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Abstract 

Background:  Diplozoidae are monogenean (Monogenea: Polyopisthocotylea) fish parasites characterised by a 
unique life history: two larvae permanently fuse into an X-shaped “Siamese” organism. Taxonomy and phylogeny of 
Diplozoidae and Polyopisthocotylea remain unresolved due to the unavailability of molecular markers with suf‑
ficiently high resolution. Mitogenomes may be a suitable candidate, but there are currently only 12 available for the 
Polyopisthocotylea (three for Diplozoidae). The only available study of diplozoid mitogenomes found unique base 
composition patterns and elevated evolution rates in comparison with other Monogenean mitogenomes.

Methods:  To further explore their evolution and generate molecular data for evolutionary studies, we sequenced 
the complete mitogenomes of two Diplozoidae species, Paradiplozoon homoion and Paradiplozoon yarkandense, and 
conducted a number of comparative mitogenomic analyses with other polyopisthocotyleans.

Results:  We found further evidence that mitogenomes of Diplozoidae evolve at a unique, elevated rate, which 
was reflected in their exceptionally long branches, large sizes, unique base composition, skews, and very low gene 
sequence similarity levels between the two newly sequenced species. They also exhibited remarkably large over‑
laps between some genes. Phylogenetic analysis of Polyopisthocotylea resolved all major taxa as monophyletic, and 
Mazocraeidea was split into two major clades: (Diplozoidae) + (all four remaining families: Diclidophoridae, Chau‑
haneidae, Mazocraeidae and Microcotylidae). It also provided further confirmation that the genus Paradiplozoon is 
paraphyletic and requires a taxonomic revision, so the two species may have to be renamed Indodiplozoon homoion 
and Diplozoon yarkandense comb. nov.

Conclusions:  Although our findings indicate that mitogenomes may be a promising tool for resolving the phylog‑
eny of Polyopisthocotylea, elevated evolutionary rates of Diplozoidae may cause phylogenetic artefacts, so future 
studies should pay caution to this problem. Furthermore, as the reason for their elevated evolution remains unknown, 
Diplozoidae are a remarkably interesting lineage for other types of evolutionary mitogenomic studies.
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Background
Flatworms are a phylum (Platyhelminthes) of largely par-
asitic animals of high importance for medicine, as they 
cause diseases in a variety of host animal groups, includ-
ing domestic animals and humans. They also exhibit a 
broad range of parasitic strategies, including some line-
ages exhibiting remarkably high host-specificity [1–3]. As 
Platyhelminthes also comprises free-living lineages, these 
factors make Platyhelminthes a good phylogenetic system 
for studying the evolution of parasitism. The predomi-
nantly parasitic three classes of flatworms are classified 
together as the superclass Neodermata: Monogenea (pri-
marily ectoparasitic), Trematoda (endoparasitic flukes), 
and Cestoda (endoparasitic tapeworms). Whereas the 
monophyly of Neodermata is relatively robust, the rela-
tionships among the above three main clades, as well 
their monophyly, remain debated [2–6]. Notably, there 
is evidence that Monogenea, which comprises a major 
part of the obligate parasitic flatworm diversity, might be 
paraphyletic, and split into two independent radiations 
(subclasses): Polyopisthocotylea and Monopisthocoty-
lea [6, 7]. Mitogenomic nucleotide sequences and gene 
order rearrangements indicate that Polyopisthocotylea 
may even be a sister group to all other Neodermata [6, 
8]. Another intriguing feature of this subclass is that it 
also exhibits mitogenomes with rearranged gene orders; 
this is uncommon within the Neodermata, which mostly 
exhibit a highly conserved architecture [6].

Along with the family Octomacridae, Diplozoidae 
are the only polyopisthocotyleans primarily parasitiz-
ing freshwater teleosts [9]. They are predominantly 
ectoparasites, commonly found on the gills of cyprinid 
and characid fishes, and they have a direct life-cycle (no 
intermediate host), which is typical for monogeneans. 
However, Diplozoidae are also characterised by a unique 
life history: two larvae (diporpae) permanently fuse into 
a pair, morphing into an X-shaped “Siamese” organism 
[9–11]. They are also important for aquaculture because 
they cause notable damage to the gill tissue of their hosts, 
which may cause secondary infections and mortality [11].

Taxonomy and phylogeny of diplozoids are mainly 
based on morphology (central hooks, clamps and sper-
matozoid ultrastructure) and host fishes, but reliance 
on these parameters often causes taxonomic and phy-
logenetic artefacts [11–13]. Therefore, the availability 
of molecular markers is a prerequisite for the reliable 
identification and phylogenetic and taxonomic studies of 
diplozoid parasites. Previous phylogenetic studies mostly 
relied on the 28S and ITS-2 rDNA (second internal tran-
scribed spacer of ribosomal DNA) sequences, which 
often produce incongruent results between different 
datasets and methods [11, 13–16]. This lack of reli-
able phylogenetic marker results in multiple unresolved 

phylogenetic and taxonomic questions within the Diplo-
zoidae and Monogenea [6, 13]. Mitochondrial genomes 
(mitogenomes) can provide a phylogenetic resolution 
superior to the traditionally used single-gene markers, so 
they are becoming an increasingly popular tool in evo-
lutionary, population genetic, taxonomic, phylogenetic 
and diagnostic studies of Platyhelminthes [7, 11, 17, 18]. 
The only previous study that applied mitochondrial phy-
logenomics to Diplozoidae produced some novel family-
level relationships, which indicates that the usefulness 
of mitogenomes for inferring the phylogeny of Polyo-
pisthocotylea should be further explored [11, 13].

In most animal lineages, mitogenomes are circular 
molecules, ranging 13 ~ 16  kb in size, that encode 37 
genes—13 protein-coding genes (PCGs), two ribosomal 
RNA genes, and 22 transfer RNA (tRNA) genes—but 
comparative mitogenomic architecture analyses (e.g., 
gene arrangement, base composition skews, etc.) often 
reveal lineages that exhibit intriguing patterns of mitog-
enomic evolution [19–22]. The only published study of 
Diplozoidae mitogenomes found unique base composi-
tion patterns and elevated evolution rates in comparison 
with other Monogenean mitogenomes [11]. As there are 
currently (Dec. 2021) only 12 sequenced and annotated 
complete mitogenomes for the Polyopisthocotylea, this 
scarcity of data hampers progress in the understand-
ing of mitogenomic architecture evolution and phylog-
eny of Polyopisthocotylea and Monogenea. To address 
this dearth of data and further explore the unique base 
composition of diplozoid mitogenomes, we sequenced 
complete mitogenomes of two Diplozoidae species: 
Paradiplozoon homoion (Bychowsky & Nagibina, 1959) 
and a recently described [23] new species Paradiplozoon 
yarkandense (Arken et al.  [23]).

Methods
Paradiplozoon yarkandense was collected from the host 
Diptychus maculatus in the Taxkorgan river (a tribu-
tary of the Yarkand River) (37° 41′ 14″ N; 75° 18′ 9″ E), 
Xinjiang, China. Paradiplozoon homoion was collected 
from the host Leuciscus baicalensis in the Kelan River (a 
tributary of the Irtysh River) (47° 42′ 40″ N, 88° 13′ 25″ 
E). Xinjiang, China. Both species were morphologically 
identified according to our previous publications [23, 
24] (Additional file 1: Text S1 and Figs. S1 to S5). DNA 
extraction, mitogenome amplification and sequencing, 
and sequence annotation and analyses were conducted 
exactly as described before [11]. The methodology only 
differed in selecting different reference mitogenomes: 
Polylabris halichoeres [25] and the three available Diplo-
zoidae species [11] and different primers (Additional 
file  1: Tables S1 and S2). tRNAs were first identified 
using ARWEN [26] and MITOS [27] programs, and then 
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R2DT [28] was further used to predict and visualise the 
secondary structure of selected tRNAs. ORF-Finder [29] 
was further used to search for genes resembling atp8 in 
large non-coding regions of both mitogenomes. Phylo-
genetic analysis was conducted on a dataset comprising 
all available Polyopisthocotylea mitogenomes (Additional 
file  2: Dataset S1). Following the evidence that using 
multiple outgroups produces better results than using a 
single outgroup [30], we used two different lineages as 
outgroups, two mitogenomes from the relatively closely 
related neodermatan clade, Monopisthocotylea: Gyro-
dactylus salaris (Gyrodactyloidea) [31] and Dactylogyrus 
lamellatus (Dactylogyridea) [32]; and two mitogenomes 
from Rhabditophora, belonging to the basal radiation of 
largely free-living flatworms [5]: Bipalium kewense [33] 
and Obrimoposthia wandeli [34]. PhyloSuite [35] was 
used to standardise annotation, extract data, and con-
duct phylogenetic analysis in the Flowchart mode using 
nucleotide sequences of 12 concatenated (but parti-
tioned) PCGs with the help of several plug-in programs. 
Genes were aligned using the codon mode and the accu-
rate G-INS-i strategy in MAFFT [36], concatenated using 
PhyloSuite, best-suited evolutionary models for parti-
tions inferred using ModelFinder [37], and phylogeny 
was reconstructed using IQ-TREE [38] with 10,000 ultra-
fast bootstraps [39]. iTOL [40] was used to visualise the 
phylogeny and architecture using files generated by Phy-
loSuite. OGDRAW was used to create to-scale circular 
maps of the mitogenomic architecture [41].

Results
Phylogeny and identity
The ITS-2 sequence of the putative P. yarkandense 
exhibited 100% identity to a number of ortholo-
gous P. yarkandense sequences published in the 
original description study [23], whereas that of P. 
homoion exhibited a 100% identity to a P. homoion 
ITS-2 sequence sequenced by Benovics et  al. [42] 

(Additional file  1: Figs. S5 and S6). The phylogenetic 
analysis resolved all major taxa, including the Diplo-
zoidae, as monophyletic (Fig. 1). Statistical support for 
clades was very high (mostly over 90%). Mazocraeidea 
was split into two major clades; one comprising only 
Diplozoidae and the other containing all four remain-
ing families included in the dataset (Diclidophoridae, 
Chauhaneidae, Mazocraeidae, and Microcotylidae). 
Within the Diplozoidae, however, the genus Paradiplo-
zoon was paraphyletic: P. yarkandense formed a sister 
lineage with Paradiplozoon opsariichthydis, whereas P. 
homoion formed a sister lineage with Sindiplozoon sp. 
Eudiplozoon sp. was the sister group to the remaining 
four species.

Mitochondrial architecture and size
All genes are encoded on the same strand and the atp8 
gene is missing from both newly sequenced mitog-
enomes (Fig.  2; Table  1). Both exhibit a gene order 
identical to that of Eudiplozoon sp. and Sindiplozoon 
sp. The only difference they exhibited was in the dis-
tribution of non-coding regions larger than 100 base 
pairs (bp) (Figs. 2 and 3), which is indicative of the fast 
evolution of non-coding sections. Both mitogenomes 
were the largest among the sequenced polyopisthoc-
otylean mitogenomes: P. homoion was the largest with 
17,321  bp and P. yarkandense was the second largest, 
with 16,816  bp (Fig.  1, Additional file  2: Dataset S1). 
Moreover, all other available mitogenomes were much 
smaller: 12,290 to 15,527  bp (some of the smallest 
mitogenomes were incomplete, so the lower end of the 
range is almost certainly a sequencing or assembly arte-
fact). Aside from the outlier of P. halichoeres (Micro-
cotylidae; 15,527 bp), the top five largest mitogenomes 
belonged to Diplozoidae. Aside from Eudiplozoon sp. 
(14,334  bp), all other Diplozoidae mitogenomes were 
larger than 15 kbp.

Fig. 1  The mitogenomic phylogeny of Polyopisthocotylea. Species names are followed by the GenBank accession number, statistical support is 
shown next to branches, and the tree scale is included in the figure. Yellow bars correspond to the A+T composition of entire mitogenomes, red 
bars correspond to the GC skew, and blue bars to the mitogenome length. Taxonomic identity is shown to the right: family and order (apart from 
Rhabditophora)
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Base composition and skews
The A+T-base content was high in the polyopisthocoty-
lid mitogenomes: 65.6–72.7% (Fig.  1, Fig.  4, Additional 
file  2: Dataset S1). However, Diplozoidae exhibited the 
three lowest values in the dataset. This was particularly 
strongly pronounced in the P. homoion mitogenome, 
which shared the lowest AT content of 65.6% with Parad-
iplozoon hemiculteri. The elevated AT content in the 
dataset was largely driven by the high T-base content 
(39.2–50.7%). Somewhat surprisingly, the six Diplo-
zoidae were among the top seven taxa with the highest 
T-content (45.2–50.7%), along with the Polystomatidae 
species, Diplorchis hangzhouensis (49.7%). Therefore, the 
reduced AT content in Diplozoidae was driven solely by 
the strongly reduced A-content (18.6–20.4%) in all Diplo-
zoidae aside from Eudiplozoon sp. (23.6%) in comparison 
with other polyopisthocotylids (22.5–29.9%). The C-con-
tent was strongly reduced in all species (7.3–12.1%), but 
Diplozoidae were not consistently different from the rest 
of the dataset; the only minor exception was the newly 
sequenced P. homoion with the highest C-content in the 
dataset (12.1%). In terms of the G-content, Diplozoidae 
on average exhibited comparatively reduced values (five 
out of seven lowest values).

The unusual base composition was also reflected in 
base composition skews (Fig. 1, Fig. 5, Additional file 2: 
Dataset S1). Diplozoidae had much higher AT skews 
(−0.34 to −0.45) than the rest of the dataset (−0.15 to 
−0.22). The only other species that had skews compa-
rable to Diplozoidae was D. hangzhouensis (−0.38). As 

regards GC skews, a majority of Diplozoidae grouped in 
the upper end of the range (0.358 to 0.454), but the high-
est value was exhibited by D. hangzhouensis (0.479), and 
P. homoion exhibited a low value of 0.294 (the overall 
range: 0.25 to 0.48).

Gene comparison
For nominally congeneric species, the two newly 
sequenced Paradiplozoon species exhibited remarkably 
low identity values between genes (Fig.  6). Only three 
tRNA genes exhibited similarity values larger than 75%: 
trnF (79), trnI (77), and trnC (75). The two species also 
exhibited surprisingly divergent start and stop codons 
(Table 1). Otherwise, start/stop codons were standard for 
polyopisthocotyleans (Additional file 2: Dataset S2).

This rapid sequence evolution was reflected in a high 
number of insertions, deletions, and in general poorly 
aligned gene segments within the Polyopisthocotylea 
dataset. For example, nad6 exhibited a 3′ elongation in 
P. homoion, which caused a 7-bp overlap with the down-
stream trnY (Table 1, Additional file 1: Fig. S8). Nad5 and 
nad3 were highly divergent among the available species, 
with few universally conserved sites, and 5′ and 3′ ends 
exhibiting many insertions and deletions. Nad1, nad2 
and nad4 were relatively conserved, aside from their 
highly divergent 5′ ends. Maybe it should be noted that 
nad2 in D. hangzhouensis had a 3′ extension unmatched 
in the dataset, so we hypothesise that this is most prob-
ably an artefact. Somewhat surprisingly, nad4L was rel-
atively conserved within the dataset. As regards cytb, 5′ 

Fig. 2  To-scale circular architectural maps of mitogenomes of P. homoion and P. yarkandense. The transcription direction is clockwise
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and 3′ ends were highly divergent in the dataset, but the 
rest was conserved. cox3 was relatively poorly conserved, 
with insertions and deletions throughout the sequences, 
but also with some universally conserved sites. Start 
codons for this gene were perfectly conserved among all 

species, but the two newly sequenced species exhibited a 
3′ elongation of 6 to 10 bases. Cox2 was more conserved, 
with fewer insertions and deletions. In P. homoion, cox2 
exhibited a 3′ end elongation of 12 bases. This occurred 
due to a loss of the T base, which changed the stop codon 

Table 1  The comparative table of mitogenomic architectures of P. yarkandense (left) and P. homoion (right)

a Intergenic region (negative values indicate overlaps)

Gene Position Size IGRa Codon

From To Start Stop

nad6 1/1 460/477 460/477 ATG/ATG​ T–/TAG​

trnY 461/471 525/527 65/57 0/−7

trnL1 527/535 593/601 67/67 1/7

trnS2 595/604 653/661 59/58 1/2

trnL2 657/662 722/727 66/66 3/0

trnR 723/729 786/794 64/66 0/1

nad5 780/798 2336/2339 1557/1542 −7/3 ATT/GTG​ TAG/TAA​

trnE 2341/2340 2404/2404 64/65 4/0

cytb 2412/2408 3566/3559 1155/1152 7/3 ATT/ATG​ TAG/TAA​

nad4L 3557/3544 3826/3810 270/267 −10/−16 GTG/TTG​ TAA/TAG​

nad4 3886/3762 5139/5018 1254/1257 59/−49 ATT/TTG​ TAG/TAG​

trnF 5140/5097 5206/5163 67/67 0/78

trnQ 5213/5365 5274/5424 62/60 6/0

NCR 5275/5164 5915/5364 641/201

atp6 5916/5430 6551/5985 636/556 0/5 ATG/ATG​ TAG/T–

nad2 6551/6154 7432/7059 882/906 −1/0 GTG/GTG​ TAG/TAA​

trnV 7431/7067 7494/7130 64/64 −2/7

trnA 7497/7135 7562/7197 66/63 2/4

trnD 7568/7197 7632/7263 65/67 5/−1

nad1 7633/7264 8554/8197 922/934 TTG/TTG​ T–/T–

trnN 8555/8198 8619/8261 65/64

trnP 8625/8271 8689/8343 65/73 5/9

trnI 8693/8352 8759/8420 67/69 3/8

nad3 8741/8421 9043/8697 303/277 −19/0 ATG/TTG​ TAA/T–

trnS1 9035/8698 9096/8755 62/58 −9/0

trnW 9099/8756 9166/8819 68/64 2/0

cox1 9170/8844 10,772/10422 1603/1579 3/24 GTG/ATT​ T–/T–

trnG 10,755/10447 10,819/10511 65/65 −18/24

NCR_2 10,820/5986 11,156/6153 337/168

trnT 11,157/10660 11,217/10723 61/64

rrnL 11,218/10724 12,186/11685 969/962

rrnS 12,187/11686 12,926/12426 740/741

cox2 12,927/12427 13,562/13071 636/645 ATG/GTG​ TAG/TAA​

trnM 13,566/13057 13,634/13121 69/65 3/−15

trnH 13,635/13122 13,698/13184 64/63

cox3 13,701/13187 14,471/13945 771/759 2/2 ATG/ATG​ TAG/TAA​

trnC 14,462/14138 14,522/14201 61/64 −10/0

trnK 14,528/14389 14,596/14453 69/65 5/0

NCR_3 14,597/10512 16,816/10659 2220/148

Overlaps: 9/5 Gaps: 15/14
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TAG into –AG and caused a frameshift mutation. As a 
consequence, there may exist a 15  bp overlap with the 
downstream trM (discussed above). We sequenced this 
segment twice to confirm this, and found no indications 
of an annotation artefact. The central part of cox1 was 
highly conserved, higher than any other gene, but both 
5′ and 3′ ends were remarkably divergent, at least for 
this usually highly conserved gene [43]. Paradiplozoon 
homoion exhibited an elongation of 15  bp at the 5′ end 
as compared with P. yarkandense and several other spe-
cies, but these were not the only species that exhibited a 
5′ elongation. Paradiplozoon homoion exhibited a slightly 
truncated 3′ end in comparison with most other species 
(but the 3′ end was not conserved among species so there 
is no reliable benchmark to compare it with), whereas P. 
yarkandense exhibited a slightly elongated 3′ end. As 3′ 
was highly divergent in the dataset, we have no reason 
to suspect sequencing or annotation artefacts. Atp6 was 
generally very poorly conserved, with only a few globally 
conserved sites and highly divergent 3′ end. Py exhibited 
a large insertion, which resulted in a slightly increased 
size in comparison with available orthologues (636  bp; 
compared with 556 in P. homoion).

Gene overlaps
Locations and sizes of intergenic regions and gene over-
laps were also remarkably divergent for nominal conge-
nerics (Table 1). Furthermore, several overlaps were very 
large. Accordingly, in the two studied species, most gene 
overlaps involved a tRNA gene, but we also identified 
some overlaps between two PCGs. A relatively large puta-
tive overlap between cox1 and nad4L was conserved in 
both species: P. yarkandense = 10 bp, P. homoion = 16 bp 
(Table  1). There was also a putative remarkably large 
overlap of 49 bases between nad4 and nad4L genes in 
P. homoion. Equally surprisingly, these two genes had 
59 bases of intergenic space in P. yarkandense. Although 
nad4L exhibited only a handful of universally conserved 
amino acids in the alignment of polyopisthocotylean 

orthologues (Additional file 1: Fig. S9), the P. yarkandense 
and P. homoion orthologues exhibited the identity of 60% 
(Fig. 6), which was an average similarity value for PCGs.

Other overlaps involved tRNA genes. In P. yarkan-
dense, trnI exhibited a large overlap of 19 bases with 
the downstream nad3. The alignment of trnI genes of 
Polyopisthocotylea indicated that only the 3′ was not 
highly conserved, and the P. yarkandense orthologue was 
remarkably similar to other genes (Additional file 1: Fig. 
S10), as additionally indicated by some of the highest 
identity levels between the two newly sequenced species 
of almost 78% (Fig. 6). Notably, this gene was annotated 
by MITOS, whereas ARWEN and R2DT failed to fold 
it into a cloverleaf structure. The trnI of P. homoion was 
successfully folded into a standard structure (Additional 
file 1: Fig. S11). It is unclear whether this is an indication 
of an algorithm artefact, posttranslational editing [44], or 
non-functionality. trnG of P. yarkandense overlapped by 
18 bases with the upstream cox1. This gene was less con-
served than trnI (Additional file  1: Fig. S12), but it was 
successfully recognised as a tRNA by all three algorithms 
employed. It could be folded into a cloverleaf structure, 
but its T-arm appeared rather crippled (Fig. 7a) as com-
pared with the P. homoion orthologue (Fig. 7b) and other 
polyopisthocotylean orthologues [11]. In P. homoion, 
trnM overlapped by 15 bases with the upstream cox2. 
Its 3′ end was rather poorly conserved among the ortho-
logues (Additional file  1: Fig. S13). Structurally, it was 
successfully folded into a perfectly standard cloverleaf 
structure, apart from its 3′ end (acceptor stem), which 
was truncated (Fig. 7c and d).

Discussion
Phylogenetic analysis of Polyopisthocotylea resolved all 
major taxa as monophyletic, and Mazocraeidea was split 
into two major clades: (Diplozoidae) + (all four remaining 
families: Diclidophoridae, Chauhaneidae, Mazocraeidae 
and Microcotylidae). It also provided further confir-
mation that the genus Paradiplozoon Akhmerov, 1974 
is paraphyletic and requires a taxonomic revision. The 

Fig. 3  Gene orders in Polyopisthocotylea. Species names are followed by GenBank accession numbers. The two newly sequenced species are 
shaded yellow. Family-level taxonomic identity is shown to the right. Partial mitogenomes are labelled with the letter P
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Fig. 4  The base composition of mitogenomes of Polyopisthocotylea

Fig. 5  AT and GC skews in mitogenomes of Polyopisthocotylea
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paraphyly of Paradiplozoon is a recognised scientific fact 
[13, 16, 23, 42, 45]. In the study that described P. yarkan-
dense, the ITS-2 sequence grouped it with Paradiplozoon 
bingolense and Paradiplozoon krugerense [23]. This clade 
was recognised as “Genus 3” in a recent review of diplo-
zoid phylogeny [13]. No other species nominally included 
in the “Genus 3” were available for our analysis, so P. 
yarkandense clustered with the only available “Genus 2” 
species—P. opsariichthydis. This is in agreement with the 
proposed sister group relationship of “Genus 2” (Parad-
iplozoon) and “Genus 3”, which together form the Clade2 
[13]. Clade 1 comprised a number of different genera: 
Eudiplozoon, Sindiplozoon, Inustiatus and Genus 1. The 
Genus 1 clade comprised Diplozoon and some Parad-
iplozoon species, including the P. homoion complex [13]. 
Sindiplozoon sp. and P. homoion forming a separate clade 
in our analysis supports the above topology, as they cor-
respond to the above described “Clade 1”. The authors 
proposed that the “Genus 1” clade should revert to the 
type genus Diplozoon von Nordmann, 1832 [13]. Follow-
ing this proposal, which is also supported by our study, 
the species currently denominated P. homoion may have 
to be renamed Diplozoon homoion. Remarkably, “Genus 
3” contains species from Africa, Turkey and an unidenti-
fied sequence from China [13]. Our findings provide an 
additional indirect indication that this may be a unique 
genus, sufficiently evolutionarily old to have such a wide 
distribution (alternatively the distribution may be of a 

recent origin due to global trade, but in that case, this 
should show as a poorly resolved topology). The authors 
also proposed that the appropriate designation for 
Genus 3 may be Indodiplozoon, given that all specimens 
were collected from river systems that eventually enter 
the Indian Ocean, which may indicate that members of 
this proposed genus have an Indo-Pacific ancestor [13]. 
Accordingly, P. yarkandense may have to be renamed 
Indodiplozoon yarkandense. This taxonomic revision 
is further supported by remarkably low identity values 
between genes of nominally congeneric P. yarkandense 
and P. homoion. Additionally, the geographic distribu-
tion of the genus Indodiplozoon indicates that it may be 
evolutionarily rather old. In this light, it should be noted 
that the species inhabits the endorheic Tarim Basin in 
Xinjiang, China. However, a number of rivers from Xin-
jiang and geographically close Tibet and Qinghai empty 
into the Indian Ocean, so this finding may not directly 
contradict the above hypothesis. We should note that 
the accuracy of taxonomic revision is affected by a lim-
ited number of morphological parameters useful for the 
identification and classification of these species, as well 
as insufficiently detailed previous morphological descrip-
tions and unavailability of sufficiently detailed and com-
plete morphological maps [12, 13]. As a result, currently 
we do not have morphological comparative data that per-
fectly support the molecular results, or we even have con-
flicting signals from molecular and morphological data. 

Fig. 6  Gene identity (%) values between the genes of P. yarkandense and P. homoion 
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For example, molecular data indicate that Paradiplozoon 
homoion should be assigned to the genus Diplozoon, but 
morphologically this species better resembles the classi-
cal Paradiplozoon features: the anterior part of the body 
between the opisthaptor and the area of the reproductive 
organs does not have a prominent disc dilation [46, 47] 
(more details in Additional file 1: Text S1 and Figs. S1 to 
S5). Similarly, the three Diplozoon species that putatively 
belong to the Genus 3 (Indodiplozoon) also share the 

basic characteristics of the genus Diplozoon (a prominent 
disc dilation in the anterior part of the body) [47]. There-
fore, in cases where morphological data do not directly 
support the molecular data, we should seek agreement 
between both mitochondrial DNA (mtDNA) and nuclear 
DNA (nucDNA) data before going forth with taxonomic 
revision.

Unfortunately, in some cases, mtDNA and nucDNA 
data sometimes also produce contradictory results. For 

Fig. 7  Secondary structures of tRNA genes. a P. yarkandense trnG. b P. homoion trnG. c P. homoion trnM. (d) P. yarkandense trnM
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example, Eudiplozoon forming a sister group to all other 
available Diplozoidae is in disagreement with the topol-
ogy produced by the ITS-2 sequences, which indicates 
that more studies with new molecular data are needed 
to resolve the phylogeny of Diplozoidae. It may also be 
important to note that a study based on nuclear 18S and 
28S genes found that Mazocraeidae was the only polyo-
pisthocotylean family that exhibited an elevated evo-
lutionary rate [9], but mitogenomic sequences do not 
follow this pattern: Diplozoidae exhibited the longest 
branches in the dataset. Although our results provide fur-
ther indications that mitogenomes may be a useful tool in 
the phylogenetics of Diplozoidae and Polyopisthocotylea, 
there are currently too few mitogenomic sequences avail-
able to conclude this with confidence.

Our study provides further evidence that mitogenomes 
of Diplozoidae are evolving at elevated rates within the 
polyopisthocotylean dataset. This was reflected in their 
exceptionally long branches, large sizes, unique base 
composition, large base composition skews, and very low 
gene sequence similarity levels between the two newly 
sequenced species. As an example, even the normally 
highly conserved cox1 gene [43] exhibited an identity 
value of only 71.67%, which is exceptionally low for meta-
zoans on average, but not uncommon in Platyhelminthes 
[48]. Similar values were also observed in the previous 
Diplozoidae analysis [11]. Unique base composition and 
increased skews in Diplozoidae were also observed in 
the previous study [11]. Increased skews might be reflec-
tive of reduced purifying selection pressures [49], which 
would also explain long branches. The A+T-base con-
tent is commonly high in monogenean mitogenomes [2, 
31, 32]. Remarkably, the elevated AT content in the Pol-
yopisthocotylea is largely driven by the high T-base con-
tent, whereas the reduced AT content in Diplozoidae was 
driven solely by the strongly reduced A-content in com-
parison with other polyopisthocotylids. As their reduced 
A+T-base composition bias is reflective of their faster, 
and not slower, evolution, this indicates that the AT 
content of Diplozoidae might be evolving in the oppo-
site direction of most other Monogenean mitogenomes, 
towards lower values. In some other aspects, the two 
newly sequenced mitogenomes possessed typical gen-
eral characteristics of most flatworm and all neoderma-
tan mitogenomes; e.g. all genes are transcribed from the 
same strand and the atp8 gene could not be identified [8, 
11, 50, 51]. It should be noted that we identified a num-
ber of putative ORFs in both large NCRs, but comparison 
with previously annotated flatworm atp8 genes did not 
reveal any similarity. Without gene and protein expres-
sion data, it remains impossible to assess whether these 
putative ORFs are expressed and functional. The gene 
order exhibited by Eudiplozoon sp. and Sindiplozoon 

sp. was previously recognised as the ancestral architec-
ture for the Diplozoidae, and putatively even for Polyo-
pisthocotylea [11]. Our study offers further support for 
this hypothesis, as both newly sequenced mitogenomes 
exhibit the putative ancestral gene order.

We identified remarkably large overlaps between genes. 
Usually, overlaps in metazoan mitogenomes involve 
tRNA genes, which is believed to be a consequence of 
lesser evolutionary constraints on tRNA sequences [44]. 
The overlaps between atp6/atp8 and nad4/nad4L are 
common in a broad range of metazoan lineages, perhaps 
due to their evolutionary conserved translation from 
a bicistronic mRNA [19, 52–57] and the fact that atp8 
and nad4L are small genes that appear to evolve under 
relaxed evolutionary constraints, as evidenced by the 
absence of atp8 from several major metazoan lineages 
[19]. Overlaps between PCGs of less than 10  bp have 
been experimentally confirmed in a nematode species 
[58], but the exceptionally large overlap between cox1 
and nad4L observed here appears to be very rare. Much 
larger overlaps involving tRNA genes have been observed 
and experimentally confirmed in Armadillidium vulgare 
(Arthropoda: Isopoda) [44]. However, this was explained 
by the apparent existence of strong evolutionary pres-
sure for a reduced mitogenomic size [44], which does not 
appear to be the case in the newly sequenced Diplozoi-
dae species, as they possess larger than average mitoge-
nomes. While relaxed purifying selection pressures may 
also be a putative explanation for the existence of unusu-
ally large overlaps, their existence remains an evolution-
ary puzzle. Finally, although we did our best to confirm 
these overlaps by conducting detailed comparative analy-
ses and considering alternative start and stop codons, 
without the transcriptomic data, we cannot be 100% con-
fident that these are not annotation artefacts.

Conclusions
Due to their comparative advantages, mitogenomic 
sequences are a popular marker for phylogenetic stud-
ies, but their applicability is still somewhat curbed by 
the fact that many taxonomic categories remain poorly 
or not at all represented. Furthermore, multiple studies 
have indicated that in some cases, mitogenomes may also 
produce artefactual relationships [59–61]. Although our 
initial findings are promising, future studies should be 
very cautious in this aspect, and seek agreement between 
the topology produced by mitogenomic, nuclear, and ide-
ally morphological data, to assess whether mitogenomic 
data can be used with confidence to conduct a thorough 
revision of the taxonomy and phylogeny of Diplozoidae. 
Furthermore, as the reasons for their elevated evolution-
ary rates remain unknown, Diplozoidae are a remarkably 
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interesting lineage for other types of evolutionary mitog-
enomic studies.
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