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Abstract The templating RNA is the core of the telomerase reverse transcriptase. In

Saccharomyces cerevisiae, the complex life cycle and maturation of telomerase includes a

cytoplasmic stage. However, timing and reason for this cytoplasmic passage are poorly

understood. Here, we use inducible RNA tagging experiments to show that immediately after

transcription, newly synthesized telomerase RNAs undergo one round of nucleo-cytoplasmic

shuttling. Their export depends entirely on Crm1/Xpo1, whereas re-import is mediated by Kap122

plus redundant, kinetically less efficient import pathways. Strikingly, Mex67 is essential to stabilize

newly transcribed RNA before Xpo1-mediated nuclear export. The results further show that the

Sm7 complex associates with and stabilizes the telomerase RNA in the cytoplasm and promotes its

nuclear re-import. Remarkably, after this cytoplasmic passage, the nuclear stability of telomerase

RNA no longer depends on Mex67. These results underscore the utility of inducible RNA tagging

and challenge current models of telomerase maturation.

Introduction
Telomeres are essential nucleoprotein structures that protect linear eukaryotic chromosome ends

from detrimental repair processes as well as natural replication-associated shortening (Hay-

flick, 1965; Harley et al., 1990; Wellinger and Zakian, 2012; de Lange, 2018). In stem, germ, and

most cancer cells, the enzyme telomerase maintains telomeric DNA at a functional length, which is

key for the unlimited proliferation capacity of these cells (Shay, 2016; Roake and Artandi, 2020).

Telomerase synthesizes telomeric repeats de novo using a reverse transcriptase activity and its inter-

nal RNA as a template (Greider and Blackburn, 1985; Greider and Blackburn, 1987). Unicellular

eukaryotes such as yeasts express telomerase constitutively. Notably, the overall telomerase compo-

sition and aspects of telomerase dynamics are strikingly conserved between yeast and higher eukar-

yotes (Vasianovich and Wellinger, 2017). This makes yeast a great model organism to study

telomerase behavior and for predicting this process in higher eukaryotes.

Telomerase is a complex ribonucleoprotein machine. The non-coding RNA, called TLC1 in Sac-

charomyces cerevisiae, is at the heart of the telomerase holoenzyme. It harbors a template for telo-

meric DNA synthesis and acts as a scaffold for telomerase-associated proteins (Wellinger and

Zakian, 2012). The repertoire of the budding yeast telomerase proteins includes the Est2 catalytic

subunit and several additional proteins such as Est1, Est3, Pop1, Pop6, Pop7, the Sm7, and Yku70/

Yku80 complexes, which all are required for telomerase function in vivo. Like most yeast snRNAs,

the major form of TLC1 is a poly-A- RNA Pol II transcript, which has a TMG cap at the 5’-end and

associates with the ring-shaped heptameric Sm7 complex at its 3’-end (Chapon et al., 1997;

Seto et al., 1999). This Sm7 complex is crucial for RNA maturation, including 5’-TMG capping and

3’-end processing, and is absolutely essential for the stability of both telomerase and snRNAs

(Rymond, 1993; Roy et al., 1995; Seto et al., 1999; Coy et al., 2013; Shukla and Parker, 2014).
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TLC1 is an extremely low abundance RNA. According to different estimates, only 10–30 mature

TLC1 molecules are present in a haploid yeast cell, thus severely limiting the quantity of functional

telomerase complexes (Mozdy and Cech, 2006; Gallardo et al., 2008; Bajon et al., 2015). As a

result, the 64 chromosome ends present in a haploid cell after DNA replication must rely on a very

limited number of telomerase RNPs for their maintenance. In fact, the available nuclear telomerase

arsenal may be even lower, as at steady state, 30–40% of TLC1 molecules reside in the cytoplasm

(Gallardo et al., 2008). However, the reason for the cytoplasmic localization of telomerase RNA is

still unclear.

One hypothesis stipulates that the TLC1 RNA shuttles to the cytoplasm as a part of its biogenesis

process (Ferrezuelo et al., 2002; Gallardo et al., 2008). According to this model, TLC1 gets

exported to the cytoplasm to associate with some of its protein subunits, followed by re-import of

the RNP to the nucleus. However, which telomerase subunits bind to TLC1 in the cytoplasm is

unclear. Furthermore, the current view of telomerase biogenesis suggests that the 3’-stabilizing Sm7

ring binds telomerase RNA very early in its life cycle, prior to RNA export to the cytoplasm

(Gallardo et al., 2008). Consistently, the SmB, D1, and D3 subunits of the Sm7 complex contain NLS

sequences, suggesting that the ring can get imported into the nucleus on its own (Bordonné, 2000).

In addition, TMG capping, which requires Sm7, appears functional when TLC1 export is blocked

(Gallardo et al., 2008). Finally, since the Sm7 complex is crucial for the stability of telomerase RNA

(Seto et al., 1999), it would be expected to associate with TLC1 at the earliest possible stages.

However, in both yeast and mammals, snRNAs that belong to the Sm7 class are exported to the

cytoplasm to assemble with the Sm7 complex (Fischer et al., 2011; Becker et al., 2019). Therefore,

if TLC1 follows a path similar to snRNAs, newly synthesized telomerase RNA may temporarily shuttle

to the cytoplasm to assemble with the Sm7 proteins, which would contradict the above model. In

addition, the cytoplasm may also be the final destination for TLC1 molecules, where old dysfunc-

tional telomerase RNAs would be degraded. Therefore, the cytoplasmic TLC1 fraction may be a

complex mix of both old degrading molecules as well as newly synthesized RNA transcripts that

undergo assembly with protein subunits.

There is evidence that nucleo-cytoplasmic export of telomerase RNA is mediated by the Xpo1/

Crm1 exportin and re-import is dependent on Mtr10 as well as Kap122 (Ferrezuelo et al., 2002;

Gallardo et al., 2008). However, molecular details of TLC1 transport by these factors are missing,

for example it is unclear at what stage and in which state TLC1 may shuttle to the cytoplasm or

whether it gets exported permanently for degradation.

The Xpo1/Crm1 exportin belongs to the family of karyopherins which transport cargo RNA and

proteins through nuclear pores using a RanGTP – RanGDP gradient (Köhler and Hurt, 2007). Many

RNA species, such as snRNAs, rRNAs, and tRNAs depend on Xpo1 for their export. In contrast,

transport of mRNA relies on the Mex67 export receptor (Segref et al., 1997; Santos-Rosa et al.,

1998), which is structurally unrelated to karyopherins and does not depend on a RanGTP gradient

(Köhler and Hurt, 2007). Inactivation of Mex67 leads to nuclear accumulation of mRNA

(Segref et al., 1997; Santos-Rosa et al., 1998). In addition, in the absence of Mex67, poly-A+ RNA

appears to be extremely unstable, which was attributed to untimely RNA decay due to the export

block (Tudek et al., 2018). Notably, Mex67 is also somehow implicated in the cytoplasmic export of

Xpo1-transported cargoes, such as snRNA, rRNA, and tRNA, raising a question of why these RNA

species require two export receptors (Yao et al., 2007; Faza et al., 2012; Chatterjee et al., 2017;

Becker et al., 2019). In fact, the precise function of Mex67 and the molecular details of its RNA

export role are unknown.

In this study, we aimed to dissect the dynamic, life-cycle-dependent localization of telomerase

RNA molecules via single molecule fluorescence in situ hybridization (smFISH) microscopy. For this

purpose, we required a tool that would discriminate and selectively visualize new vs pre-existing

matured telomerase RNA transcripts within the total TLC1 population. Fluorescent imaging of telo-

merase RNA molecules tagged with the MS2 repeats has been successfully used in the past

(Gallardo et al., 2011; Cusanelli et al., 2013; Bajon et al., 2015). However, constitutive RNA tag-

ging has its limitations: it captures the general RNA population at its steady state and therefore can-

not reveal the dynamics of specific RNA subpopulations, such as new or old TLC1 molecules. In

order to identify these fractions in the total TLC1 population and to reveal their specific behavior,

we converted the constitutive TLC1-MS2 tagging system into an inducible one using a recombina-

tion-induced tag exchange approach (Verzijlbergen et al., 2010). In this system, controlled
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induction of TLC1 tagging with the MS2 repeats results in gradual appearance of new TLC1-MS2

molecules, which can be easily distinguished from the bulk untagged TLC1 population using an

MS2-specific FISH probe. At the same time, untagged TLC1 molecules that lack the MS2-specific sig-

nal will represent the pre-existing TLC1 fraction which for simplicity will be referred to as old TLC1

molecules.

Using this inducible TLC1 tagging tool, we show that very rapidly after transcription, newly pro-

duced telomerase RNA molecules are temporarily exported to the cytoplasm, consistent with the

shuttling model. Old TLC1 transcripts also tend to accumulate in the cytoplasm likely for degrada-

tion purposes. Therefore, the results show that the cytoplasmic TLC1 RNA is per se a heterogeneous

population comprised of both new and old telomerase RNA transcripts. The data also show that

Xpo1 and Kap122, previously shown to influence subcellular TLC1 localization, affect the shuttling of

newly synthesized TLC1 molecules. Notably, cytoplasmic export of TLC1 is entirely dependent on

Xpo1, whereas telomerase RNA re-import to the nucleus seems to involve not only Kap122 but also

other less efficient import mechanisms. Strikingly, Mex67 plays an entirely unexpected role in the

biogenesis of telomerase RNA. While cells without the Xpo1 exportin sequester all newly synthe-

sized TLC1 in the nucleus, disruption of Mex67 leads to a drastically different phenotype, resulting in

a complete loss of new TLC1 transcripts. This phenotype is recapitulated in a mex67-5 xpo1-1 dou-

ble mutant and, remarkably, is suppressed by inactivation of the nuclear exosome subunit RRP6.

Thus, Mex67 is crucial for stabilization of telomerase RNA in the nucleus immediately after transcrip-

tion and prior to export – a function that may be required for other RNA species as well. Finally, we

show that similar to snRNAs, telomerase RNA assembles with the Sm7 complex in the cytoplasm.

This association is essential for the stability of TLC1 RNA in the cytoplasm and its re-import to the

nucleus. Cytoplasmic association of telomerase RNA with the Sm7 complex implies that the down-

stream Sm7-dependent events such as 5’- and 3’-end RNA processing occur after TLC1 returns to

the nucleus. Therefore, in this study we challenge the current view of telomerase RNA biogenesis by

adding Mex67 as a novel player essential for nuclear TLC1 stability right after transcription, and by

localizing the Sm7-binding step to the cytoplasm after the export of TLC1. These results underscore

the general utility and validity of an inducible tagging system to probe dynamic localization details

during the life cycle of any RNA.

Results

Inducible TLC1-[MS2-IN] tagging system
The MS2 tag used in earlier studies for constitutive TLC1 RNA tagging comprises 10 MS2 stem loops

in the proximity to the TLC1 3’-end, just upstream of the Sm7 binding site (Gallardo et al., 2011;

Bajon et al., 2015). To convert this construct into an inducible tagging system (named TLC1-[MS2-

IN]), a recombination cassette was placed upstream of the 10xMS2 array (Figure 1A). The recombi-

nation cassette contained the TLC1 3’-end, the natMX4 selection marker and was flanked by the

loxP sites. The TLC1-[MS2-IN] construct was integrated in the TLC1 genomic locus to allow for

endogenous RNA expression levels. Under normal conditions, wild type TLC1 RNA transcripts are

expressed from the TLC1-[MS2-IN] locus (Figure 1B). However, induction of recombination by Cre-

recombinase will lead to the excision of the fragment flanked by the loxP sites and join the MS array

sequence downstream to the TLC1 3’-end (Figure 1A,B). As a result, tagged TLC1-MS2 molecules

will start to be transcribed from the recombined TLC1-[MS2-IN] locus. In addition, a non-replicating

episome containing the selection marker and the wild type TLC1 3’-end will be produced upon

recombination (Figure 1A). To induce recombination, we used a constitutively expressed Cre-recom-

binase fused to the estradiol-binding domain (Cre-EBD). Cre-EBD enters the nucleus only in the

presence of b-estradiol, which allows for rapid and controlled induction of TLC1-[MS2-IN] recombi-

nation (Logie and Stewart, 1995).

After addition of b-estradiol to the exponentially growing cultures, recombination of the TLC1-

[MS2-IN] genomic locus was followed for 16 hr by Southern blotting (Figure 1C,D). In addition,

appearance of tagged TLC1-MS2 RNA transcripts was monitored by northern blotting and RT-

ddPCR (Figure 1E–G). During the experiment, a cloned strain with the recombined TLC1-[MS2-IN]

locus was used as a reference to monitor the efficiency of recombination and TLC1-MS2 tagging.

Southern blot analysis showed that TLC1-[MS2-IN] recombination occurred very rapidly, reaching
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Figure 1. Kinetics of inducible TLC1-MS2 tagging. (A) Schematic of the TLC1-[MS2-IN] DNA locus before and after

recombination. Thick black bars indicate the TLC1 probe used for Southern blot analysis in C. Arrows mark

restriction fragments (a and b) detected by the TLC1 probe. NMX – natMX4 cassette. (B) Schematic of tagged and

untagged TLC1 RNA before and after recombination, respectively. Dotted line indicates the TLC1 probe used for

northern blot analysis in E. Green and purple half-circles indicate TLC1- and MS2-specific smFISH probes,

respectively. (C) Southern blot analysis of the TLC1-[MS2-IN] locus following induction of recombination. The

position of the TLC1 probe hybridizing to restriction fragments a and b is depicted in A. CEN4 – loading control.

‘+’ - positive recombined control. DNA marker sizes are indicated on the right (kb). (D) Quantification of the

Southern blot shown in C. Fractions relative to 0 hr (for unrecombined TLC1 locus) and to the positive recombined

control (+) (for recombined TLC1-MS2 locus) are shown. Error bars indicate SD, n = 3. (E) Northern blot analysis of

untagged TLC1 and tagged TLC1-MS2 RNA transcripts following induction of TLC1-[MS2-IN] recombination.

Position of the TLC1 probe used to detect TLC1 species is shown in B. U1 – loading control. ‘+’ - positive

recombined control. RNA sizes are indicated on the left (kb), 1.8 kb corresponds to 18S rRNA. (F). Quantification

of the northern blot shown in E. Fractions relative to 0 hr (for untagged TLC1) and to the positive recombined

control (+) (for tagged TLC1-MS2) are shown. Error bars indicate SD, n = 3. (G) RT-ddPCR quantification of

untagged TLC1 and tagged TLC1-MS2 RNA transcripts following induction of recombination. Fractions relative to

the positive recombined control are shown. Error bars indicate SD, n = 2.

The online version of this article includes the following source data for figure 1:

Source data 1. Numerical data used to generate Figure 1.
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almost 50% after 30 min of b-estradiol addition to the culture (Figure 1C,D). Conversion of the

TLC1-[MS2-IN] locus into TLC1-MS2 was nearly complete after 4 hr, reaching approximately 90% rel-

ative to the reference strain. At the RNA level, we also observed gradual disappearance of the

shorter untagged TLC1 molecules and appearance of the longer TLC1-MS2 RNA species (Figure 1E,

F). After 2.5 hr of recombination induction, nearly half of TLC1 molecules had acquired a tag,

whereas by the end of the time course, the TLC1 population consisted almost exclusively of tagged

TLC1-MS2 molecules. Independent quantification of tagged and untagged TLC1 species throughout

the experiment by RT-ddPCR yielded results consistent with the northern blot analysis (Figure 1G).

Therefore, the inducible recombination system constructed in this study is functional and allows

TLC1-MS2 tagging in a fast and controlled manner.

Tracking subcellular distribution of telomerase RNA fractions
The turnover of the TLC1 RNA population was also monitored by the two-color smFISH analysis. For

this approach, we used a combination of TLC1-specific probes that detect all TLC1 RNA species,

and MS2-specific probes that hybridize only to newly tagged molecules (Figure 1B). The specificity

of the probes was confirmed using a tlc1D control strain, that lacked either TLC1 or MS2 FISH signals

(Figure 2—figure supplement 1A).

Before recombination induction, TLC1-[MS2-IN] cells contained only TLC1-specific foci, indicating

that only untagged TLC1 RNA was expressed at the 0 hr time point (Figure 2A). At this stage (called

steady state), the average number of TLC1 RNA was ~10 molecules/cell, which is consistent with pre-

vious reports (Figure 2B, Figure 2—figure supplement 1B; Gallardo et al., 2008; Bajon et al.,

2015). After induction of recombination, old foci hybridizing only with TLC1 probes slowly disap-

peared, whereas new foci hybridizing with both TLC1 and MS2 probes gradually accumulated

(Figure 2A,B, Figure 2—figure supplement 1B,C). The first MS2-specific foci appeared as early as

30 min after b-estradiol addition (Figure 2A,B, Figure 2—figure supplement 1C). By the end of the

16 hr time course, the tagged TLC1-MS2 fraction constituted more than 80% of total observed TLC1

molecules (Figure 2B,C). However, a small fraction of TLC1 foci remained untagged even after 16 hr

of recombination. These might be attributed to late recombination events that occur in a sub-popu-

lation of cells (Figure 1D).

In order to verify that the TLC1-[MS2-IN] system does not disrupt the telomerase RNA function or

RNP biogenesis, we performed telomere length analysis before and after recombination (Figure 2—

figure supplement 1D). Consistent with previous reports, clones with the recombined TLC1-MS2

locus had stable and functional telomeres that were only slightly shorter than wild type telomeres

(Gallardo et al., 2011; Bajon et al., 2015). TLC1-MS2 clones isolated after recombination induction

also had a slightly reduced number of TLC1 molecules compared to wild type cells (Figure 2—figure

supplement 1E, top). At present we do not know the reason for this minor reduction of RNP abun-

dance, but virtually all functions of the enzyme, and in particular its enzymatic activity, remain unaf-

fected by the tag (Gallardo et al., 2011; Bajon et al., 2015). Importantly, the nucleo-cytoplasmic

distribution of TLC1 foci remained unchanged after inducible TLC1 tagging, validating that our sys-

tem is suitable to track subcellular movements of old and new TLC1 molecules separately (Figure 2—

figure supplement 1E, bottom).

At steady state (0 hr time point), the majority of TLC1 molecules resided in the nucleus (60–70%),

whereas the remaining 30–40% localized in the cytoplasm (Figure 2D). However, this distribution

started to change after induction of recombination. Over time, old untagged TLC1 molecules gradu-

ally accumulated in the cytoplasm, whereas their nuclear fraction declined. After 16 hr of recombina-

tion, the majority of old TLC1 molecules resided in the cytoplasm, as opposed to predominantly

nuclear TLC1 localization at steady state (Figure 2D). Hence, old telomerase RNA accumulates in

the cytoplasm at the end of its life cycle. Nevertheless, even by the end of the time course, a signifi-

cant fraction of the remaining old TLC1 molecules still localized in the nucleus (Figure 2D).

Quantification of the subcellular distribution of new TLC1-MS2 molecules revealed a peculiar

behavior. In contrast to steady state, early in the time course, i.e. immediately after RNA transcrip-

tion, new TLC1-MS2 molecules localized predominantly in the cytoplasm (Figure 2E). This behavior

persisted for approximately 2 hr, followed by gradual return of new molecules to the nucleus and re-

establishment of steady state at the end of the time course. The apparent slow dynamics of TLC1 re-

localization to the nucleus could also be due to delayed recombination events that occur in a fraction
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Figure 2. Subcellular distribution of telomerase RNA fractions in wild type cells. (A) Two-color smFISH analysis of

untagged old TLC1 (green) and tagged new TLC1-MS2 molecules (purple) in wild type cells following induction of

recombination. TLC1-Cy3 and MS2-Cy5 probes were used. Scale bar, 2 mm. (B) Average number of old and new

TLC1 foci observed by smFISH following recombination induction. 50–100 cells from three independent

experiments were scored. Error bars indicate SD. (C) Relative fractions of old and new TLC1 foci observed by

smFISH following recombination induction. 50–100 cells from three independent experiments were scored. Error

bars indicate SD. (D, E). Relative nuclear and cytoplasmic fractions of old (D) and new (E) TLC1 foci observed by

smFISH following recombination induction. NA – not applicable. 50–100 cells from three independent experiments

were scored. Error bars indicate SD.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Numerical data used to generate Figure 2.

Figure 2 continued on next page
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of asynchronous culture (Figure 1D). We conclude that at early stages after transcription, TLC1 mol-

ecules are exported to the cytoplasm but eventually shuttle back to the nucleus.

In summary, the inducible TLC1 tagging system in combination with the two-color smFISH

approach allows to study and quantify in detail the behavior of new and old TLC1 molecules as sepa-

rate fractions. Old molecules tend to accumulate in the cytoplasm where they are likely to be

degraded. On the other hand, the majority of newly synthesized telomerase RNA temporarily local-

izes in the cytoplasm followed by their gradual return to the nucleus and re-establishment of steady

state.

Xpo1 and Kap122 are involved in nucleo-cytoplasmic shuttling of newly
synthesized TLC1 transcripts
The Xpo1 exportin and Kap122 importin were previously implicated in the subcellular distribution of

TLC1 (Gallardo et al., 2008). In order to establish whether Xpo1 and Kap122 are required for the

shuttling of newly synthesized TLC1 molecules, we analyzed the dynamic localization of tagged

TLC1 in the absence of these proteins.

First, we tested whether export of new TLC1 molecules to the cytoplasm is dependent on the

Xpo1 exportin (Figure 3A,B). For this purpose, cells harboring a temperature-sensitive xpo1-1 allele

were shifted to the restrictive temperature (37˚C) 1 hr before recombination induction. After addition

of b-estradiol, xpo1-1 mutants were monitored for additional 8 hr at 37˚C, at which point cells had

completely stopped dividing. In xpo1-1 cells kept at the permissive temperature, new TLC1 mole-

cules followed similar localization dynamics as in wild type cells, temporarily localizing in the cyto-

plasm at early stages and eventually flowing back to the nucleus (Figure 3—figure supplement 1C).

However, in xpo1-1 cells incubated at the restrictive temperature, a drastic accumulation of newly

transcribed TLC1 molecules in the nucleus was observed (Figure 3A,B). A slight increase in the cyto-

plasmic TLC1-MS2 fraction early in the time course (Figure 3B, 1 h) could be explained by incom-

plete inactivation of Xpo1. The accumulation of new TLC1 molecules in the nucleus observed in

xpo1-1 cells at 37˚C was not due to the increase in temperature, as new TLC1 molecules in wild type

cells grown at 37˚C reached a normal steady state distribution, though with a slightly faster dynamics

(Figure 3—figure supplement 1D). These data directly demonstrate that the early temporary export

of newly synthesized TLC1 molecules to the cytoplasm depends on the Xpo1 exportin. Moreover,

Xpo1-mediated transport is the only mechanism responsible for the export of new telomerase RNA,

as upon Xpo1 inactivation virtually all TLC1 transcripts are retained in the nucleus for up to 8 hr

(Figure 3B). Notably, in xpo1-1 mutants incubated at 37˚C but not at 25˚C, a higher amount of new

TLC1-MS2 RNA was detected as compared to wild type cells (Figure 3D; Figure 3—figure supple-

ment 1F). Although xpo1-1 mutants grown at 37˚C initially have a faster recombination kinetics, this

cannot explain the increased amount of TLC1 RNA at the end of the experiment (Figure 3—figure

supplement 1A,B). Consistent with the northern blot quantification, we also observed a larger num-

ber of new TLC1 foci in xpo1-1 mutant cells at the restrictive temperature (Figure 3E). Again, this

effect is due to inactivation of Xpo1 rather than the elevated temperature, as wild type cells grown

at 30 and 37˚C have comparable numbers of new TLC1 foci (Figure 3—figure supplement 1G).

These data show that in the absence of functional Xpo1 when the cytoplasmic export of TLC1 is

completely blocked, newly made telomerase RNA persists in the nucleus and accumulates to higher

levels than in export-competent cells.

To test if Kap122 is involved in the nuclear re-import of new TLC1 molecules, we followed telome-

rase RNA via inducible tagging in kap122D cells (Figure 3A,C). For the first 60 min after recombina-

tion induction in kap122D mutants, newly synthesized TLC1 RNA behaved similarly to wild type cells,

localizing predominantly in the cytoplasm (Figures 2E and 3C). In wild type cells, the nuclear TLC1

fraction started to significantly increase thereafter, being almost equal to the cytoplasmic level after

2 hr and predominant after 3 hr (Figure 2E). However, in kap122D cells, the nuclear fraction began

to recuperate only 3 hr after recombination induction and never reached the wild type level, always

Figure 2 continued

Figure supplement 1. Additional characteristics of the TLC1-[MS2-IN] system.

Figure supplement 1—source data 1. Numerical data used to generate Figure 2—figure supplement 1.
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Figure 3. Dynamics of newly transcribed telomerase RNA in the absence of Xpo1 and Kap122. (A) Two-color

smFISH analysis of untagged TLC1 and tagged TLC1-MS2 molecules in xpo1-1 and kap122 mutants after 4 hr of

recombination. TLC1-Cy3 and MS2-Cy5 probes were used. Scale bar, 2 mm. (B, C). Relative nuclear and

cytoplasmic fractions of new TLC1 foci observed by smFISH following recombination induction in xpo1-1 (B) and

kap122 (C) mutants. NA – not applicable. 50–100 cells from three independent experiments were scored. Error

bars indicate SD. (D). Northern blot quantification of untagged TLC1 and tagged TLC1-MS2 RNA transcripts

following recombination induction in wild type, xpo1-1 and kap122 cells. Fractions relative to the positive

recombined control are shown. Error bars indicate SD, n = 3. (E) Average number of new TLC1 foci observed by

FISH following recombination induction in wild type, xpo1-1 and kap122 cells. 50–100 cells from three

independent experiments were scored. Error bars indicate SD.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Numerical data used to generate Figure 3.

Figure supplement 1. TLC1 dynamics in wild type, xpo1-1 and kap122 cells.

Figure supplement 1—source data 1. Numerical data used to generate Figure 3—figure supplement 1.

Vasianovich et al. eLife 2020;9:e60000. DOI: https://doi.org/10.7554/eLife.60000 8 of 26

Research article Chromosomes and Gene Expression

https://doi.org/10.7554/eLife.60000


remaining below 50% of total new molecules (Figure 3C). This effect is not due to slower progress

of recombination, as the recombination kinetics in kap122D cells was comparable to wild type (Fig-

ure 3—figure supplement 1A,B). In fact, by the end of the time course, new TLC1 molecules had

reached the steady state nucleo-cytoplasmic distribution that was characteristic of kap122D mutants

before recombination induction (Figures 3C, 16 h; Figure 3—figure supplement 1E). Therefore,

these results show that Kap122 supports the rapid re-import of new molecules to the nucleus after

the cytoplasmic stage. However, the late re-import of new TLC1 into the nucleus in kap122D mutants

suggests the existence of a secondary RNA import pathway. Indeed, telomere length in kap122D

mutants with steady state distribution of TLC1 molecules is only slightly shorter than in wild type

cells (Figure 2—figure supplement 1D).

Also, if the cytoplasmic telomerase RNA does not return to the nucleus in a timely fashion in the

absence of Kap122, it may become subject to degradation. As a result, even if the nuclear fraction is

held low, the nucleo-cytoplasmic TLC1 ratio in kap122D cells will increase over time. Consistent with

this scenario, the level of new TLC1-MS2 RNA in kap122D mutants is about 2-fold lower than in wild

type cells, as analyzed by northern blotting (Figure 3D). Consistently, a similar reduction in the num-

ber of new TLC1-MS2 foci in the absence of Kap122 was also observed by smFISH (Figure 3E).

These data indicate that new cytoplasmic TLC1 molecules, which due to the absence of Kap122 are

not rapidly transported back to the nucleus, become prone to degradation. As a result, the total

quantity of telomerase RNA decreases. Therefore, while a redundant secondary TLC1 import path-

way may exist, it is less efficient than the primary Kap122 pathway as it cannot prevent TLC1 losses

in the cytoplasm.

The nuclear stability of new telomerase RNA transcripts requires
Mex67
Transport of mRNAs, pre-ribosomal subunits and tRNA to the cytoplasm depends on the Mex67

export receptor (Segref et al., 1997; Santos-Rosa et al., 1998; Yao et al., 2007; Faza et al., 2012;

Chatterjee et al., 2017). In addition, Mex67 is required for the nuclear export of snRNAs and may

be implicated in TLC1 transport (Wu et al., 2014; Becker et al., 2019). Therefore, we tested

whether Mex67 affected the dynamics of newly synthesized TLC1 molecules. For this purpose, we

performed inducible TLC1 tagging experiment in a temperature-sensitive mex67-5 mutant. Similar

to xpo1-1 cells, mex67-5 mutants were pre-incubated at the restrictive temperature (37˚C) for 1 hr,

treated with b-estradiol and monitored for 8 hr at 37˚C. mex67-5 cells grown at the permissive tem-

perature (25˚C) were used as a control. Northern blot quantification showed efficient accumulation

of new TLC1-MS2 RNA at 25˚C, which after 8 hr of recombination induction reached 80% relative to

the recombined reference strain (Figure 4A,B). Steady appearance of new TLC1 foci at the permis-

sive temperature was also detected by smFISH (Figure 4C,D). Surprisingly, at the restrictive temper-

ature, new TLC1 RNA was almost undetectable either by northern blot or smFISH (Figure 4A–D).

This absence of new TLC1 molecules was not due to a defect in TLC1-[MS2-IN] recombination, as

the kinetics of recombination was the same both at 25 and 37˚C (Figure 4—figure supplement 1A).

In addition, untagged TLC1 RNA gradually disappeared at 37˚C at a rate that was only slightly faster

than at 25˚C (Figure 4—figure supplement 1B). Therefore, these results suggest that in the absence

of Mex67, new TLC1 molecules are either not produced, i.e. the gene is not transcribed, or they are

extremely unstable.

To distinguish between these two scenarios, we combined the temperature shift and a transcrip-

tion block into a single experiment (Figure 4F; Figure 4—figure supplement 1D). First, mex67-5

cells were treated with b-estradiol for 4 hr at the permissive temperature to allow proper formation

of new TLC1 molecules (Figure 4F). During this stage, accumulation of new TLC1 molecules in

mex67-5 cells was comparable to wild type. After shifting the temperature to 37˚C, production of

new TLC1 molecules continued in wild type cells, but stopped abruptly in mex67-5 mutants, as

expected from the above (Figure 4F; Figure 4—figure supplement 1D). If the dysfunctional Mex67

at the restrictive temperature abrogated TLC1 transcription, then an additional transcription block

would not be expected to aggravate the mex67-5 phenotype. However, addition of the RNA poly-

merase inhibitor thiolutin before shifting the temperature to 37˚C resulted in an even further loss of

new TLC1 molecules (Figure 4F). These data indicate that in mex67-5 cells incubated at the restric-

tive temperature, TLC1 transcription is functional. In addition, the level of RNA Pol II detected at the

TLC1 locus was comparable in mex67-5 cells grown at 25 and 37˚C, further confirming that TLC1
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Figure 4. Dynamics of telomerase RNA fractions upon inactivation of Mex67. (A) Northern blot analysis of

untagged TLC1 and tagged TLC1-MS2 RNA transcripts following induction of recombination in mex67-5 cells

grown at 25 and 37˚C. Position of the TLC1 probe used to detect TLC1 species is shown in Figure 1B. U1 –

loading control. ‘+’ - positive recombined control. RNA sizes are indicated on the left (kb), 1.8 kb corresponds to

18S rRNA. (B) Quantification of the northern blots shown in A. Fractions relative to the positive recombined control

(+) are shown. Error bars indicate SD, n = 3. (C) Two-color smFISH analysis of untagged TLC1 and tagged TLC1-

MS2 molecules in mex67-5 cells grown at 25 and 37˚C after 4 hr of recombination. Scale bar, 2 mm. (D, E) Average

Figure 4 continued on next page
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transcription is not affected by inactivation of the Mex67 protein (Figure 4—figure supplement 1E).

As a further test for the instability of the newly transcribed TLC1 RNA in mex67-5 cells, we induced

TLC1-[MS2-IN] recombination in mex67-5 rrp6D cells, in which the nuclear exosome complex,

responsible for RNA quality control and decay, is inactive. Strikingly, deletion of RRP6 completely

suppressed the mex67-5 phenotype, as in mex67-5 rrp6D cells grown at the restrictive temperature,

new TLC1 RNA molecules accumulated to the same level as at the permissive conditions (Figure 4C,

E; Figure 4—figure supplement 1F,G). These data directly show that in the absence of Mex67, new

TLC1 transcripts undergo rapid degradation by the nuclear exosome and indicate that Mex67 is

essential for stabilization of TLC1 RNA immediately after transcription and prior to export. At the

same time, the stability of pre-existing and matured molecules does not seem to be affected by dys-

functional Mex67 (Figure 4C; Figure 4—figure supplement 1B). To confirm that Mex67 acts

upstream of the Xpo1 exportin, we combined mex67-5 and xpo1-1 temperature-sensitive alleles in

the same strain. In mex67-5 xpo1-1 cells grown at the permissive temperature, newly synthesized

TLC1 molecules accumulated with normal kinetics (Figure 4—figure supplement 2A–C). However,

at 37˚C, new TLC1 RNA was almost undetectable in a double mutant, thus completely recapitulating

the phenotype of mex67-5 cells. These data confirm that Mex67 indeed functions upstream of Xpo1,

stabilizing newly transcribed TLC1 RNA prior to their cytoplasmic export.

While the vast majority of newly synthesized TLC1 RNA was unstable in the absence of Mex67, a

few molecules still could be detected (Figure 4C,D). Notably, these remaining TLC1 foci almost

exclusively accumulated at the nuclear periphery (Figure 4C; Figure 4—figure supplement 1C).

This observation became even more striking in mex67-5 rrp6D double mutant cells, in which the vast

majority of new molecules displayed this localization (Figure 4C; Figure 4—figure supplement 1H).

Therefore, in addition to its essential role in stabilizing new TLC1 molecules, Mex67 acts as a prereq-

uisite for the Xpo1-mediated export of TLC1 transcripts.

Collectively, the data thus demonstrate that Mex67 performs an entirely new and unexpected

function in the biogenesis of telomerase RNA. Unlike in cells deficient for the Xpo1 exportin, which

accumulate new telomerase RNA transcripts in the nucleus (Figure 3A,B), inactivation of Mex67

leads to an inability to produce stable and export-competent new TLC1 molecules (Figure 4).

The Sm7 complex is required for TLC1 stability after cytoplasmic export
and for its re-import to the nucleus
According to our new data, Mex67 is essential for stability of newly synthesized telomerase RNA

before its nuclear export (Figure 4). However, it is dispensable for stability of old molecules that

have passed through the cytoplasm and returned to the nucleus. This suggests that after export to

the cytoplasm, new TLC1 RNA acquires certain features that render it stable in the absence of a

functional Mex67 protein. The Sm7 complex is well known to stabilize telomerase RNA as well as

most snRNAs by binding near the RNA 3’-end (Seto et al., 1999). Notably, recent data are consis-

tent with the idea that snRNAs shuttle to the cytoplasm to associate with the Sm7 proteins

(Becker et al., 2019). Therefore, we hypothesized that telomerase RNA may also need to shuttle to

the cytoplasm for the assembly with the Sm7 complex and Sm7-mediated stabilization.

Figure 4 continued

number of new TLC1-MS2 foci detected by smFISH following recombination induction in mex67-5 (D) and mex67-

5 rrp6D (E) cells grown at 25 and 37˚C. 50–100 cells from three independent experiments were scored. Error bars

indicate SD. (F). Average number of new TLC1-MS2 foci detected by smFISH in mex67-5 and wild type cells grown

in the presence of thiolutin. After addition of b-estradiol, cells were grown for 4 hr at 25˚C, followed by addition of

thiolutin (TL) and temperature shift to 37˚C. 50–100 cells from three (mex67-5) and two (wt) independent

experiments were scored. Error bars indicate SD.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Numerical data used to generate Figure 4.

Figure supplement 1. TLC1 dynamics in mex67-5 cells.

Figure supplement 1—source data 1. Numerical data used to generate Figure 4—figure supplement 1.

Figure supplement 2. TLC1 dynamics in mex67-5 xpo1-1 cells.

Figure supplement 2—source data 1. Numerical data used to generate Figure 4—figure supplement 2.
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To verify this idea, we took advantage of a mutated tlc1-Sm2T allele which disrupts Sm7 binding

to TLC1 and renders it unstable (Seto et al., 1999). We modified the inducible TLC1-[MS2-IN] locus

such that before recombination, wild type TLC1 RNA proficient in Sm7 binding is expressed. How-

ever, after the recombination switch, the new RNA molecules will harbor the tlc1-Sm2T mutation at

their 3’-end (Figure 5—figure supplement 1A). Since only the tlc1-Sm2T RNAs have the MS2 tag,

these molecules can be identified and tracked within the cell.

At the beginning of the time course, tlc1-Sm2T-MS2 molecules shuttle to the cytoplasm

(Figures 5A, B, 1 h). However, to our surprise, these molecules never returned to the nucleus and

remained in the cytoplasm (Figures 5B, 4 h). This suggests that the Sm7 complex is required for re-

import of new TLC1 transcripts to the nucleus. Although the kinetics of TLC1-[Sm2T-MS2-IN] recom-

bination were normal (Figure 5—figure supplement 1B), the level of tagged tlc1-Sm2T-MS2 RNA

remained low over the entire time course, as detected by northern blotting using the TLC1 or MS2

probes (Figure 5C,D). Consistently, the number of newly synthesized tlc1-Sm2T-MS2 foci was also

lower than in wild type cells (Figure 5—figure supplement 1C). This indicates that new tlc1-Sm2T-

MS2 transcripts are unstable, as expected (Seto et al., 1999). As a result of TLC1 loss, cells with the

recombined TLC1-[Sm2T-MS2-IN] locus eventually undergo senescence and switch to a recombina-

tion-dependent telomere maintenance with the survivor telomere phenotype (Figure 5—figure sup-

plement 1D). Since the remaining tlc1-Sm2T RNA accumulates in the cytoplasm (Figure 5B), we

hypothesized that even in the absence of Sm7 binding, newly transcribed TLC1 molecules are proc-

essed and exported from the nucleus normally, yet they become unstable and disappear after

export to the cytoplasm. This scenario would predict that blocking the export of tlc1-Sm2T mole-

cules to the cytoplasm should render them more stable. Indeed, in tlc1-Sm2T xpo1-1 cells grown at

the restrictive temperature, new tlc1-Sm2T RNA molecules accumulated in the nucleus and were

more abundant than at the permissive conditions, when tlc1-Sm2T RNA shuttled to the cytoplasm

(Figure 5A,E–G; Figure 5—figure supplement 1E). Therefore, our data show that newly synthesized

telomerase RNA is stable in the nucleoplasm, even without the Sm7 complex. The Sm7 complex

binds new TLC1 RNA only after its export to the cytoplasm, where this association becomes essential

for TLC1 stability as well as for re-import of the molecules back into the nucleus.

Discussion
As for any RNA species, the cellular pool of telomerase RNA encompasses a variety of molecules at

different stages of biogenesis. Conventional imaging methods that rely on RNA-specific probes or

tags visualize the total RNA pool and therefore yield information about the steady state RNA distri-

bution. However, the diverse characteristics of various RNA sub-populations generally remain hidden

in such assays. In this study, we overcame this limitation by combining fluorescent imaging with an

inducible RNA tagging approach and applying it to the telomerase RNA TLC1. In this system, an

inducible recombination event leads to a rearrangement of the TLC1 genomic locus and the expres-

sion of TLC1 molecules tagged with MS2 repeats (Figure 1). Using a probe specific for the MS2 tag,

we can selectively identify and analyze newly synthesized telomerase RNA transcripts within a het-

erogeneous TLC1 population and track their specific movements by smFISH (Figure 2). In addition,

the dynamic behavior of TLC1 transcripts that remain untagged after recombination is complete,

provides clues about the old or matured TLC1 molecules.

At steady state, 30–40% of telomerase RNA molecules localize in the cytoplasm (Figures 2D, 0 h)

(Gallardo et al., 2008). However, the nature of the cytoplasmic TLC1 molecules remained enigmatic.

According to the nucleo-cytoplasmic shuttling model, telomerase RNA gets exported to the cyto-

plasm for biogenesis purposes (Ferrezuelo et al., 2002; Gallardo et al., 2008). It was possible that

TLC1 also accumulated in the cytoplasm at the end of its life cycle. Using the inducible TLC1 tagging

approach, we show that in fact both models apply. Accordingly, we observed a temporary accumula-

tion of newly synthesized TLC1 transcripts in the cytoplasm immediately after recombination induc-

tion, followed by their gradual return to the nucleus and re-establishment of a steady state RNA

distribution (Figure 2E). Thus, our results provide direct evidence for the nucleo-cytoplasmic TLC1

shuttling model and narrow down this process to an early post-transcriptional event. Moreover, we

show that old untagged TLC1 RNA accumulates in the cytoplasm by the end of the time course

experiment (Figures 2D, 16 h), indicating a possible cytoplasmic decay of TLC1 molecules at the

end of their life cycle. It still needs to be determined what triggers the exit of old transcripts from
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Figure 5. Dynamics of telomerase RNA fractions in tlc1-Sm2T mutants. (A) Two-color smFISH analysis of untagged

TLC1 and tagged TLC1-MS2 molecules in tlc1-Sm2T and tlc1-Sm2T xpo1-1 mutants after 4 hr of recombination.

TLC1-Cy3 and MS2-Cy5 probes were used. Scale bar, 2 mm. (B) Relative nuclear and cytoplasmic fractions of

tagged TLC1-MS2 foci detected by smFISH in wild type and tlc1-Sm2T cells after 1 hr and 4 hr of recombination.

50–100 cells from three independent experiments were scored. Error bars indicate SD. (C) Northern blot analysis

of untagged TLC1 and tagged TLC1-MS2 RNA transcripts following induction of recombination in tlc1-Sm2T cells.

The top blot was hybridized with the TLC1 probe depicted in Figure 1B. The bottom blot was hybridized with the

MS2-specific probe. U1 – loading control. ‘+’ - positive recombined controls. RNA sizes are indicated on the left

(kb), 1.8 kb corresponds to 18S rRNA. (D) Quantification of the tagged TLC1-MS2 RNA from the MS2-specific

northern blot shown in C. Fractions relative to the positive recombined controls (+) are shown. Error bars indicate

SD, n = 2. Quantification of the tagged TLC1-MS2 RNA in wild type cells from Figure 1E,F is shown as a

reference. (E) Northern blot analysis of tagged TLC1-MS2 RNA transcripts following induction of recombination in

Figure 5 continued on next page
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the nucleus. Nevertheless, a significant number of old TLC1 molecules remained in the nucleus by

the end of the time course (Figures 2D, 16 h). Hence, it is possible that telomerase RNA may also

get degraded via a nuclear mechanism. In addition, we cannot exclude that TLC1 RNA undergoes

additional rounds of shuttling at later stages of its life cycle. However, we favour the idea that

untagged TLC1 foci that remain in the nucleus are the result of late recombination events that

occurred in a subset of cells (Figure 1C–G). In this scenario, by the end of the time course, the

majority of untagged TLC1 molecules are truly ‘old’ and localize in the cytoplasm for degradation,

whereas a subset of untagged TLC1 is still functional and operates in the nucleus. Consistent with

this idea, telomerase RNA has a very long-half life and can remain functional for much longer than

60 min, exceeding the length of one full cell cycle (Chapon et al., 1997; Larose et al., 2007).

The Xpo1 exportin and Kap122 importin were previously shown to affect the subcellular distribu-

tion of telomerase RNA (Gallardo et al., 2008). However, we aimed to understand whether these

karyopherins are responsible for the nucleo-cytoplasmic shuttling of newly synthesized telomerase

RNA transcripts (Figure 3A–C). Importantly, our results show that export of new telomerase RNA is

entirely dependent on the Xpo1 exportin. Accordingly, in cells with dysfunctional Xpo1, newly tran-

scribed TLC1 molecules accumulated exclusively in the nucleus, which would not be the case if an

additional export receptor participated in telomerase RNA export (Figure 3A,B). On the other hand,

Kap122 importin promotes the re-import of new TLC1 molecules to the nucleus, as following export

in kap122D cells, most TLC1 molecules remained in the cytoplasm (Figure 3A,C). However, unlike

TLC1 export which depends exclusively on Xpo1, nuclear re-import of new telomerase RNA mole-

cules appears to be mediated by several importins. Accordingly, at later stages after the recombina-

tion initiation, the nuclear TLC1 fraction gradually increased in kap122D cells (Figure 3C). This

alternative pathway could be dependent on Mtr10, which was previously shown to affect subcellular

TLC1 localization (Ferrezuelo et al., 2002; Gallardo et al., 2008). Existence of a secondary Kap122-

independent re-import mechanism for newly synthesized TLC1 transcripts is also supported by the

fact that telomere maintenance is only mildly affected in the absence of Kap122 (Figure 2—figure

supplement 1D). Interestingly, the maximal level of newly synthesized TLC1 RNA is decreased in

kap122D cells (Figure 3D,E), suggesting that TLC1 that cannot re-enter the nucleus is degraded dur-

ing the cytoplasmic phase. Therefore, a cooperation of several importins, including Kap122, facili-

tates a quick and efficient return of new TLC1 transcripts to the nucleus (Figure 6). Failure or delay

in such re-import may lead to loss of telomerase RNA.

There is evidence that the karyopherin-unrelated export receptor Mex67 may cooperate with the

Xpo1 exportin in the cytoplasmic export of several RNA species, including snRNAs, rRNAs and

tRNAs (Yao et al., 2007; Faza et al., 2012; Chatterjee et al., 2017; Becker et al., 2019). However,

the molecular mechanism of this Mex67 function is not well understood. Here, we decided to test

whether Mex67 affects the nucleo-cytoplasmic shuttling of new telomerase RNA transcripts. Strik-

ingly, newly synthesized TLC1 molecules almost completely disappear upon inactivation of Mex67

(Figure 4A–D). Using thiolutin-induced transcription block and RNA Pol II ChIP experiments, we

ruled out the possibility that dysfunctional Mex67 causes the defect in TLC1 transcription

(Figure 4F; Figure 4—figure supplement 1E). Instead, inactivation of Mex67 results in a nearly com-

plete loss of new telomerase RNA after transcription – a phenotype that can be fully suppressed by

removal of the Rrp6 exosome component (Figure 4C,E; Figure 4—figure supplement 1F,G). The

few TLC1 foci that remained detectable upon inactivation of Mex67 almost exclusively localized at

Figure 5 continued

tlc1-Sm2T xpo1-1 cells grown at 25 and 37˚C. The blot was hybridized with the MS2-specific probe. U1 – loading

control. RNA sizes are indicated on the left (kb), 1.8 kb corresponds to 18S rRNA. (F) Quantification of the northern

blot shown in (E). Fractions relative to the positive recombined controls are shown. Error bars indicate SD, n = 2.

(G) Relative nuclear and cytoplasmic fractions of tagged TLC1-MS2 foci detected by smFISH in tlc1-Sm2T xpo1-1

cells grown at 25 and 37˚C after 4 hr of recombination. 50–100 cells from two independent experiments were

scored. Error bars indicate SD.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Numerical data used to generate Figure 5.

Figure supplement 1. Dynamics of TLC1 fractions in tlc1-Sm2T and tlc1-Sm2T xpo1-1 cells.

Figure supplement 1—source data 1. Numerical data used to generate Figure 5—figure supplement 1.
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the nuclear border (Figure 4C; Figure 4—figure supplement 1C), suggesting that in the absence of

Mex67, new TLC1 transcripts quickly degrade in the nucleus and never make it to the cytoplasm. In

addition, new TLC1 RNA was also unstable in a mex67-5 xpo1-1 double mutant grown at the restric-

tive temperature (Figure 4—figure supplement 2), similar to the phenotype observed in mex67-5

single mutants (Figure 4A–D). Altogether, these data show that Mex67 is essential for the nuclear

stability of newly transcribed telomerase RNA prior to its Xpo1-mediated cytoplasmic export. On

Figure 6. The model of early stages of telomerase RNA biogenesis. WT: Telomerase RNA is transcribed by RNA

polymerase II (red sphere). Mex67 possibly associates co-transcriptionally with telomerase RNA, ensures its

stability and protects the RNA 3’-end. Mex67 might also deliver TLC1 to the nuclear pores where it may associate

as an adaptor with the Xpo1 exportin. Xpo1 mediates cytoplasmic export of new telomerase RNA transcripts.

Mex67 will disembark from TLC1 in the cytoplasm and is recycled back to the nucleus. During the cytoplasmic

stage, the heptameric Sm7 complex binds the 3’-end of TLC1 which is required for stabilization of the RNA. Sm7

binding may also promote TLC1 re-import to the nucleus. Nuclear re-import of TLC1 is mediated by Kap122 and

other importins. Upon re-entry to the nucleus, TLC1 undergoes Sm7-mediated 5’-TMG capping and 3’-end

processing, which terminates the biogenesis cycle of telomerase RNA. mex67-5, 37˚C: When Mex67 is

dysfunctional, TLC1 is transcribed but is extremely unstable, which leads to rapid degradation of newly

synthesized telomerase RNA transcripts in the nucleus. tlc1-Sm2T: Mutant TLC1 RNA that cannot associate with

the Sm7 complex is stable in the nucleus. However, after export to the cytoplasm, it becomes unstable and

undergoes quick degradation.
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the other hand, old TLC1 molecules, which remained untagged during the experiment, were not

destabilized by inactivation of Mex67 (Figure 4C, Figure 4—figure supplement 1B).

An earlier study reported that in mex67-5 cells grown at the restrictive temperature, telomerase

RNA molecules are lost from the cytoplasm, which was interpreted as nuclear accumulation of TLC1

RNA (Wu et al., 2014). Our data here show that newly synthesized molecules largely contribute to

the cytoplasmic TLC1 fraction and their disappearance in the absence of Mex67 indeed results in a

decrease in the cytoplasmic TLC1 RNA. Notably, in this situation the nuclear TLC1 signal is com-

posed of only matured or old RNA and there is no accumulation of new TLC1 molecules in the

nucleus. Hence, the power of our inducible RNA tagging approach allows a much more targeted

and detailed assessment of the dynamics of the complex TLC1 RNA population.

Similar to our results, depletion of Mex67 was shown to cause rapid nuclear degradation of all

newly transcribed poly-A+ mRNAs (Tudek et al., 2018). This untimely RNA decay was attributed to

the role of Mex67 as an mRNA export receptor. Mechanistically, it was suggested that this effect

involves Nab2 that binds to poly-A+ tails and protects RNA transcripts from degradation

(Hector et al., 2002; Schmid et al., 2015). The authors hypothesized that upon export block by

Mex67 inactivation, Nab2 cannot be recycled from its substrate. Thus, accumulating poly-A+ RNA

tails will sequester the nuclear Nab2 pool away from newly formed RNA, rendering them unstable

(Tudek et al., 2018). It is important to note that the vast majority of TLC1 (95%) is generated directly

via the Nrd1/Nab3 non-coding RNA termination pathway (Noël et al., 2012). So far, Nab2 has not

been implicated in this pathway, but we cannot exclude the possibility that other maturation factors

specific to the non-coding RNA termination pathway could play a role similar to Nab2. Hence, the

model suggested by Tudek et al. could also explain premature degradation of new TLC1 transcripts

upon inactivation of Mex67 observed in our study (Figure 4). However, very much distinct from the

above model, our results argue that Mex67 does not act as a classical TLC1 export receptor and an

export block cannot explain the degradation of new TLC1 molecules. First, we show that export of

new telomerase RNA molecules to the cytoplasm is entirely dependent on Xpo1 (Figure 3A,B). If

Mex67 operated in parallel with Xpo1 in TLC1 export, at least a fraction of new telomerase RNA

molecules would be expected to eventually reach the cytoplasm in xpo1-1 cells grown at the restric-

tive temperature, which we did not observe (Figure 3A,B). Second and more importantly, although

inactivation of Xpo1 completely blocks TLC1 in the nucleus, these molecules are perfectly stable and

their number even increases beyond the level observed in wild type cells (Figure 3D,E). This means

that at least for telomerase RNA, an export block per se does not lead to nuclear RNA decay. In

other words, while in cells with dysfunctional Mex67 newly transcribed TLC1 RNA is completely lost,

it is retained and accumulates in the nucleus in xpo1-1 mutants grown at the restrictive temperature

(Figure 4A–D). This suggests that Mex67 acts upstream of Xpo1 and plays an unexpected role in

stabilization of newly transcribed TLC1 molecules before their cytoplasmic export (Figure 6).

Hence, our results indicate a novel role of Mex67 in stabilization of telomerase RNA which to our

knowledge is the first time that Mex67 is implicated in a function distinct from RNA export. Mex67 is

known to bind at least to some of its cargoes co-transcriptionally (Dieppois et al., 2006;

Wende et al., 2019). It has been proposed that such early association with its RNA substrates may

assist in proper 3’-end RNA maturation and protection (Forrester et al., 1992; Hammell et al.,

2002; Qu et al., 2009). Failure to execute this function may lead to elimination of faulty transcripts

as was previously reported for other 3’-end processing mutants (Minvielle-Sebastia et al., 1991;

Forrester et al., 1992; Hammell et al., 2002). There was some evidence that Mex67 may be able to

associate with telomerase RNA (Wu et al., 2014), and our results here firmly establish that Mex67

protects the 3’-end of TLC1 from nuclear degradation by Rrp6 (Figure 4C,E; Figure 4—figure sup-

plement 1F–H; Figure 6). Moreover, since Mex67 can bind to both RNA and nuclear pore compo-

nents, it may be responsible for a quick delivery of new transcripts to the nuclear pore where they

are stabilized and exported by Xpo1. The latter is consistent with our finding that the few newly syn-

thesized molecules that are still visible in the mex67-5 mutant localize at the nuclear border

(Figure 4C). Given that Mex67 has been implicated in the life cycle of diverse RNA classes, we spec-

ulate that Mex67 may perform a stabilization function for the poly-A+ RNA species as it does for tel-

omerase RNA.

Since old TLC1 molecules underwent at least one round of nucleo-cytoplasmic shuttling, we rea-

soned that during this shuttling, telomerase RNA must have acquired a property that renders it

insensitive to the loss of Mex67. Hence, we asked which telomerase subunits could confer TLC1
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stability after export to the cytoplasm. Using a modified inducible TLC1 tagging system in which the

new TLC1 RNA carries a tlc1-Sm2T mutation, we demonstrate that TLC1 RNA deficient in Sm7 bind-

ing accumulates in the cytoplasm (Figure 5; Figure 5—figure supplement 1). Given the nuclear

instability of the wild type RNA in the absence of Mex67 (see above), we conclude that the Sm7 com-

plex associates with the TLC1 RNA in the cytoplasm and that this association in turn stabilizes the

RNA. Recently a cytoplasmic association with the Sm7 complex has also been suggested for snRNAs

(Becker et al., 2019). Similarly, nuclear export and cytoplasmic Sm7 binding is also a characteristic

of mammalian snRNAs (Fischer et al., 2011).

The data reported here challenge the current view of telomerase biogenesis by placing the Sm7

binding step after export of telomerase RNA to the cytoplasm (Figure 6). The new model incorpo-

rates the idea that in the nucleus, newly synthesized poly-A- telomerase RNA (Noël et al., 2012) first

requires stabilization by Mex67, which may also usher TLC1 to nuclear pores. Whether the Mex67

association occurs co-transcriptionally or in coordination with the 3’-end formation or even after tran-

script release remains to be determined. Failure to associate with Mex67 results in immediate degra-

dation of new TLC1 transcripts via the nuclear exosome. Next, the RNA is transported to the

cytoplasm which absolutely requires Xpo1. This karyopherin does not bind RNA directly and we still

do not know what the TLC1 adaptor for Xpo1 is. In this regard, our data are consistent with the pos-

sibility that Mex67 itself plays this role in addition to its stabilizing function in the nucleus (Figure 6).

If Mex67 indeed acts as an adaptor between TLC1 RNA and Xpo1 exportin, it would likely translo-

cate through the nuclear membrane with the Xpo1-TLC1 complex. Once in the cytoplasm, the TLC1

RNA must rapidly associate with the Sm7 complex, given that Mex67 will likely disembark from the

RNA at the nuclear pore exit and get recycled back into the nucleus (Stewart, 2007). At this stage

then, the Sm7 complex is required for TLC1 RNA stabilization, and in turn, TLC1 stability allows for

other telomerase subunits to associate with the maturing RNP. If this step is compromised, TLC1

molecules undergo degradation in the cytoplasm. Whether the cytoplasmic exosome, the Xrn1

nuclease or other machineries perform this function remains to be determined. Eventually, the telo-

merase RNP is re-imported to the nucleus primarily via Kap122, but alternative and less efficient

import pathways do exist (Figure 3C). Finally, our model suggests that the final 5’-TMG capping and

3’-end processing of telomerase RNA occurs in the nucleus after its re-import and is dependent on

the presence of the Sm7-complex, possibly analogous to snRNA maturation (Becker et al., 2019).

This final step may thus occur on a relatively mature telomerase RNP, which is entirely feasible given

a predicted close proximity of the 5’- and 3’-ends of telomerase RNA (Cech, 2004; Dandjinou et al.,

2004). It is also consistent with the fact that active telomerase RNPs only contain 5’-TMG capped tel-

omerase RNAs (Bosoy et al., 2003). Maturation of telomerase RNA may also serve as a final stabili-

zation step for TLC1 RNA and render it insensitive to loss of Mex67, as observed above (Figure 4C).

Our study thus elucidates many of the early events of telomerase RNA biogenesis. However, later

stages of TLC1 life cycle remain enigmatic, e.g., does telomerase RNA continue to cycle between

the nucleus and the cytoplasm or whether these and final shuttling rounds rely on the same machin-

ery as the initial export and re-import. Although our data show that Mex67 is dispensable for TLC1

stability after the first round of shuttling (Figure 4), it might still act as a TLC1-Xpo1 adaptor for the

subsequent rounds of export. Alternatively, TLC1 might use a different adaptor for later shuttling

steps or even rely on a different karyopherin (such as Los1 or Msn5).

As in yeast, the generation and stabilization of human telomerase RNA relies on the association

with several proteins, including dyskerin, NHP2 and NOP10 as well as factors involved in the non-

coding RNA maturation pathway such as PARN (Hoareau-Aveilla et al., 2006; Fu and Collins,

2007; Walne et al., 2007; Moon et al., 2015; Nguyen et al., 2015). Mutations in PARN, dyskerin

or NOP10 cause severe genetic disorders, emphasizing the functional significance of these telome-

rase subunits and RNA maturation mechanisms (Vulliamy et al., 2006; Walne et al., 2007). Further-

more, the loss of telomerase RNA due to PARN mutations is amenable to reversion by small

molecules that thus may alleviate the severe associated disease (Brenner and Nandakumar, 2020).

However, certain details of human telomerase biogenesis remain enigmatic. For example, how and

when do dyskerin and NOP10 associate with telomerase RNA and is association with these subunits

needed for RNA processing? Inducible RNA tagging tools as described in this study should greatly

aid in teasing out these maturation steps and may provide missing links in human telomerase

biogenesis.
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Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Strain, strain
background
(S. cerevisiae)

All strains (W303) Supplementary file 1

Gene
(S. cerevisiae)

TLC1 Saccharomyces
Genome Database

TLC1;
SGD:S000006657

Gene
(S. cerevisiae)

tlc1-Sm2T doi:10.1038/43694

Gene
(S. cerevisiae)

XPO1, CRM1 Saccharomyces
Genome Database

YGR218W;
SGD:S000003450

Gene
(S. cerevisiae)

xpo1-1 gift from Pascal
Chartrand
doi:10.1016/s0092-
8674(00)80370–0

temperature-
sensitive allele

Gene
(S. cerevisiae)

MEX67 Saccharomyces
Genome Database

YPL169C;
SGD:S000006090

Gene
(S. cerevisiae)

mex67-5 gift from Marlene
Oeffinger
doi:10.1093/emboj
/16.11.3256
doi:10.1038/nbt.1832

temperature-sensitive allele

Gene
(S. cerevisiae)

KAP122 Saccharomyces
Genome Database

YGL016W;
SGD:S000002984

Gene
(S. cerevisiae)

RRP6 Saccharomyces
Genome Database

YOR001W;
SGD:S000005527

Chemical
compound, drug

b-estradiol Sigma Cat#: E8875 Recombination
induction, 12.5 mM final

Chemical
compound, drug

ClonNAT,
nourseothricin sulfate

BioShop Cat#: NUR001 Selection,
100 mg/ml final

Chemical
compound, drug

Thiolutin Abcam Cat#: ab143556 Transcription block,
3 mg/ml final

Chemical
compound, drug

Para-formaldehyde
solution, 32%

Electron
Microscopy Sciences

Cat#: 15714 FISH, 4% final

Chemical
compound, drug

Ribonucleoside
vanadyl complex, 200 mM

New England Biolabs Cat#: S1402S FISH, 20 mM final

Chemical
compound, drug

Formamide Sigma Cat#: F9037 FISH, 40% final

Chemical
compound, drug

Salmon sperm DNA Invitrogen Cat#: 15632–011 FISH, 0.4 mg/ml final

Chemical
compound, drug

tRNA from E. coli Roche Cat#: 10109541001 FISH, 0.4 mg/ml final

Chemical
compound, drug

Poly-L-lysine, 0.01% Sigma Cat#: P4707

Chemical
compound, drug

DAPI Sigma Cat#: D9542 FISH, 0.5 mg/ml final

Chemical
compound, drug

p-phenylenediamine Sigma Cat#: P6001

Commercial
assay or kit

Cy3 Mono-Reactive dye Cytiva Cat#: PA23001

Commercial
assay or kit

Cy5 Mono-Reactive dye Cytiva Cat#: PA25001

Commercial
assay or kit

ThermoScientific Pierce
Protein A/G Magnetic Beads

ThermoScientific Cat#: 88802 ChIP, 50 ml per sample

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Antibody Anti-RNA Polymerase II
RPBI (mouse monoclonal
antibody, clone 8WG16)

Cedarlane Cat#: 664906 ChIP (5 ml per sample)

Peptide,
recombinant protein

XmnI (restriction enzyme) New England Biolabs Cat#: R0194L

Peptide,
recombinant protein

AleI-v2 (restriction enzyme) New England Biolabs Cat#: R0685L

Peptide,
recombinant protein

XhoI (restriction enzyme) New England Biolabs Cat#: R0146L

Peptide,
recombinant protein

Lyticase Sigma Cat#: L2524 FISH, 5 U/ml final

Recombinant
DNA reagent

All plasmids Supplementary file 2

Sequence-
based reagent

All primers Supplementary file 3

Software,
algorithm

SnapGene 2.1 http://www.snapgene.com/ RRID:SCR_015052

Software,
algorithm

ImageQuant TL 8.2 (Cytiva) https://www.cytivalife
sciences.com/en/is/
shop/protein-analysis/molecular
-imaging-for-proteins/
imaging-software/
imagequant-tl-8-2-image-
analysis-software-p-09518

RRID:SCR_018374

Software,
algorithm

GraphPad Prism 8 http://www.graphpad.com/ RRID:SCR_002798

Software,
algorithm

ZEN 3.1 2019 (Zeiss) https://www.zeiss.com/
microscopy/int/
products/microscope-software/zen.html

RRID:SCR_013672

Strains and plasmids
Strains used in this study are derivatives of W303. All strains are listed in Supplementary file 1. To

express the inducible tagging system, the TLC1-[MS2-IN] cassette was integrated in the TLC1 geno-

mic locus. The TLC1-[MS2-IN] cassette containing the mid-TLC1 sequence, loxP site, TLC1 3’-end,

natMX4 cassette, ADH1 terminator, loxP site, 10xMS2 repeats followed by a duplicated TLC1-3’

end, was amplified by PCR from pYV132 using qTLC1-F and TLC1 AvaI-R primers (plasmids and pri-

mers used in the study are listed in Supplementary file 2 and Supplementary file 3, respectively).

In the modified TLC1-[Sm2T-MS2-IN] tagging system, the sequence encoding the Sm7-binding site

(ATTTTTGG) in the duplicated TLC1 3’-end downstream of the 10xMS2 array was mutated into

ATTGG, resulting in the expression of the tlc1-Sm2T mutant RNA upon recombination. To express

such system, the TLC1-[Sm2T-MS2-IN] cassette was amplified from pYV142 using qTLC1-F and TLC1

AvaI-R primers. To express the Cre-EBD recombinase in wild type, kap122 and tlc1-Sm2T back-

grounds, pTW40 was linearized with NdeI and integrated at the his3 locus. To express Cre-EBD

in xpo1-1, xpo1-1 tlc1-Sm2T, mex67-5, mex67-5 rrp6D and mex67-5 xpo1-1 mutants, pYV144 was

linearized with NdeI and integrated at the ura3 locus. YV359, YV360 recombined controls are clon-

NAT-sensitive derivatives of YV349 and YV352. kap122D and rrp6D mutants were constructed by a

one step replacement of the KAP122 and RRP6 genes, respectively, with the kanMX4 cassette,

amplified from pRS400 using YV395_KAP122_F1 and YV396_KAP122_R1 primers for the deletion of

KAP122, and rrp6D_for and rrp6D_rev primers for the deletion of RRP6. The mex67-5 xpo1-1 double

mutant strain was constructed by a one step replacement of the MEX67 gene in YV365, YV366 with

the mex67-5-kanMX6 cassette, amplified from the Y11429 strain (gift from M. Oeffinger lab) using

YV518_MEX67-237 and YV519_MEX67+278 primers.

pEB36 was constructed via multiple cloning steps. Sequence containing the fragment of the TLC1

gene (665–1145 bp), the loxP site, the TLC1 3’-end (1146–1301 bp) followed by 148 bp of the
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downstream sequence, the natMX4 cassette (consisting of the TEF promoter, the NATR gene and

TEF terminator), the loxP site, 10xMS2 repeats and the duplicated TLC1 3’-end (1146–1301 bp) fol-

lowed by 1156 bp of the downstream sequence was cloned in pRS306 between BamHI and EcoRI

restriction sites. pYV132 was constructed via multiple cloning steps, resulting in addition of the

ADH1 terminator sequence downstream of the TEF terminator in pEB36. pYV142 was constructed

via multiple cloning steps, which led to the replacement of the Sm7-binding site (ATTTTTGG) in the

duplicated TLC1 3’-end of pYV132 with ATTGG sequence. pYV144 was constructed by replacing

AatII - SacII HIS3-containing fragment of pTW40 with AatII - SacII URA3-containing fragment of

pRS306. All plasmids constructed in this study were verified by sequencing.

Yeast culture
For inducible TLC1-[MS2-IN] tagging experiments in wild-type cells (YV349, YV352; Figures 1 and

2), kap122 mutants (YV355, YV356; Figure 3) and tlc1-Sm2T mutants (YV390, YV391; Figure 5), cells

were pre-cultured overnight in SC-HIS media supplemented with clonNAT (100 mg/ml) and grown at

30˚C in SC complete medium without clonNAT from OD 0.1 to 0.4. Recombination was induced with

12.5 mM b-estradiol (Sigma) and monitored for the duration of the time course. For the experiments

at the restrictive temperature (Figure 3—figure supplement 1D,G), wild type cells (YV349, YV352)

were shifted to 37˚C 1 hr before addition of b-estradiol and grown for 8 hr at 37˚C. For the experi-

ments with the temperature-sensitive mutants xpo1-1 (YV365, YV366 [Figure 3]; YV403, YV404

[Figure 5A,E–G]); mex67-5 (YV385, YV386; YV399, YV400 [Figure 4A–E]) and mex67-5 xpo1-1

(YV417, YV418 [Figure 4—figure supplement 2]), cells were pre-cultured overnight at 25˚C in SC-

HIS-URA (xpo1-1 and mex67-5 xpo1-1) and SC-LEU-URA (mex67-5) supplemented with clonNAT

(100 mg/ml) and grown at 25˚C in SC-HIS (xpo1-1 and mex67-5 xpo1-1) and SC-LEU (mex67-5) with-

out clonNAT from OD 0.1 to 0.3. Cells were divided in two cultures and grown at 25 or 37˚C for 1

hr. Recombination was induced with 12.5 mM b-estradiol and monitored for the indicated period of

time at 25 or 37˚C. For the experiment described in Figure 4F, wild type (YV349, YV352) and

mex67-5 cells (YV385, YV386) were pre-cultured overnight at 25˚C in SC-HIS (wild type) and SC-LEU-

URA (mex67-5) supplemented with clonNAT (100 mg/ml) and grown at 25˚C in SC complete (wild

type) and SC-LEU (mex67-5) media without clonNAT from OD 0.1 to 0.4. After addition of b-estra-

diol (12.5 mM), cells were grown at 25˚C for 4 hr. Thiolutin (3 mg/ml, Abcam) was added to half of the

cultures for 15 min. Thiolutin-treated and -untreated cultures were split and grown at 25 or 37˚C for

3 hr. In all experiments, cell aliquots were collected for DNA, RNA and FISH analysis at regular time

points. OD of cell cultures was maintained below 0.8 throughout the length of experiments.

To isolate recombined control strain (YV359, YV360), YV349 or YV352 cells were grown in YEPD

media without clonNAT, treated with 12.5 mM b-estradiol overnight, plated on YEPD media for sin-

gle colonies and replica-plated on YEPD + clonNAT (100 mg/ml) plates. clonNAT-sensitive clones

were isolated.

Southern blotting
Genomic DNA was extracted using phenol-chloroform (Sambrook et al., 1989). To monitor the

TLC1-[MS2-IN] recombination, DNA was digested with XmnI and AleI-v2 (NEB), resolved on a 0.8%

agarose-1x TBE gel, transferred on a Hybond-XL nylon membrane (Cytiva) and hybridized to 32P-

labeled TLC1 and CEN4-1.5 kb probes. Probes were obtained by PCR amplification (see

Supplementary file 3 for primer sequences), followed by random priming labeling procedure

(Feinberg and Vogelstein, 1983). For telomere length analysis, DNA was digested with XhoI (NEB)

and subjected to agarose gel electrophoresis and transfer as described above. Blots were hybridized

to a 32P-labeled pCT300 probe (300 bp fragment containing 280 bp of telomeric repeats derived

from pYLPV [Wellinger et al., 1993]) and PCR-amplified 32P-labeled CEN4-1.6 kb probe. Blots were

visualized using Typhoon FLA9000 (Cytiva) and quantified via Image Quant TL software (Cytiva).

To quantify the fraction of the unrecombined TLC1-[MS2-IN] DNA, the ratio between the frag-

ment ‘a’ intensity (Figure 1A) at the time point x and the time point 0 (100% unrecombined locus)

was calculated. To quantify the recombined TLC1-[MS2-IN] DNA fraction, the ratio between the frag-

ment ‘b’ intensity at the time point x and in the recombined control strain (YV359, YV360) (100%

recombined locus) was calculated. Intensity of fragments ‘a’ and ‘b’ was normalized to the CEN4

loading control.
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Northern blotting
RNA extraction and northern blotting were performed as described previously (Laterreur et al.,

2018). In brief, RNA was extracted 2x with phenol/chloroform/isoamyl alcohol (25:24:1) and 1x with

chloroform/isoamyl alcohol (24:1). RNA was mixed with NaOAc (150 mM), glycogen (50 mg) and pre-

cipitated in 2x volume of 100% ethanol at �20˚C. 10 mg of RNA was mixed with 1x MOPS (pH 7),

3.7% formaldehyde, 45% formamide and 1x RNA dye. Samples were migrated on a 1.1% agarose-1x

MOPS (pH 7)–2% formaldehyde gel and transferred on a Hybond N+ membrane (Cytiva). After UV-

crosslinking, the membrane was hybridized to 32P-labeled TLC1 or non-aminoallyl MS2 probe. The

membrane was simultaneously hybridized to the U1 probe used to detect the U1 RNA as a loading

control. The TLC1 probe was obtained by PCR amplification (see Supplementary file 3 for primer

sequences), followed by random priming labeling procedure (Feinberg and Vogelstein, 1983). An

oligonucleotide non-aminoallyl MS2 and U1 probes were obtained by 5’-end labeling

(Sambrook et al., 1989). Blots were visualized using Typhoon FLA9000 (Cytiva) and quantified via

Image Quant TL software (Cytiva).

To quantify the fraction of untagged TLC1 RNA, the ratio between the intensities of the TLC1

band at the time point x and the time point 0 (100% untagged TLC1) was calculated. To quantify the

fraction of tagged TLC1-MS2 fraction, the ratio between the intensities of the TLC1-MS2 band at

the time point x and in the recombined control strain (YV359, YV360) (100% tagged TLC1-MS2) was

calculated. Intensity of the TLC1 and TLC1-MS2 bands was normalized to the U1 loading control.

RT-qPCR and ddPCR
RNA integrity was assessed with the Agilent 2100 Bioanalyzer (Agilent Technologies). Reverse tran-

scription was performed on 2 mg total RNA using Transcriptor reverse transcriptase, random hexam-

ers, dNTPs (Roche Diagnostics) and 10 units of RNAseOUT (Invitrogen) in a total volume of 10 ml

following the manufacturer’s protocol. For ddPCR setup part, qPCR reactions were performed in 10

ml in 384 well plates on a CFX-384 thermocycler (BioRad) with 5 ml of 2X PerfeCTa SYBR Green

Supermix (Quantabio), 10 ng of cDNA and 200 nM primer pair solutions. The following cycling con-

ditions were used: 3 min at 95˚C; 50 cycles: 15 s at 95˚C, 30 s at 60˚C, 30 s at 72˚C. Primer design

and validation were evaluated as described elsewhere (Brosseau et al., 2010).

Droplet Digital PCR (ddPCR) reactions included 10 ml of 2X QX200 ddPCR EvaGreen Supermix

(Bio-Rad), 240 ng of cDNA and 200 nM primer pair solutions in a 20 ml total volume. Each reaction

mix was converted into droplets with the QX200 droplet generator (Bio-Rad). Droplet-partitioned

samples were then transferred to a 96-well plate, sealed and cycled in a C1000 deep well Thermocy-

cler (Bio-Rad) under the following cycling protocol: 95˚C for 5 min, 50 cycles: 95˚C for 30 s, 60˚C for

1 min, 72˚C for 30 s; post-cycling steps: 4˚C for 5 min and 90˚C for 5 min. RNA concentration (cop-

ies/ul) was determined using the QX200 reader (Bio-Rad) (Taylor et al., 2015). To quantify the frac-

tion of old untagged TLC1 molecules, the ratio between untagged TLC1 RNA concentration

(determined by primers TLC1.AB.qsc.F3 and TLC1.A.lna.qsc.R4; Supplemetary file 3) and total TLC1

concentration (primers TLC1.AB.qsc.F1 and TLC1.AB.qsc.R1) was calculated. To quantify the fraction

of new tagged TLC1-MS2 molecules, the ratio between tagged TLC1-MS2 RNA concentration

(determined by primers TLC1.AB.qsc.F3 and TLC1.B.qsc.R1) and total TLC1 concentration (primers

TLC1.AB.qsc.F1 and TLC1.AB.qsc.R1) was calculated.

Fluorescence in situ hybridization (FISH)
Cell fixation and preparation of spheroplasts was performed as previously described (Gallardo and

Chartrand, 2011). Hybridization with the probes was performed as in Gallardo and Chartrand,

2011 with slight modifications. Spheroplasts were washed with 2x SSC (2 � 5 min) and with 2x SSC

containing 40% formamide (1 � 5 min) at room temperature. Centrifugation between washes was

done at 1500 g for 3 min. Cells were resuspended in 2x SSC containing 40% formamide and incu-

bated for 1 hr at 37˚C. A mix of five TLC1-specific probes (Supplementary file 3) were conjugated

with the Cy3 fluorophore (Cytiva), and the MS2 probe was conjugated with the Cy5 fluorophore

according to the manufacturer’s instructions. 10 ng of TLC1-Cy3 probe mix and 10 ng of the MS2-

Cy5 probe were mixed with 4 ml of competitor DNA (10 mg/ml solution of 1:1 sonicated salmon

sperm DNA (Invitrogen) / E. coli tRNA (Roche)), 50 ml of solution F (80% formamide and 10 mM

NaHPO4, pH 7.5). The probe solution was heated at 95˚C for 5 min and mixed with 50 ml of solution
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H (4x SSC, 20 mM ribonucleoside vanadyl complex (NEB), BSA 4 mg/ml). Spheroplasts were centri-

fuged at 1500 g for 3 min and resuspended in the probe mix. Hybridization was performed over-

night at 37˚C. After hybridization, cells were washed in 2x SSC 40% formamide for 6 min, 2x SSC

0.1% Triton X-100 for 6 min and 1x PBS for 6 min at room temperature. Cells were incubated in

DAPI (Sigma) 0.5 mg/ml for 3 min and washed in 1x PBS for 3 min. Cells were resuspended in a small

volume of 1x PBS and immobilized on coverslips coated with 0.01% poly-lysine (Sigma) for 30 min.

Unattached cells were washed away from the coverslips with 70% ethanol and sequentially incubated

in 70% ethanol, 2x SSC, 1x PBS and 100% ethanol for 3 s. After drying, coverslips were mounted on

the microscope slides with the mounting medium (86% glycerol, 1 mg/ml p-phenylenediamine

(Sigma)�1x PBS).

Image acquisition was performed using Zeiss mRm Axiocam mounted on an Axio Observer Z1

inverse microscope. To illuminate TLC1-Cy3, X-cite Arc lamp and 43HE filter (Zeiss) were used. For

MS2-Cy5 channel, Zeiss Colibri LED 625 nm was used in combination with 77HE filter. DAPI was visu-

alized with Zeiss Colibri LED 365 nm 62HE filter. Exposure times were 3 s for Cy3 and Cy5, and 500

ms for DAPI. Single plane images spanning 3 mm with steps of 200 nm were projected in a z-stack to

facilitate data analysis. Image analysis and constrained iterative deconvolution was performed using

ZEN 3.1 2019 software (Zeiss). Foci counting was performed manually. Foci with the colocalized

TLC1- and MS2-specific signal were counted as new TLC1 molecules. Foci with only the TLC1-spe-

cific signal were counted as old TLC1 molecules. Relative TLC1 fractions (%) were calculated as a

ratio of new or old molecules to the total number of TLC1 RNA. Relative nuclear or cytoplasmic

TLC1 fractions (%) were calculated as a ratio of old or new molecules localized inside or outside the

nucleus (as determined by DAPI staining) to the total number of old or new molecules detected in a

single cell. For each experiment (time point), 50–100 single cells from two or three independent

experiments were scored.

Chromatin immunoprecipitation (ChIP)
200 ml of culture was pre-grown overnight at 25˚C in SC-LEU-URA supplemented with clonNAT (100

mg/ml), followed by incubation at 25˚C SC-LEU without clonNAT from OD 0.1 to 0.3. Cells were

divided in two cultures (100 ml each) and grown at 25 or 37˚C for 1 hr. Recombination was induced

by addition of 12.5 mM b-estradiol (Sigma) for 2 hr at 25 or 37˚C. ChIP was performed as described

in Pasquier and Wellinger, 2020 using 3 ml of RNA Polymerase II mouse monoclonal antibody

(8WG16, Cedarlane) and 50 ml equilibrated ThermoScientific Pierce Protein A/G Magnetic Beads

(ThermoScientific). Immunoprecipitated and input DNAs were subjected to qPCR at the TLC1 locus

using TLC1_G_for1 and TLC1_G_rev1 primers (Supplementary file 3). U1 RT F2 and U1 RT R2

primers were used for the qPCR at the control U1 locus. qPCR reactions were performed in 10 ml in

384 well plates on a CFX-384 thermocycler (BioRad) with 5 ml of 2X PerfeCTa SYBR Green Supermix

(Quantabio), 3 ml of DNA, and 200 nM final (2 ml) primer pair solutions. Each sample was done in

technical triplicates. The following cycling conditions were used: 3 min at 95˚C; 50 cycles: 15 s at 95˚

C, 30 s at 60˚C, 30 s at 72˚C. The amount of immunoprecipitated DNA at the TLC1 locus was normal-

ized to the U1 locus and presented as the % of input.
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Bordonné R. 2000. Functional characterization of nuclear localization signals in yeast sm proteins. Molecular and
Cellular Biology 20:7943–7954. DOI: https://doi.org/10.1128/MCB.20.21.7943-7954.2000, PMID: 11027265

Bosoy D, Peng Y, Mian IS, Lue NF. 2003. Conserved N-terminal motifs of telomerase reverse transcriptase
required for ribonucleoprotein assembly in vivo. Journal of Biological Chemistry 278:3882–3890. DOI: https://
doi.org/10.1074/jbc.M210645200, PMID: 12458198

Brenner KA, Nandakumar J. 2020. Small molecules restore telomeres in patient stem cells. Trends in
Pharmacological Sciences 41:506–508. DOI: https://doi.org/10.1016/j.tips.2020.05.003, PMID: 32482456

Brosseau JP, Lucier JF, Lapointe E, Durand M, Gendron D, Gervais-Bird J, Tremblay K, Perreault JP, Elela SA.
2010. High-throughput quantification of splicing isoforms. RNA 16:442–449. DOI: https://doi.org/10.1261/rna.
1877010, PMID: 20038630

Cech TR. 2004. Beginning to understand the end of the chromosome. Cell 116:273–279. DOI: https://doi.org/10.
1016/S0092-8674(04)00038-8, PMID: 14744437

Chapon C, Cech TR, Zaug AJ. 1997. Polyadenylation of telomerase RNA in budding yeast. RNA 3:1337–1351.
PMID: 9409624

Chatterjee K, Majumder S, Wan Y, Shah V, Wu J, Huang HY, Hopper AK. 2017. Sharing the load: mex67-mtr2
cofunctions with Los1 in primary tRNA nuclear export. Genes & Development 31:2186–2198. DOI: https://doi.
org/10.1101/gad.305904.117, PMID: 29212662

Coy S, Volanakis A, Shah S, Vasiljeva L. 2013. The sm complex is required for the processing of non-coding RNAs
by the exosome. PLOS ONE 8:e65606. DOI: https://doi.org/10.1371/journal.pone.0065606, PMID: 23755256

Cusanelli E, Romero CA, Chartrand P. 2013. Telomeric noncoding RNA TERRA is induced by telomere
shortening to nucleate telomerase molecules at short telomeres. Molecular Cell 51:780–791. DOI: https://doi.
org/10.1016/j.molcel.2013.08.029, PMID: 24074956
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requires complex formation between Mex67p and Mtr2p at the nuclear pores. Molecular and Cellular Biology
18:6826–6838. DOI: https://doi.org/10.1128/MCB.18.11.6826, PMID: 9774696

Schmid M, Olszewski P, Pelechano V, Gupta I, Steinmetz LM, Jensen TH. 2015. The nuclear PolyA-Binding
protein Nab2p is essential for mRNA production. Cell Reports 12:128–139. DOI: https://doi.org/10.1016/j.
celrep.2015.06.008, PMID: 26119729

Segref A, Sharma K, Doye V, Hellwig A, Huber J, Lührmann R, Hurt E. 1997. Mex67p, a novel factor for nuclear
mRNA export, binds to both poly(A)+ RNA and nuclear pores. The EMBO Journal 16:3256–3271. DOI: https://
doi.org/10.1093/emboj/16.11.3256, PMID: 9214641

Vasianovich et al. eLife 2020;9:e60000. DOI: https://doi.org/10.7554/eLife.60000 25 of 26

Research article Chromosomes and Gene Expression

https://doi.org/10.1016/0092-8674(87)90576-9
https://doi.org/10.1016/0092-8674(87)90576-9
http://www.ncbi.nlm.nih.gov/pubmed/3319189
https://doi.org/10.1128/MCB.22.18.6441-6457.2002
https://doi.org/10.1128/MCB.22.18.6441-6457.2002
http://www.ncbi.nlm.nih.gov/pubmed/12192043
https://doi.org/10.1038/345458a0
http://www.ncbi.nlm.nih.gov/pubmed/2342578
https://doi.org/10.1016/0014-4827(65)90211-9
http://www.ncbi.nlm.nih.gov/pubmed/14315085
https://doi.org/10.1093/emboj/21.7.1800
http://www.ncbi.nlm.nih.gov/pubmed/11927564
https://doi.org/10.1261/rna.2344106
http://www.ncbi.nlm.nih.gov/pubmed/16601202
https://doi.org/10.1038/nrm2255
http://www.ncbi.nlm.nih.gov/pubmed/17786152
https://doi.org/10.1074/jbc.M607145200
https://doi.org/10.1074/jbc.M607145200
http://www.ncbi.nlm.nih.gov/pubmed/17158880
https://doi.org/10.1261/rna.066696.118
http://www.ncbi.nlm.nih.gov/pubmed/29777050
https://doi.org/10.1073/pnas.92.13.5940
https://doi.org/10.1073/pnas.92.13.5940
http://www.ncbi.nlm.nih.gov/pubmed/7597057
https://doi.org/10.1128/MCB.11.6.3075
http://www.ncbi.nlm.nih.gov/pubmed/1674817
https://doi.org/10.1038/ng.3423
http://www.ncbi.nlm.nih.gov/pubmed/26482878
https://doi.org/10.1261/rna.134706
http://www.ncbi.nlm.nih.gov/pubmed/16894218
https://doi.org/10.1016/j.celrep.2015.11.003
http://www.ncbi.nlm.nih.gov/pubmed/26628368
https://doi.org/10.1093/nar/gks200
http://www.ncbi.nlm.nih.gov/pubmed/22379137
https://doi.org/10.1186/s13072-020-00344-w
https://doi.org/10.1186/s13072-020-00344-w
https://doi.org/10.1128/MCB.00468-09
http://www.ncbi.nlm.nih.gov/pubmed/19635808
https://doi.org/10.1038/s41580-020-0234-z
http://www.ncbi.nlm.nih.gov/pubmed/32242127
https://doi.org/10.1128/MCB.15.1.445
https://doi.org/10.1128/MCB.15.1.445
http://www.ncbi.nlm.nih.gov/pubmed/7799953
https://doi.org/10.1073/pnas.90.3.848
https://doi.org/10.1073/pnas.90.3.848
http://www.ncbi.nlm.nih.gov/pubmed/8430095
https://doi.org/10.1128/MCB.18.11.6826
http://www.ncbi.nlm.nih.gov/pubmed/9774696
https://doi.org/10.1016/j.celrep.2015.06.008
https://doi.org/10.1016/j.celrep.2015.06.008
http://www.ncbi.nlm.nih.gov/pubmed/26119729
https://doi.org/10.1093/emboj/16.11.3256
https://doi.org/10.1093/emboj/16.11.3256
http://www.ncbi.nlm.nih.gov/pubmed/9214641
https://doi.org/10.7554/eLife.60000


Seto AG, Zaug AJ, Sobel SG, Wolin SL, Cech TR. 1999. Saccharomyces cerevisiae telomerase is an sm small
nuclear ribonucleoprotein particle. Nature 401:177–180. DOI: https://doi.org/10.1038/43694, PMID: 10490028

Shay JW. 2016. Role of telomeres and telomerase in aging and Cancer. Cancer Discovery 6:584–593.
DOI: https://doi.org/10.1158/2159-8290.CD-16-0062, PMID: 27029895

Shukla S, Parker R. 2014. Quality control of assembly-defective U1 snRNAs by decapping and 5’-to-3’
exonucleolytic digestion. PNAS 111:E3277–E3286. DOI: https://doi.org/10.1073/pnas.1412614111,
PMID: 25071210

Stewart M. 2007. Ratcheting mRNA out of the nucleus. Molecular Cell 25:327–330. DOI: https://doi.org/10.
1016/j.molcel.2007.01.016, PMID: 17289581

Taylor SC, Carbonneau J, Shelton DN, Boivin G. 2015. Optimization of droplet digital PCR from RNA and DNA
extracts with direct comparison to RT-qPCR: clinical implications for quantification of Oseltamivir-resistant
subpopulations. Journal of Virological Methods 224:58–66. DOI: https://doi.org/10.1016/j.jviromet.2015.08.
014, PMID: 26315318

Tudek A, Schmid M, Makaras M, Barrass JD, Beggs JD, Jensen TH. 2018. A nuclear export block triggers the
decay of newly synthesized polyadenylated RNA. Cell Reports 24:2457–2467. DOI: https://doi.org/10.1016/j.
celrep.2018.07.103, PMID: 30157437

Vasianovich Y, Wellinger RJ. 2017. Life and death of yeast telomerase RNA. Journal of Molecular Biology 429:
3242–3254. DOI: https://doi.org/10.1016/j.jmb.2017.01.013, PMID: 28115201

Verzijlbergen KF, Menendez-Benito V, van Welsem T, van Deventer SJ, Lindstrom DL, Ovaa H, Neefjes J,
Gottschling DE, van Leeuwen F. 2010. Recombination-induced tag exchange to track old and new proteins.
PNAS 107:64–68. DOI: https://doi.org/10.1073/pnas.0911164107, PMID: 20018668

Vulliamy TJ, Marrone A, Knight SW, Walne A, Mason PJ, Dokal I. 2006. Mutations in dyskeratosis congenita:
their impact on telomere length and the diversity of clinical presentation. Blood 107:2680–2685. DOI: https://
doi.org/10.1182/blood-2005-07-2622, PMID: 16332973

Walne AJ, Vulliamy T, Marrone A, Beswick R, Kirwan M, Masunari Y, Al-Qurashi FH, Aljurf M, Dokal I. 2007.
Genetic heterogeneity in autosomal recessive dyskeratosis congenita with one subtype due to mutations in the
telomerase-associated protein NOP10. Human Molecular Genetics 16:1619–1629. DOI: https://doi.org/10.
1093/hmg/ddm111, PMID: 17507419

Wellinger RJ, Wolf AJ, Zakian VA. 1993. Saccharomyces telomeres acquire single-strand TG1-3 tails late in S
phase. Cell 72:51–60. DOI: https://doi.org/10.1016/0092-8674(93)90049-V, PMID: 8422682

Wellinger RJ, Zakian VA. 2012. Everything You Ever Wanted to Know About Saccharomyces cerevisiae
Telomeres: Beginning to End . Genetics 191:1073–1105. DOI: https://doi.org/10.1534/genetics.111.137851
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