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(3) equivariant network for flexible
protein–ligand docking†

Jintao Zhu, ‡a Zhonghui Gu, ‡b Jianfeng Pei *a and Luhua Lai *abcd

Molecular docking, a key technique in structure-based drug design, plays pivotal roles in protein–ligand

interaction modeling, hit identification and optimization, in which accurate prediction of protein–ligand

binding mode is essential. Conventional docking approaches perform well in redocking tasks with known

protein binding pocket conformation in the complex state. However, in real-world docking scenario

without knowing the protein binding conformation for a new ligand, accurately modeling the binding

complex structure remains challenging as flexible docking is computationally expensive and inaccurate.

Typical deep learning-based docking methods do not explicitly consider protein side chain

conformations and fail to ensure the physical plausibility and detailed atomic interactions. In this study,

we present DiffBindFR, a full-atom diffusion-based flexible docking model that operates over the

product space of ligand overall movements and flexibility and pocket side chain torsion changes. We

show that DiffBindFR has higher accuracy in producing native-like binding structures with physically

plausible and detailed interactions than available docking methods. Furthermore, in the Apo and

AlphaFold2 modeled structures, DiffBindFR demonstrates superior advantages in accurate ligand binding

pose and protein binding conformation prediction, making it suitable for Apo and AlphaFold2 structure-

based drug design. DiffBindFR provides a powerful flexible docking tool for modeling accurate protein–

ligand binding structures.
1 Introduction

The primary paradigm of drug discovery involves identifying
and designing molecules that target key proteins within disease
pathways. Historically, screening compound libraries using
biochemical platforms has been the predominant approach for
identifying novel drugs.1 Since the 1990s, high-throughput
screening (HTS) has been employed on libraries ranging from
500 000 to 108 molecules,2,3 leading to the discovery of several
drugs. While the HTS libraries represent a signicant
advancement over traditional lab-designed ones, they encom-
pass only a fraction of potential drug-like molecules.4 Given the
challenges and expenses associated with synthesizing such
a vast chemical space, computational methods for screening
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virtual libraries are frequently employed in drug discovery,
allowing exploration of chemical spaces comprising tens of
billions of molecules or even more.5–7

Structure-based virtual screening (SBVS) enables rapid and
cost-effective modeling of target-molecule binding structures
from large-scale compound libraries together with the evalua-
tion of their binding affinities for identifying potential hits.8–10

Molecular docking is one of the most frequently employed
techniques for SBVS, which is utilized to predict ligand binding
poses, characterize protein–ligand binding strength, and iden-
tify key interactions.11,12 In general, conventional docking
approaches, including AutoDock4,13 AutoDock Vina,14,15

Smina,16 Glide,17 and GOLD,18 leverage heuristic search algo-
rithms, to explore a variety of potential ligand conformations.
Scoring functions with simplied terms are utilized for fast
estimation of binding affinity and priority of ligand poses.

Classical molecular docking methods describe protein–
ligand interactions based on the lock-and-key model,19 wherein
a rigid receptor binding pocket serves as the “lock” and the
molecular docking algorithm primarily optimizes the ligand's
conformation to nd a complementary “key”. Such rigid
receptor docking methods, for the trade-off between accuracy
and computational efficiency, strive to determine the optimal
and complementary binding conformation. When known
complex structures are available, and ligand molecules are
removed and then re-docked into the native Holo pockets, rigid
© 2024 The Author(s). Published by the Royal Society of Chemistry
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receptor docking oen achieves impressive success rate.20

However, in real-world docking tasks without knowing the
binding conformation in advance, ligand induced pocket
conformational changes may produce wrong docking results.21

Virtual screening and rational design on the unbound (Apo) or
computationally modeled structures usually give unsatised hit
rate.22–27 Without accounting for pocket exibility, the perfor-
mance of docking methods experiences drastic decrease in such
cases,28 which may rule out potential hits during the early stage
of drug discovery. Although AlphaFold29 is capable of accurately
modeling target protein structures, traditional docking
methods that overlook potential side chain exibility perform
less effectively when applied to the predicted structures.30

Currently, there are two main strategies to address the ex-
ibility of protein pockets. The rst approach involves inducing
local conformational rearrangements of the target using force
eld or scoring function-based calculations. For instance,
rDock31 allows movements of functional groups that can form
hydrogen bonds including –OH and –NH3. AutoDockFR (Auto-
Dock for Flexible Receptors)32 allows users to specify up to 14
exible side chains in advance and samples reasonable side
chain dihedral angles from a rotamer library. Despite its better
performance than AutoDock Vina in cross-docking benchmarks
with Apo structures, it is considerably time-consuming and
requires prior knowledge of potentially critical side chains in
the pocket, which limits its application in SBVS. These methods
consider partial exibility of pockets and are suitable to handle
the cases with only minor conformational rearrangements
mainly resulting from side chain movements. There are a few
methodologies that have been carefully devised to account for
full exibility, primarily categorized into ensemble docking and
induced t docking.33 Ensemble docking aims to implicitly
mimic the dynamical behavior of a receptor's binding site rep-
resented by a conformational ensemble.34 The most common
implementation is straightforward by docking each ligand to
multiple rigid conformations of a receptor. The conformational
ensemble could be obtained either by crystallographic struc-
tures or structure models derived through computational
methods such as molecular dynamics (MD) simulation35 and
normal modes.36 Clearly, ensemble docking depends signi-
cantly on the diversity and structural quality of the conforma-
tional ensemble for well-dened representation of the
receptor's exibility. It has been observed to be ineffective in
identifying the true receptor conformations derived from clus-
tering.37 Instead, Schrödinger IFD-MD,38 one of the rigorous
induced t docking workows, explicitly emulates the interac-
tions between receptors and ligands. IFD-MD elaborately inte-
grates pharmacophore docking, rigid receptor docking, energy-
driven binding site renement, and MD simulations for
multiple iterations.38 IFD-MD requires a template pose which
can be obtained either by docking a known binder to the target,
or by aligning the structure to a protein homologue and graing
the post-aligned ligand coordinates. Such a knowledge-based
approach adroitly leverages the available protein–ligand inter-
action patterns or homologous ones, which ensures the gener-
ation of a reliable initial pose. The placement oen results in
clashes between the ligand and the pocket, which can be
© 2024 The Author(s). Published by the Royal Society of Chemistry
resolved later in the side chain repacking and backbone mini-
mization. Subsequently, multiple independent MD simulations
and metadynamics simulation for the assessment of pose
stability are run. Finally, the nal poses are ranked by
a composite scoring function. It is evident that this workow
burdens a signicant allocation of computational resources.38,39

Despite the efforts to relax the systems, it generally fails in cases
involving backbone motion.38,39

The second approach is the recently developed deep
learning-based methods,40 which coarsen the representation of
protein pockets by only encoding the protein backbone atoms
without explicitly including side chain atoms. This kind of
representation is insensitive to minor pocket backbone exi-
bility and side chain adaptability. Earlier works, like Deep-
Dock,41 TankBind,42 and EDM-Dock,43 predicted pocket residue-
ligand distance map, which is used to reconstruct the binding
structure. Leveraging powerful equivariant neural networks like
EGNN,44 geometric deep learning45 models such as EquiBind,46

LigPose,47 E3Bind,48 Uni-Mol,49 and KarmaDock50 iteratively
predict the three-dimensional coordinates of ligands directly
around the whole protein (blind docking) or predened pocket.
Recent SOTA blind docking method DiffDock,51 based on the
diffusion generative modelling,52 employed the SE(3) equivar-
iant neural network53 to denoise the rotation, translation, and
bond torsion of ligand, and then rank poses by additional
condence model. However, these existing deep learning-based
docking approaches face limitations in effectively handling
protein exibility and the generated ligand poses are oen
implausible.54 The generated ligand structures oen contain
clashes with the target and irrational bond lengths, angles, and
torsion angles that lead to high intra energies. Ligand confor-
mational optimization using tools such as RDKit alignment50,55

cannot completely alleviate ligand and protein clashes.
Furthermore, ignoring the target exibility and validity of
ligand poses makes it challenging for these deep learning-based
methods to capture key interactions in docking.54 Recently,
building upon the methodology of optimizing ligand coordi-
nate recycling as developed in LigPose and KarmaDock, a deep
learning-based exible docking method named FlexPose56 has
extended its predictive capabilities of pocket side chain coor-
dinates. This advancement allows for more details of interac-
tion information in cross-docking applications. However, like
LigPose and KarmaDock, FlexPose encounters the same
inherent limitation. The methodological focus on tting coor-
dinates within Euclidean space tends to overt the overall
RMSD (Root Mean Square Deviation). Consequently, FlexPose,
akin to its predecessors, is inevitably limited by conformational
rationality. Overall, these inadequacies of current methods
impede subsequent steps, such as post-optimization of ligands
by experts based on the detailed interactions or conducting
further studies through molecular dynamics simulations.

Early Apo–Holo pair analysis has shown general consensus
that upon ligand binding protein pocket undergoes signicant
side chain conformation heterogeneity while backbone is rela-
tively rigid in most cases.57–59 Therefore, in most cases, side
chain exibility modelling is enough for exible docking. In this
study, we developed a full-atom exible docking model,
Chem. Sci., 2024, 15, 7926–7942 | 7927



Fig. 1 The architecture of DiffBindFR. (A) Overview of score-based generative modeling through SDE for flexible docking. The flexible docking
process is decomposed into ligand translation, rotation, bond torsion and pocket side chain torsion. (B) Construction of full-atom interaction
graph. According to the real-time coordinate of each atom, we build the spatial graph as model input. (C) The architecture of SE(3) equivariant
graph convolution. It serves as the trunk block of DiffBindFR network. hi and Xi are the irreducible representations (Irreps) and coordinate of atom
i, respectively. The distance and vector between atom i and atom j are embedded through Gaussian radial basis (RBF) and spherical harmonics
basis (SH) respectively, to get their edge scalar representations jij and edge vector Irreps Y(̂rij). Then, Deep Tensor Product from e3nn library is
served as message-passing module to gather messages from neighborhood, followed by an equivariant Layer Normalization (Layer Norm)
module to get the updated Irreps h

0
i . (D) The output readout of DiffBindFR network contains the predicted score of pocket side chain torsion,

ligand rotatable bond torsion, ligand rotation and ligand translation. These scores are used to solve the reverse SDE for binding structures
sampling.
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DiffBindFR, based on the diffusion framework (Fig. 1). In the
comprehensive evaluation, starting from pocket conformations
with randomized side chain torsion angles, DiffBindFR
outperforms state-of-the-art (SOTA) deep learning techniques
and traditional docking methods. Owing to the explicit full-
atom modeling of pocket residues, and its learning of joint
optimization of variables within the entire system across
a product space composed of torsional angles, rotations, and
translations, DiffBindFR can not only accurately recover protein
pocket side chain conformations, but also generate precise and
highly physically plausible ligand binding poses. In cross-
docking benchmark, DiffBindFR, due to its capability of full
pocket side chain optimization, signicantly outperforms
traditional exible docking methods like IFD-MD,38 AutoDock
VinaFlex32 and rDock.31 It also gives superior performance in
generating both accurate and valid binding structures
compared to existing docking methods in the Apo dataset and
AlphaFold2 modeled structures.

2 Overview of DiffBindFR

We formulated exible docking as a problem of learning the
joint denoising process of four variables in their tangent space:
ligand rotation R, translation T, rotatable bond torsion s, and
pocket side chain torsion c. Following the VE-SDE (variance
exploding stochastic differential equation) paradigm,60 start-
ing from the crystal complex P(x(0)) = P(R(0), T(0), s(0), c(0)),
7928 | Chem. Sci., 2024, 15, 7926–7942
the forward process of the diffusion model, P(x(t)jx(0)),
involves uniformly and continuously sampling time step t ˛
[0, 1] and injecting noise to the four kinds of movement
operator to achieve binding structure perturbation. Diff-
BindFR is an SE(3)-equivariant generative model, following the
message-passing paradigm61 of graph neural network, that
encodes the intricate interactions between the full-atom
pocket and ligand, and predicts the scores Vx(t) log Pt(x(t)).60

In the docking procedure, starting from the randomly initial-
ized binding conformation, the scores predicted by DiffBindFR
are used to solve the reverse VE-SDE process60 to implement
denoising sampling. With physics-based scoring function
Smina16 or mixture density neural network (MDN)41 serving as
condence model, binding structures sampled by DiffBindFR
can be ranked, and then the top-1 complex pose can be
selected as the nal prediction.
2.1 Diffusion generative model

The diffusion model utilize the framework of stochastic differ-
ential equations62 to diffuse the data distribution described as
follows:

dx = f(x,t)dt + g(t)dw (1)

For x˛ℝD, f ðx; tÞ˛ℝD�D denotes a vector-valued function
called the dri coefficient of x(t), and gðtÞ˛ℝR�R denotes a scalar
© 2024 The Author(s). Published by the Royal Society of Chemistry
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function called the diffusion coefficient of x(t). The lack of
canonical local coordinate system dened for ligand molecules,
makes the dri coefficient hard to design for the ligand rota-
tion. Consequently, the dri coefficient f(x,t) is set to be 0, and
the model becomes the score-based generative model.60 The
reverse diffusion running backwards in time, which is also
known as the denoising process, is given by the following
reverse-time SDE:

dx = −g(t)g(t)TVx(t) log Pt(x)dt + g(t)d �w (2)

To estimate Vx(t) log Pt(x), we can train a score-based neural
network Sq(x(t),t) to t it. The standard score-match loss func-
tion is as follows:

JðxÞ ¼ Et

h
lðtÞExðtÞ�Ptj0ðxðtÞjxð0ÞÞh

kSqðxðtÞ; tÞ � VxðtÞ log Ptj0ðxðtÞjxð0ÞÞk2
ii

(3)

lðtÞ ¼ 1=ExðtÞ�Ptj0ðxðtÞjxð0ÞÞ½kVxðtÞ log Ptj0ðxðtÞjxð0ÞÞk2� is the pre-
computed weight factors.

2.2 Pose transformations and diffusion on the product space

We choose the specic SDE for forward diffusion process as
follows:

dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ds2ðtÞ
dt

r
dw; where sðtÞ ¼ smin

1�tsmax
t; t˛½0; 1� (4)

s(t) = {sR(t), sT(t), ss(t), sc(t)} denotes the noises that injected
into ligand rotation R, translation T, rotatable bond torsion s
and pocket side chain torsion c. According to the specic group
that each variable lies in, we would design the form of corre-
sponding s carefully for diffusion kernel and the score
computation. For a ligand pose with n atoms, Xl˛ℝ3�n, trans-
lation of a ligand pose T˛ℝ3 lies in the 3D translation group
Tð3Þ. The diffusion kernel for ligand is a Gaussian function with
variance sT as follows, which is also utilized for computing the
score of ligand translation VPtj0(Xl(t)jXl(0)):

Ptj0ðXlðtÞjXlð0ÞÞ ¼ N ðXlð0Þ; sTðtÞÞ (5)

As rotation of a ligand pose lies in the 3D rotation group
SOð3Þ, IGSO(3) distribution63,64 was chosen as the diffusion
kernel. In specic, rotation matrix R˛ℝ3�3 can be split into
a unit vector bu˛soð3Þ uniformly as the rotation axis and a axis-
angle u ˛ [0, p]. Consequently, the functionality of sR can be
replaced by û and u. The diffusion kernel for ligand rotation is
as follows:

Ptj0(R(t)jR(0)) = R(û,u)R(0) (6)

The score of rotation diffusion can be computed according to

Vln PtðRðtÞjRð0ÞÞ ¼
�

d

du
log f ðuÞ

�bu (7)

f ðuÞ ¼
XN
l¼0

ð2l þ 1Þexp��lðl þ 1Þ32�2� sinððl þ 1=2ÞuÞ
sinðu=2Þ (8)
© 2024 The Author(s). Published by the Royal Society of Chemistry
where 3 is a scalar variance for parameterizing the IGSO(3)
distribution. Torsion of pocket side chains and ligand rotatable
bonds lie in the SO(2)m group and SO(2)k group respectively,
where m and k denote the number of all c from the pocket side
chain and all s from the ligand. Since each torsion angle coor-
dinate lies in [0, 2p), them torsion angles of a conformer dene
a hypertorus T

m. We introduced the diffusion kernel from the
work of Torsional Diffusion65 to satisfy angle periodicity, and
compute its score VPtj0(c(t)jc(0)) as follows:

Ptj0ðcðtÞjcð0ÞÞf
X
d˛ℤm

exp

 
� kcð0Þ � cðtÞ þ 2pdk2

2sc
2ðtÞ

!
(9)

Torsion of ligand rotatable bonds are dealt with the same
way as pocket side chains.

Following the eqn (3), the loss function is set as follows:

JðxÞ ¼ JðRÞ þ JðTÞ þ
Xk
1

JðsÞ þ
Xm
1

JðcÞ (10)

The forward diffusion and reverse diffusion are both performed
in the product space66 of Tð3Þ � SOð3Þ � SOð2Þk � SOð2Þm, corre-
sponding to the aforementioned four kinds of transformation.

During the forward diffusion process, wewould sample t˛ [0, 1]
for each pocket–ligand pair, and then utilize the dened diffu-
sion kernel to sample each transformation. The torsions of
ligand and pocket side chains are rst applied to the pose,
followed by translation and rotation.

The starting point of the denoising stage is a ligand
conformation generated by RDKit55 and pocket side chains,
with each type of transformation sampling from their smax.
According to eqn (2), we update complex pose using the pre-
dicted score for each type of transformation. Aer applying the
translation and rotation matrix constructed from predicted
score, torsion angles get updated. It is noteworthy that there
exists entanglement between ligand translation/rotation and its
bond torsion, ligand pose need to be re-aligned aer bonds are
twisted, which will lead to model-unaware structural alignment
error. With the sampled pocket side chains xed, we perform
fast local energy relaxation on the pose using Smina16 for error
correction, obtaining the nal binding conformations. The
number of the denoising steps is dened as 22, and 40 poses are
sampled for each pocket–ligand pair, which takes in average
50 s when the batch size is set to 16 on a single 32 GB NVIDIA
Tesla V100-SXM2 GPU card.

2.3 Condence model

We have explored two approaches to rank the poses generated
by DiffBindFR. First, the traditional scoring function Smina is
utilized to quickly score the generated full-atom pocket–ligand
poses. Second, a deep learning-based scoring model based on
mixture density network (MDN) is trained to t the distance
distribution between ligand atoms and pocket residues. The
architecture of our MDNmodel is similar to the scoring module
of KarmaDock, and it shares the similar input representations
with DiffBindFR. To better cater for the full-atom complex
Chem. Sci., 2024, 15, 7926–7942 | 7929
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system, we set the distance pairs as each ligand atom with their
nearest atoms from each pocket residues. More details of MDN
model can be found in ESI Section 5.†

3 Datasets and evaluation metrics
3.1 Datasets

3.1.1 PDBbind time-split dataset. We use the PDBbind
v2020 dataset67 for training and evaluation. For each target
protein–ligand pair within the PDBbind v2020 dataset, we
dene the protein pocket as any residues within 12 Å buffer of
any heavy atoms in the ligandmolecule. Following the time split
strategy proposed by the work of EquiBind,46 where 363 complex
structures uploaded later than 2019 serve as test set. Aer
removing ligands that exist in the test set, the remaining 16 739
structures are used for training and 968 structures are used for
validation. The dataset is named as “PDBbind time-split data-
set” in the article.

The time-split of PDBbind is supported to be more strict and
reasonable with the protein sequence similarity of 0.484
between test set and training&validation set, compared to
CASF2016-split whose protein sequence similarity is 1.00 (ESI
Table S3†). Volkov et al.68 have shown that the time-split of
PDBbind is more practical and critical over articial splits such
as ligand scaffolds or protein sequence/structure similarity for
the model generalization in drug repurposing, lead optimiza-
tion, and virtual screening.

3.1.2 Posebusters test set. The PoseBusters test set54 is
a meticulously curated collection of crystal complexes sourced
from the PDB.69 This set encompasses a diverse array of high-
caliber, recent protein–ligand complexes characterized by
drug-like molecules. With 428 distinct complexes, inclusive of
unique proteins and ligands released since 2021, it ensures no
overlap with the complexes found in the PDBbind v2020
dataset.

3.1.3 CD test set. Given the current absence of a large-scale
benchmark dataset for cross-docking, especially to address
various cross-docking scenarios (including Apo–Holo and cross-
docking between different Holo states), we have established
a benchmark dataset tailored for the cross-docking evaluation,
termed CD test set. We integrated ApoRef,24 a test set con-
structed by constrained MD for inducing Apo-like pockets into
Holo-like pockets; several prominent ensemble docking targets
including CDK2, EGFR, FXA; CASF2016;67 DUDE27-HoloEns
consisting of Holo structure ensembles from 27 targets in
DUD-E70 ltered by Zhang et al.26 and GPCR-AF2 30 that contains
18 human GPCR complexes published aer April 30, 2018.
ApoBind,71 AHoJ72 and SIENA73 are utilized to search for corre-
sponding Apo and Holo states based on queried Holo struc-
tures, thereby creating pairs for the Apo–Holo and Holo–Holo
mixed cross-dock dataset. The detailed protocol for construct-
ing the CD test set can be found in ESI Section 1.† The nalized
CD test set comprises of 14 462 structural pairs for cross-
docking benchmark tests.

3.1.4 DUDE27-AF2 test set. The DUDE27-AF2 test set is an
induced t docking test set from the work of Zhang et al.,26

which contains the Holo and AF2 predicted structures of 27
7930 | Chem. Sci., 2024, 15, 7926–7942
targets from DUD-E70 that are suitable for IFD-MD renement.38

It also contains rened AF2 modeled structures using the IFD-
MD based on the ligand template either by the ideal aligned
Holo ligand or docked pose sampled in the Apo pocket using
Glide. See details in ESI Table S10.†
3.2 Evaluation metrics

We utilize the Ligand Root Mean Square Deviation (L-RMSD) to
assess the predictive quality of ligand conformations. Mean-
while, the evaluation of side chain conformations' predictive
quality is based on the side chain Root Mean Square Deviation
(sc-RMSD). Let Xpred

l represents the generated ligand pose, and
Xgt
l denotes the native ligand pose.
3.2.1 L-RMSD. We take into account Ligand Root Mean

Square Deviation (L-RMSD) corrected for symmetry. The precise
calculation formula is given below. Herein, N represents the
number of heavy atoms in the ligand, and isom denotes the
isomers of the ligand molecular graph.

L-RMSD ¼ argmin
X isom
l

�isomðXgt

l Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

�
X isom

l ðiÞ � X
pred
l ðiÞ

	2vuut
(11)

3.2.2 Success rate. L-RMSD < 2 Å is widely recognized as
a benchmark indication of successful docking.74 In fact, for
cross-docking evaluations, the threshold for determining
docking success can be relaxed to 2.5 Å. Nonetheless, to ensure
equitable comparison, we adhere to the stricter threshold in
this context.

3.2.3 PB-success rate. The PoseBusters test suite serves as
a rigorous validation tool, assessing both the chemical and
geometric consistency of a ligand, inclusive of its stereochem-
istry. Moreover, it evaluates the physical plausibility of intra-
molecular and intermolecular measurements, focusing on
factors like the planarity of aromatic rings, canonical bond
lengths, and potential protein–ligand clashes. Therefore, the
PoseBusters suite provides users a more accurate and realistic
estimation of the success rate, PB-success rate, through further
checking the physical plausibility of poses with L-RMSD < 2 Å.

3.2.4 sc-RMSD. Given that the pocket backbone remains
xed, we compute the RMSD for the side chains of each residue
individually and subsequently average the results. Furthermore,
in consideration of the symmetrical topology inherent in side
chain structures, symmetry corrections have been implemented
for the ASP, GLU, PHE, and TYP residues. We regard an sc-
RMSD value of less than 1 Å as indicative of success.
4 Results and discussion
4.1 Performance on the PDBbind time-split test set

The performance of DiffBindFR is rst assessed on the PDBbind
time-split test set.46,67 We employed two metrics, including
ligand Root Mean Square Deviation (L-RMSD) and side chain
Root Mean Square Deviation (sc-RMSD) for the exible docking
evaluation. As is depicted from Fig. 2(B) (DiffBindFR-best),
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 2 (A) Overview of the DiffBindFRworkflow. Various complex poses are generated by DiffBindFR network and confidencemodels are utilized
to select the top-1 complex pose. Performance of DiffBindFR in PDBbind time-split test set for L-RMSD (B) and sc-RMSD (C). For each complex,
40 poses are generated. Distributions of L-RMSD and sc-RMSD are computed between DiffBindFR generated poses and ground-truth complex
poses. Here, “DiffBindFR-best” means certain metrics are from the pose with the lowest L-RMSD generated by DiffBindFR model; “DiffBindFR-
Smina” represents the DiffBindFR generated top-1 poses for each complex ranked by Smina scoring function; “DiffBindFR-MDN” represents the
DiffBindFR generated top-1 poses for each complex ranked by MDN confidence model.
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among the best poses (with lowest L-RMSD) from 40
DiffBindFR-generated poses for each complex, 76.0% of the
ligand poses achieve successful docking (L-RMSD < 2 Å). Of
these successful DiffBindFR-best poses, 77.4% exhibit reliable
side chain recovery (sc-RMSD < 1 Å). The results of ablation
experiments conducted on the hyperparameters related to
network sampling and denoising within the DiffBindFR
framework are detailed in ESI Fig. S3.† DiffBindFR-best repre-
sents the optimal scenario achievable by the DiffBindFR model,
assuming a perfect condence model could identify all the best
poses. To enhance pose selection, we have developed two
condence models for ranking the generated poses (Fig. 2(A)).
The rst model (DiffBindFR-Smina) employs the all-atom
physics-based scoring function Smina,16 and the second one
(DiffBindFR-MDN) utilizes a MDN (Mixture Density Network)
network (Fig. S2†) trained on the PDBbind time-split training
set by this work. Using Smina to select the top-1 binding poses,
DiffBindFR-Smina attains a success rate of 51.2% in the
PDBbind time-split test set. Among the top-1 poses ranked by
Smina, 74.7% have reliable side chain recovery. The results
demonstrate that DiffBindFR can accurately reconstruct the
side chain conformations consistent with experimental pocket–
ligand interactions, allowing the Smina to effectively select
high-quality binding poses. When ranking sampled poses via
the MDN model, DiffBindFR-MDN achieves a little bit lower
success rate of 46.3% compared to DiffBindFR-Smina. Among
the top-1 poses ranked by MDN condence model, 75.2% have
reliable side chain recovery.

Subsequently, the performance of traditional and recent deep
learning-based methods is evaluated for comparison. The top-1
docking poses of each method, selected based on its condence
model or scoring function, are analyzed. DiffBindFR-Smina and
DiffBindFR-MDN signicantly outperform other deep learning-
© 2024 The Author(s). Published by the Royal Society of Chemistry
based pocket docking methods (Fig. 3(A)), including Karma-
Dock with RDKit55 ligand conformation alignment (KarmaDock
Align) and TankBind with predened pocket (TankBind-Pocket).
This highlights the advantage of our full-atom based model.
Even when compared to the traditional rigid receptor docking
methods AutoDock Vina and Glide, with the experimentally
determined side chain conformations (redock), DiffBindFR-
Smina achieves a marginally higher success rate without
knowing the side chain conformations in the complex. It is
noteworthy that on this test set, the re-docking success rates of
Glide and AutoDock Vina are only 42.2% and 46.3%, respectively,
which may be lower than the expectations for conventional
methods in re-docking performance.15,75 Our analysis suggests
that this discrepancy could stem from dataset differences and the
extent of exhaustive sampling (ESI Section 10†).

We further used Rosetta76 to repack side chain conforma-
tions in these Holo structures to simulate an Apo-like state for
each target protein. The docking success rate of Vina and Glide
signicantly decreases in these Apo-like proteins, underscoring
the limitations of rigid receptor docking methods in handling
side chain movements and the importance of exible docking
in virtual screening. To illustrate the challenges of exible
docking, we re-trained the KarmaDock by integrating a ResNet
module77 (ESI Fig. S4†) for predicting side chain torsion angles,
resulting in a new model named KarmaDock-sc Align. Diff-
BindFR signicantly surpasses KarmaDock-sc Align in terms of
side chain recovery (Fig. 3(B)). Compared to KarmaDock, the
performance of KarmaDock-sc Align signicantly declines
(Fig. 3(A)) due to the difficulty in balancing ligand coordinate
recovery with side chain torsion recovery, highlighting the
complexity inherent in exible docking. As is widely recognized,
factors like the number of heavy atoms and rotatable bonds in
a ligand profoundly impact the success rate of conventional
Chem. Sci., 2024, 15, 7926–7942 | 7931



Fig. 3 (A) Success rate of various pocket docking methods. (B) The distribution of sc-RMSD of KarmaDock-sc Align, DiffBindFR-MDN and
DiffBindFR-Smina. (C) The correlation between L-RMSD from DiffBindFR-Smina and molecular weight (MW), number of rotatable ligand bonds
(no. torsion) and variation of solvent accessible surface area caused by binding (DeltaSASA). All three panels share the same Y-axis. (D) The impact
of ligand molecular weight (small: #300 Da; medium: 300–500 Da; large: >500 Da), number of ligand rotatable bonds, (rigid: #5 bonds;
medium: 5–9; flexible: $10) and DeltaSASA (exposed: #286 Å2; medium: 286–418 Å2; buried: >418 Å2) on the docking success rates for Glide
(Redock), Vina (Redock), DiffBind-Smina and DiffBind-MDN. All three panels share the same Y-axis.
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docking programs.78 Hence, we examine the relationship
between L-RMSD from the DiffBindFR model and various
ligand characteristics, such as molecular weight, rotatable
torsion bonds, and changes in solvent accessible surface area
(DeltaSASA) upon binding. Contrary to traditional
methods,14,17,31,47 as the difficulty of docking increases,
including the increase in molecular weight, the number of
rotatable bonds, and the decrease in the ligand buriedness, the
L-RMSD achieved by DiffBindFR-Smina is not signicantly
affected (Fig. 3(C)). Additionally, DiffBindFR is able to achieve
amore signicant advantage in docking success rates compared
to traditional methods (Fig. 3(D)).

4.2 Performance on the Posebusters test set

Given that the similarity between samples to be predicted and
those used in training can inuence the performance of deep
learning methods, Buttenschoen et al.,54 aiming for a more
7932 | Chem. Sci., 2024, 15, 7926–7942
equitable comparison with traditional docking methods based
on scoring functions, have curated a dataset called Posebusters
test set from the PDB database. The Posebusters test set exclu-
sively comprises 428 complexes on which the deep learning
methods have not been trained. To evaluate the physical plau-
sibility of poses generated by DiffBindFR, we compared its
performance to other baseline methods using the Posebusters
test set and the Posebusters suite,54 a tool designed to assess the
validity of ligand–protein complexes based on criteria including
bond length, planarity of aromatic rings in ligands, and clashes
between ligands and proteins. Success in docking is redened
as a pose having an L-RMSD less than 2 Å and simultaneously
passing the physical validity check by Posebusters, with this
success rate termed as the PB-success rate. The Posebusters test
set comprises 428 distinct complexes released since 2021, with
no overlap with the PDBbind v2020 dataset. To demonstrate
that the success rate of DiffBindFR is not solely due to local
© 2024 The Author(s). Published by the Royal Society of Chemistry
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ligand energy relaxation and its superior in side chain packing,
the performance of other methods is evaluated with stricter
energy minimization for the ligand, given the experimental side
chain conformation. For poses generated by DiffBindFR, ligand
energy minimization is conducted using the side chains as
predicted by the model. The energy minimization is performed
using the AMBER ff14sb force eld79 for protein and the Sage
force eld80 for ligand in OpenMM,81 as used in the Posebusters
paper.54 Fig. 4(A) shows that traditional rigid receptor docking
methods like Glide perform best on re-docking when provided
with the correct Holo pocket environment, followed by Vina and
Gold, with most of their generated docking poses being physi-
cally valid. However, their performance signicantly deterio-
rates when docking with Rosetta-repacked proteins,
highlighting their heavy dependence on side chain conforma-
tions. Traditional exible docking methods rDock and VinaFlex
are also involved in comparison. VinaFlex, heavily reliant on
predened exible side chains, performs the worst in our
scenario where information about exible side chains is
assumed unavailable. rDock, capable of optimizing functional
groups prone to forming hydrogen bonds in side chains, ach-
ieves higher success rate in repacked proteins compared to Vina
and Glide, but lower success rate in proteins with ground-truth
side chains. For these traditional methods, their PB-success rate
is only slightly lower than their overall success rate, indicating
that most generated poses is validated by Posebusters suite due
to the physical components in their scoring functions. There-
fore, the post ligand optimization using force eld does not
cause obvious impact to their PB-success rate.

Among blind docking methods, DiffDock shows better
performance (success rate of 38%) than TankBind (16%) and
EquiBind (2%), but most of their generated poses are invalid
Fig. 4 Comparison of DiffBindFR with other methods boosted by force fi

performance of methods without energy minimization, and the right one
lightest color represents the failure rate for docking, the moderate colo
success rate. The blue color, green color, purple color and orange color
methods in redocking, traditional docking methods using repacked t
respectively. The dashed lines indicate the best-performing L-RMSD suc

© 2024 The Author(s). Published by the Royal Society of Chemistry
due to ignoring protein side chains (Fig. 4(A)). Ligand energy
minimization signicantly improves the PB-success rate of
DiffDock (35%). TankBind and EquiBind also see improve-
ments in PB-success rate with energy minimization, but still lag
behind DiffDock (Fig. 4(B)). Although blind docking is a tough
task for its broad searching space in the whole protein, exible
pocket docking method like DiffBindFR, denoising a chaotic
side chain conformation into a well-packed conformation
having valid interaction with the ligand, has much more
objectives for prediction. DiffBindFR, utilizing Smina scoring
function or MDN network as the condence model to select the
top-1 pose from 40 generated ones, outperforms all other deep
learning-based blind docking methods and pocket docking
methods. DiffBindFR-Smina and DiffBindFR-MDN demon-
strate both high success rate (50.2% for DiffBindFR-Smina and
48.1% for DiffBindFR-MDN) and PB-success rate (49.1% for
DiffBindFR-Smina and 44.4% for DiffBindFR-MDN), with lower
penalties by Posebusters compared to other deep learning-
based methods, showcasing the capability of DiffBindFR in
generating accurate and physically plausible complex poses.
The performance of DiffBindFR is comparable to traditional
rigid receptor docking methods using known ground-truth side
chain conformations for redocking. As is depicted from ESI
Fig. S7,† DiffBindFR shows its effectiveness in binding site
identication and pocket side chain recovery on Posebusters
test set, as well. Force eld optimization has minimal impact on
DiffBindFR generated structures, which also demonstrates the
high physical plausibility of DiffBindFR generated poses.
Among other deep learning-based pocket docking methods,
KarmaDock Align achieves the highest success rate (30.4%) but
a very low PB-success rate (6.1%). Force eld optimization of
ligands rescues most poses with L-RMSD < 2 Å into good
eld optimization in Posebusters test set. The left column (A) shows the
(B) shows the performance of methods with energy minimization. The
r represents the success rate, and the darkest color represent the PB-
represents performance of blind docking methods, traditional docking
arget proteins as input and deep learning-based docking methods,
cess rate (<2 Å) among all compared methods.
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physical validity. KarmaDock Align, EDM-Dock, TankBind-
pocket, Uni-Mol, and EDM-Dock, which focus on tting the
RMSD of the ligand during training, tend to ignore the intra
energy of the generated poses and protein side chains, as is
shown from ESI Fig. S9.† Indeed, force eld optimization is not
allowed in realistic docking to meet the demands of high-
throughput screening.

Four specic cases from the Posebusters test set (ESI
Fig. S10†), never trained or seen by DiffBindFR, are presented to
highlight its superiority over other methods focusing solely on
ligand coordinates while neglecting ligand conformation val-
idity. In complexes with PDB ID 6TW5, 7PRM, 7T1D, and 7CD9,
DiffBindFR successfully docks ligands into precise positions
with valid conformations and recovers pocket side chains into
good interaction with ligands. In contrast, KarmaDock Align,
EDM-Dock, and TankBind-pocket fail to predict correct binding
ligand poses, and their generated poses cannot pass the phys-
ical plausibility check of the Posebusters suite. As is shown in
ESI Table S5,† ligand poses generated by EDM-Dock and
TankBind-pocket exhibit both internal invalidity (including
internal steric clash, bump aromatic ring, etc.) and steric clash
with proteins, while KarmaDock Align, due to using RDKit for
ligand pose alignment, frequently fails in reducing ligand–
protein clash.
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4.3 Performance on the CD cross-dock test set

To showcase the exceptional capabilities of DiffBindFR in ex-
ible docking, we evaluate its performance in the more chal-
lenging task of cross-docking. We use a self-curated benchmark
called the CD test set, which includes various cross-docking
scenarios such as Apo–Holo and cross-docking between
different Holo states with various protein families. CD test set
contains 7 subsets, ApoRef 24, CASF2016 67 with target proteins
in the Apo and Holo states, GPCR-AF2 set with Apo-like proteins
predicted by AlphaFold2,29 DUDE27-HoloEns set with different
protein Holo states and Ensemble sets featuring prominent
docking targets including CDK2, EGFR and FXA. Ca RMSD of
binding site backbone (within 5 Å cutoff away from crystal
ligand) conformational changes in these subsets predominantly
range between 0–2 Å, as shown in ESI Fig. S1.†

In these subsets, DiffBindFR-MDN and DiffBindFR-Smina
achieve signicantly higher PB-success rate (Table 1) than all
the traditional docking methods and deep learning-based
docking methods. When considering L-RMSD alone (Fig. 5),
traditional rigid receptor dockingmethods such as Vina, Smina,
LinF9,82 and Glide underperform, were compared to deep
learning-based methods that use main-chain coarse-grained
representations of proteins. As indicated in Fig. 5 and ESI
Table S6,† the L-RMSD median for methods like TankBind-
pocket, EDM-Dock, and KarmaDock Align hovers around 2 Å
across the subsets, whereas for traditional rigid receptor dock-
ing methods, it even surpasses 5 Å in subsets like CDK2, EGFR,
and ApoRef. However, when physical plausibility is taken into
account, the PB-success rate for TankBind-pocket, EDM-Dock,
and KarmaDock Align drops to levels similar to traditional
rigid receptor docking methods (below 10%). Notably, in the
7934 | Chem. Sci., 2024, 15, 7926–7942 © 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 5 The L-RMSD distribution of various methods on CD cross-dock test set. The median values are indicated by the white point inside the
violin boxes, while the notches represent the 95% confidence interval around the median. Any outliers are shown as black points. The dashed
lines indicate the L-RMSD criterion for determining success.
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Ensemble-FXA subset, methods such as Vina, LinF9, Smina,
Gnina, and Glide perform signicantly better, achieving PB-
success rates of 34.4%, 36.5%, 36.2%, 39.4%, and 27.1%,
respectively. Traditional exible methods such as VinaFlex and
rDock, developed for cross-dock scenarios, were also evaluated.
VinaFlex shows poorer performance than rigid receptor docking
methods in both L-RMSD distribution and PB-success rate, due
to its reliance on predened side chains and limitations on the
number of exible side chains. The exible method rDock,
capable of optimizing side chains conducive to hydrogen
bonding, outperforms all traditional rigid receptor docking
methods in L-RMSD distribution and has higher PB-success
rate than TankBind-pocket, EDM-Dock, and KarmaDock
Align. We observed that both traditional rigid receptor and
exible docking methods perform better in subsets like
Ensemble-FXA, DUDE27-HoloEns and CASF2016, where pocket
backbone conformational changes are minimal (mostly
between 0–0.5 Å, as is depicted from ESI Fig. S1†). Our method
DiffBindFR, leveraging a full-atom based neural network to
learn additional side chain movements, marginally outper-
forms all other methods in accurately recalling ligand coordi-
nates and ensuring the validity of complex poses. On the CD test
© 2024 The Author(s). Published by the Royal Society of Chemistry
set, the MDN network surpasses the Smina scoring function for
pose ranking. DiffBindFR-MDN achieves state-of-the-art PB-
success rate of 67.4%, 47.8%, 79.4%, 47.6%, 36.2% and 63.6%
in CDK2, EGFR, FXA, ApoRef, DUDE27-HoloEns and CASF2016,
respectively. Furthermore, to investigate the efficacy of various
methods in the context of cross-docking scenarios involving
Apo–Holo pairs, we conduct a detailed computational assess-
ment of these methods using a subset of 660 Apo–Holo pairs
from the CASF2016 dataset. In this analysis, DiffBindFR-MDN
emerges as the most effective technique, demonstrating supe-
rior performance in both terms of L-RMSD distribution and PB-
success rate (56.1%, as is shown from ESI Table S7†). When the
Holo structures for targets of interest are available, experts
prefer to use these structures for virtual screening and lead
optimization through molecular docking. Thus, we have con-
structed the DUDE27-HoloEns test set, entirely made up of
Holo–Holo pairs, to evaluate the application potential of Diff-
BindFR in scenarios where target proteins possess resolved
Holo structures. The results show that DiffBindFR-MDN
performs the best on the DUDE27-HoloEns subset, achieving
a PB-success rate of 36.2% and a median L-RMSD of 2.08 Å (ESI
Table S6†), with DiffBind-Smina following closely (PB-success
Chem. Sci., 2024, 15, 7926–7942 | 7935
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rate of 29.5%). We nd that traditional docking programs
demonstrate enhanced prociency in docking with Holo-state
structures and perform better on the DUDE27-HoloEns subset
and CASF2016 subset than other Apo–Holo cross-dock sets (ESI
Tables S6–S9†), which could be attributed to subtle variations in
conformational heterogeneity, favoring the binding of various
bioactive molecules (see ESI Fig. S1 and Table S2†). Addition-
ally, in extreme scenarios where the target protein lacks
resolved Holo structures or even available crystal Apo struc-
tures, drug developers must rely on AlphaFold2 to obtain
a predicted target structure as the starting point for drug design.
On the GPCR-AF2 subset, serving as approximations of Apo–
Holo cross-docking where the target proteins are predicted by
AlphaFold2, DiffBindFR-MDN shows a slightly lower PB-success
rate of 21.7% compared to DiffBindFR-Smina (22.7%). This
Fig. 6 The binding poses of two cases from the GPCR-AF2 subset in the
modeled protein structure is shown in pale green. DiffBindFR sampled l
calculations were done using the AF2 modeled backbone structures. For
pocket Ca RMSD betweenHolo and AF2 structurewithin 5 Å cutoff away f
two right top frames in each panel for the comparison between AF2 m
cysteinyl leukotriene receptor 2 bound to its antagonist ONO-2570366 (P
(B) 5-hydroxytryptamine receptor 2A bound to its inverse agonist methi

7936 | Chem. Sci., 2024, 15, 7926–7942
decrease in performance is attributed to higher penalties from
ligand–protein clashes.

Here, we present the docking poses of various methods on
two examples from the GPCR-AF2 subset (Fig. 6). The rst
example involves a crystal structure with the PDB ID 6RZ6,
where we investigate the target protein from 6RZ6 identied as
the human Cysteinyl leukotriene receptor 2.83 This receptor
plays a role in regulating pro-inammatory responses associ-
ated with allergic disorders. The ligand in this case is an
antagonist, ONO-257036. We predict the AF2 structure (Apo-
like) of the receptor protein and then dock the ligand mole-
cule into this AF2 structure. Following binding sites alignment,
the predicted AF2 structure exhibited a binding site (within 5 Å
cutoff away from crystal ligand) RMSD of 0.73 Å when compared
with the crystal structure. However, in the Apo-like AF2 pre-
dicted structure, residues R267 and L190 is found to block ONO-
CD test set. In all panels, Holo protein and ligand are shown in grey. AF2
igand and pocket side chains are shown in blue. Note that DiffBindFR
each frame, the docking method used is given at the bottom left. The
rom crystal ligand, and ligand RMSD are reported on left top, except the
odeled and DiffBindFR sampled side chain conformations. (A) Human
DB ID: 6RZ6). The side chains of Y119, Y123, L190 and R267 are shown;
othepin (PDB ID: 6WH4). The side chain of D155 is shown.

© 2024 The Author(s). Published by the Royal Society of Chemistry



Edge Article Chemical Science
25703 binding to pocket, preventing traditional rigid receptor
docking methods like Glide and Vina from locating the correct
binding site. VinaFlex, despite its ability to leverage side chain
exibility, also fails to dock the ligand correctly. KarmaDock
Align, similarly did not achieve correct docking, although it
shows better L-RMSD than the methods mentioned above. In
contrast, our exible docking method, DiffBindFR, coupled
with Smina and MDN condence model can select the top-1
complex pose from the 40 poses. DiffBindFR adeptly repacks
the side chain of the R267 residue, enabling the ligand to
successfully dock into the correct binding position. The posi-
tion of the R267 side chain predicted by DiffBindFR is some-
what different. In the crystal structure, the R267 side chain
forms a hydrogen bond interaction with the Y123 side chain,
whereas in the DiffBindFR-predicted structure, R267 forms
a hydrogen bond interaction with the Y119 side chain, which
can be attributed to the similarity in the spatial positions of the
Y123 residue and the Y119 residue relative to R267.

The second example involves a crystal structure with the PDB
ID 6WH4, where the target protein is the human 5-HT2A sero-
tonin receptor, which is associated with the actions mediated by
psychedelics,84 and the ligand is methiothepin. Following
alignment of the binding sites, the AF2-predicted structure
displays a pocket RMSD of 0.65 Å when compared to the crystal
structure. In the AF2 structure, the side chain of the D155
residue has vdW (van der Waals) clash (pair distance is 1.5 Å)
with the ligand, leading to the failure of docking attempts by
Glide and Vina. Although KarmaDock Align and the traditional
exible dockingmethod rDock predicts the ligand position with
a smaller L-RMSD, they still do not achieve successful docking.
In contrast, the top-1 complex pose selected by the MDN
condence model in DiffBindFR not only accurately reproduces
the ligand position but also successfully repacks the side chain
of D155 residue, enabling it to form electrostatic interactions
with the ligand. This example further demonstrates the
Fig. 7 The L-RMSD and sc-RMSD performance of various methods on t
side chains as specified based on expert experience. IFD-MD (Holo) and
aligned Holo crystal ligand pose as the template and the ligand pose gene
respectively. “Holo vs. AF200 refers to the sc-RMSD between the Holo poc
limit will be assigned the color designated for the upper limit (5 Å for L-

© 2024 The Author(s). Published by the Royal Society of Chemistry
capability of DiffBindFR to effectively manage protein–ligand
interactions, particularly in challenging docking scenarios.

We also present four cases from ApoRef subset where Diff-
BindFR successfully docks ligands into the Apo pockets of
crystal structures (ESI Fig. S11†), with these complexes not
having appeared in the training set. The PDB IDs for these four
cross-dock examples are as follows: Holo: 1ZGY, Apo: 1PRG;
Holo: 2XIR, Apo: 1VR2; Holo: 3UVR, Apo: 1WFC; and Holo:
3RM6, Apo: 4EK3. In each of these instances, top-1 complex
poses generated by DiffBindFR accurately recover the ligand
poses, while side chains in the Apo state pockets that would
otherwise clash with the ligand are also optimized. These
results highlight the potential of DiffBindFR in aiding
researchers to study detailed interactions in real scenarios when
no complex structures are available and provide insights for
further lead optimization.

The superior performance of DiffBindFR on different Apo–
Holo, Holo–Holo and AF2 predicted-Holo cross-docking subsets
have shown that the potential of DiffBindFR under the real
circumstances for application.

4.4 Performance on the DUDE27-AF2 induced t docking
test set

Aside from rDock and VinaFlex, to explicitly consider the exi-
bility of the protein pocket, Miller et al.38 developed an induced
t docking workow named IFD-MD, which integrates molec-
ular docking with molecular dynamics to simulate the induced-
t effects during binding. In this docking experiment, we utilize
the dataset by Zhang et al.26 as the test set (hereaer referred to
as the DUDE27-AF2 test set), which comprises the Holo and
AF2-predicted structures for 27 targets. This dataset also
includes docking results based on the IFD-MD rened AF2
predicted structures. On the DUDE27-AF2 test set, we have
compared the performance of DiffBindFR with other exible
docking methods, including VinaFlex, rDock, and IFD-MD, in
he DUDE27-AF2 subset. Here, sc-RMSD refers to the RMSD of flexible
IFD-MD (Docked) represent the approaches where IFD-MD uses the

rated by docking into the pocket of AF2 predicted structure using Glide,
ket and the AF2 predicted protein pocket. Values exceeding the upper
RMSD and 2.5 Å for sc-RMSD).
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their ability to accurately dock ligands into the correct poses
while optimizing the AF2 predicted protein structures. IFD-MD
depends on a ligand pose template to further optimize protein
conformations. The DUDE27-AF2 test set provides two types of
ligand pose templates. The rst one uses the aligned crystal
ligand pose as the template to induce the protein conformation,
which can be seen as the upper limit of IFD-MD's capability
since the crystal ligand binding pose cannot be known in
advance. The more realistic approach docks the Holo ligand
into the AF2 structures with Glide and uses the resulting pose as
the template for IFD-MD. By examining the aligned structures of
the AF2 predicted and Holo structures, we select exible resi-
dues based on expert experience to provide to VinaFlex as input
and also to evaluate each method's ability of optimizing protein
structures. As the results shown in Fig. 7 indicate, generally, the
greater the sc-RMSD difference between the AF2 predicted
structures and the Holo structures, the more challenging it is
for the methods to accurately dock the ligand pose and recover
side chain conformation. As expected, because the ground-truth
ligand pose template is provided in advance, IFD-MD using the
crystal ligand binding pose as a template performed better than
other methods, maintaining 59% of ligand poses within an L-
RMSD of 2 Å, with a median RMSD of 1.74 Å (ESI Table S11†).
However, the real ligand binding positions cannot be obtained
beforehand. Compared to IFD-MD using Glide generated ligand
poses by docking the ligand into AF2 predicted pocket as
a template, VinaFlex, and rDock, DiffBindFR achieves better
results in predicting the poses of the ligands. Specically, the
median L-RMSD for DiffBind-Smina and DiffBind-MDN are 2.12
Å and 2.15 Å, respectively (ESI Table S11†). In terms of side
chain optimization, whether for exible side chains selected
based on expert experience or for the overall pocket side chains,
DiffBindFR demonstrates superior side chain optimization
performance, even surpassing that of IFD-MD using the ground-
truth ligand pose as a template (ESI Table S12†). This showcases
the exceptional capability of DiffBindFR in exible docking and
its potential application on AF2 predicted target protein
structures.

5 Conclusions

In this research, we have developed a full-atom diffusionmodel,
DiffBindFR, for exible pocket docking. DiffBindFR is capable
of explicitly simulating the interactions of full atoms between
the pocket side chains and the ligand molecules, which is
extremely hard for previous docking methodologies. Our
method not only surpasses traditional approaches in terms of
the docking success rate but also achieves state-of-the-art
(SOTA) levels in generating plausible docking conformations
when compared to recent deep learning methods, as evidenced
by evaluations conducted on the PDBbind and Posebusters test
sets. Furthermore, starting from a random side chain confor-
mation, DiffBindFR can accurately dock molecules while
concurrently recovering the side chain conformations.

On the cross-docking benchmark, CD test set, DiffBindFR
has also demonstrated superior performance. Notably, previous
methods that employ deep learning to characterize protein
7938 | Chem. Sci., 2024, 15, 7926–7942
pockets through coarse-grained main-chain representations
also show promise results, but they lead to a lack of detailed
information regarding the interactions between side chain
atoms and ligands. DiffBindFR that simulates side chains
addresses this gap in deep learning methodologies. Previous
research57–59 has indicated that the majority of proteins undergo
minimal backbone alterations upon ligand binding, with the
primary conformational changes caused by side chains.
Therefore, DiffBindFR remains adept at predicting accurate
docking poses in most scenarios with slight protein backbone
movements. However, in cases where the pocket backbone
exhibits signicant exibility (such as cryptic sites85), the
docking results may not be as satisfactory. Recent bench-
marking studies25–27,30,86,87 have revealed that structures
modeled by AF2 tend to exhibit a pocket backbone conforma-
tion more akin to the Holo state, presumably owing to the
conservative functional sites within the multiple sequence
alignment (MSA). However, inaccuracies in side chain place-
ment oen lead to suboptimal virtual screening performance
when compared with the Holo pocket. In this context, Diff-
BindFR emerges as a promising tool for rening the side chains
in AF2 modeled structures, potentially enhancing enrichment
in virtual screening campaigns in the absence of available Holo
structures. Further investigation of this application will be in
future research endeavors.

The physical validity of DiffBindFR generated complex
poses, coupled with the simulated detailed three-dimensional
interactions, provides users with correct interactions to facili-
tate further optimization. In addition, the conformation alter-
ations predicted by DiffBindFR will signicantly augment
comprehension of the molecular mechanisms underlying
specic actions, and better elucidate the relationship between
structure and function.

6 Methods
6.1 Data representation

The complete set of heavy atoms from the ligand molecule and
protein pocket is structured into a heterogeneous graph
G ¼ ðn; EÞ, where each atom corresponds to a node. For the
node representation np of pocket residue atoms, we employ
one-hot encoding encompassing atom type, residue type, and
whether the atom is part of the backbone. The ligand node
features nl include atom type, hybridization type, atomic
connectivity, explicit valence, implicit valence, number of rings
it belonging to, aromaticity, formal charge, partial charge,
chirality type, the number of radical electrons, the number of
hydrogens, and whether it is in an N-membered ring (with
nitrogen ranging from 3 to 8). Furthermore, pharmacophore
features such as hydrogen bond acceptor/donor, aromaticity,
hydrophobicity, and positive/negative charge are integrated.
The edges eij, based on the covalent bonds of ligand, incor-
porate features like bond type, stereochemistry, conjugation,
and whether the bond is part of a ring system. Diffusion times t
are encoded using a sinusoidal format and are concatenated to
the scalar representations of nodes and edges. For ligand
atoms, internal edges E ll connected by covalent bonds are pre-
© 2024 The Author(s). Published by the Royal Society of Chemistry
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constructed. For pocket atoms, in addition to covalent bonds,
edges Epp are linked between pocket atoms and their own Ca

and Cb atoms. During the forward inference of the model,
edges are dynamically constructed based on the three-
dimensional coordinates of all atoms. Within the ligand
molecule, the graph construction uses a cutoff radius of 5 Å,
and a similar cutoff is applied for the full atom graph of the
pocket and directed edges from pocket to ligand atoms Epl.
These edges, serving as non-covalent interactions, solely
encode distances. Given the model's need to predict ligand
translational updates, it's essential for the ligand to be aware
of the entire pocket atom's position. Therefore, directed edges
E lp from ligand to pocket atoms are dynamically constructed
based on the diffusion process, with the translational noise
determining the cutoff radius as 0.2sT + 5 Å. This ensures that
even in high noise scenarios, where the ligand is distant from
the pocket, there remains an informational interaction
between the ligand and the pocket, thereby pulling the ligand
closer. All edges from the heterogeneous graph are
fE ll; Epp; Epl; E lpg, and their distance features utilize
Gaussian radial basis for encoding.
6.2 DiffBindFR score network

The architecture of DiffBindFR is meticulously craed upon the
foundation provided by the e3nn library.53 It primarily comprises
the following pivotal components: a module for input embed-
ding, modules for intra-molecular interaction encoding, and
modules dedicated to inter-molecular interaction encoding. The
network ingests a geometric heterogeneous graph, encompass-
ing invariant scalar representations of both ligand heavy atom
nodes nl and pocket residue atom nodes np. We harness the
irreducible representations (Irreps) to encode features by
spherical harmonics. As the depth of feature encoding advances,
the scalar inputs evolve towards higher-order physical quantity
representations. Every interaction module is constructed using
the Tensor Product Layer (TPL), establishing SE(3) equivariant
message-passing functions. The tensor products are realized by
encoding edge vectors with spherical harmonic functions and
then doing spherical tensor product of Irreps with path weights.
The weights of these tensor products are derived from a trans-
formation of node representations constituting the edge and the
edge representation itself through a layer of Multi-Layer Per-
ceptrons (MLP); these weights also constitute the primary
learnable parameters at each layer. For any given submodule, the
general formula for message passing to node a is:

ha)ha 4
z˛fl;pg

LNðza ;zÞ

0@ 1

Na
ðzÞ

 X

b˛Na
ðzÞ
Y ðr̂abÞ5jab hb

1A (12)

ha ¼ ðh0a; ha
!Þ represents Irreps of node a, which is the concat-

enation of scalar representation h0a and vector representation ha
!
.

za is the node type of node a, and z can be any node type from
the pocket node or the ligand node. Na

(z) denotes the neighbour
nodes of node a. Y are the spherical harmonics up to l= 2. LN is
the equivariant layer normalization. 4 refers to normal vector
addition, and 5jab refers to the spherical tensor product of
© 2024 The Author(s). Published by the Royal Society of Chemistry
Irreps with path weights, with jab = MLP(za,z)(eab,-
h0a,h

0
b) following the graph message passing paradigm.
For predicting the scores of ligand translation and rotation,

we construct a node o for each ligand center and gather the
message from other ligand nodes to the center. We output the
nal single odd and single even vectors through layer normal-
ization for translational and rotational score prediction as
follows: h

h
ð1oÞ
l ; h

ð1eÞ
l

i
)

1

jnlj
X
a˛nl

Yðr̂oaÞ5joaha;

with joa ¼ MLP
�
moa; h

0
a

� (13)

moa denotes the Gaussian radial embeddings for distance roa.
h(1o)l is the predicted score for translation. h(1e)l is the predicted
score for rotation axis û.

For both the rotatable bonds of ligands and the dihedral
angles of protein residue side chains, updates for each angle are
anticipated based on a consistent paradigm. We dene the
central axis of the rotatable bond or dihedral angle as B = (i, j),
represented by a bond formed by atoms i and j. Further, the
center of the rotatable bond is denoted as c. A radius graph of
ligand nodes with a 4 Å cutoff is constructed to predict the
torsion score of the ligand rotatable bonds.

hc)
1

Nc

X
a˛Nc

Y 2ðr̂abÞ5Y ðr̂caÞ5jcaha;

with jca ¼ MLP
�
mca; ha; hi þ hj

� (14)

To satisfy the parity of dihedral angles, spherical harmonics
Y2 up to l = 2 is utilized. We will employ the scalar features
derived from the nal obtained hc to predict the torsion angles.
An analogous procedure is adopted for the torsion of pocket
side chains.
6.3 Model training

DiffBindFR neural network was trained using the AdamW
optimizer88 with a learning rate of 0.0005 and a batch size of 64
for 1000 epochs on eight 80 GB NVIDIA A800 TENSOR CORE
GPUs. MDN condence model was trained using the Adam
optimizer89 with a batch size of 256 for 1000 epochs on four 32
GB NVIDIA Tesla V100-SXM2 GPUs.
Data availability

The protein–ligand complexes of PDBbind v2020 dataset were
downloaded from https://zenodo.org/records/6408497. The
protein–ligand complexes of Posebusters test set were
downloaded from https://zenodo.org/records/8278563. The
protein–ligand complexes of CD cross-dock test set are
publicly available at https://doi.org/10.5281/zenodo.10816044.90
Code availability

The source code of DiffBindFR is publicly available at https://
github.com/HBioquant/DiffBindFR.
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