERG potassium channel blockage using ensemble
learning methods and molecular fingerprints. Toxicol. Lett. 2020, 332, 88–96. [CrossRef] [PubMed]

80. Zhang, C.; Zhou, Y.; Gu, S.; Wu, Z.; Wu, W.; Liu, C.; Wang, K.; Liu, G.; Li, W.; Lee, P.W.; et al. In silico prediction of hERG
potassium channel blockage by chemical category approaches. Toxicol. Res. 2016, 5, 570–582. [CrossRef] [PubMed]

81. Sun, H.; Huang, R.; Xia, M.; Shahane, S.; Southall, N.; Wang, Y. Prediction of hERG Liability—Using SVM Classification,
Bootstrapping and Jackknifing. Mol. Inf. 2017, 36, 1600126. [CrossRef] [PubMed]

http://doi.org/10.1128/CMR.12.1.147
http://doi.org/10.1016/j.ejphar.2014.05.002
http://doi.org/10.1016/j.taap.2012.12.021
http://doi.org/10.1007/s11095-020-02842-8
http://doi.org/10.1016/j.jhin.2020.11.023
http://doi.org/10.1021/acsinfecdis.0c00265
http://www.ncbi.nlm.nih.gov/pubmed/32412231
http://doi.org/10.1016/j.comtox.2019.100089
http://doi.org/10.1016/j.toxlet.2020.07.003
http://www.ncbi.nlm.nih.gov/pubmed/32629073
http://doi.org/10.1039/C5TX00294J
http://www.ncbi.nlm.nih.gov/pubmed/30090371
http://doi.org/10.1002/minf.201600126
http://www.ncbi.nlm.nih.gov/pubmed/28000393

	Introduction 
	Materials and Methods 
	Cell Culture 
	Thallium Flux Assay 
	Active Chemical Identification 
	Data Preparation for Molecular Modeling 
	Chemical Category Assignments 
	Structural Clustering 
	Chemotype Enrichment Analysis 
	QSAR Modeling 
	Machine Learning 
	Under-Sampling Protocol 
	Evaluation of the Classification Model Performance 
	Dataset Enrichment 
	Validation Sets 
	Applicability Domain (AD) 

	Results 
	Chemical Activity for hERG Inhibition 
	Active Chemical Categories 
	Most Active Chemicals 
	Assay Dependent Potency Shift 
	Structural Activity Patterns 
	Chemotype Enrichment 
	QSAR Classification Models for hERG Inhibition Using the Tox21 FluxOR Thallium Influx Assay Dataset 
	QSAR Classification Models for hERG Inhibition Using the Enriched Dataset 
	Significant Molecular Descriptors 
	External Validation of the QSAR Models 

	Discussion 
	Conclusions 
	References

