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Abstract

We investigate 71 single nucleotide polymorphisms (SNPs) identified in meta-analytic stud-

ies of genome-wide association studies (GWAS) of breast cancer, the majority of which are

located in intergenic or intronic regions. To explore regulatory impacts of these variants we

conducted expression quantitative loci (eQTL) analyses on tissue samples from 376 invasive

postmenopausal breast cancer cases in the Nurses’ Health Study (NHS) diagnosed from

1990–2004. Expression analysis was conducted on all formalin-fixed paraffin-embedded

(FFPE) tissue samples (and on 264 adjacent normal samples) using the Affymetrix Human

Transcriptome Array. Significance and ranking of associations between tumor receptor sta-

tus and expression variation was preserved between NHS FFPE and TCGA fresh-frozen

sample sets (Spearman r = 0.85, p<10^-10 for 17 of the 21 Oncotype DX recurrence signa-

ture genes). At an FDR threshold of 10%, we identified 27 trans-eQTLs associated with

expression variation in 217 distinct genes. SNP-gene associations can be explored using an

open-source interactive browser distributed in a Bioconductor package. Using a new a pro-

cedure for testing hypotheses relating SNP content to expression patterns in gene sets,

defined as molecular function pathways, we find that loci on 6q14 and 6q25 affect various

gene sets and molecular pathways (FDR < 10%). Although the ultimate biological interpreta-

tion of the GWAS-identified variants remains to be uncovered, this study validates the utility

of expression analysis of this FFPE expression set for more detailed integrative analyses.
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Introduction

Genome-wide association studies (GWAS) of breast cancer have identified at least 71 risk

alleles[1–3]. The majority of these single nucleotide polymorphisms (SNPs) are in intergenic

or intronic regions. However, determining the target gene or biological pathway associated

with these germline risk loci in breast tissue has remained a challenge. Identification of expres-

sion quantitative loci (eQTLs) associated with these SNPs may help us to better understand the

mechanisms by which these risk variants influence breast cancer susceptibility. Previous eQTL

studies evaluated a subset of these SNPs[4,5], using breast cancer cell lines, lymphoblastoid

cell lines, reduction mammoplasty samples[6] or fresh frozen breast tissue from The Cancer

Genome Atlas (TCGA)[7,8]. Although formalin fixed paraffin embedded (FFPE) tissue is the

most common type of tumor tissue collected in the clinic, no comprehensive eQTL analyses

of the 71 SNPs have been reported in FFPE breast tumor and tumor adjacent normal tissue

specimens.

We validated the utility of the FFPE samples for expression analysis through comparative

differential expression analysis of TCGA fresh-frozen samples. We then conducted eQTL anal-

yses to test for associations between the 71 breast cancer risk SNPs and 26,004 array-defined

transcript clusters in FFPE tissue from 376 tumor and 264 tumor adjacent normal breast

specimens from postmenopausal breast cancer cases in the Nurses’ Health Study (NHS). In

addition, we hypothesized that breast cancer GWAS loci are associated with regulation of bio-

logical pathways. To test this hypothesis, we developed a new method, functional quantitative

trait loci (fQTL) analysis, and tested the association of the loci with 396 Molecular Functions

in Gene Ontology (GO)[9].

Results

We analyzed QTL data from 376 postmenopausal invasive breast tumor specimens and 264

tumor adjacent normal specimens derived from an initial pool of 867 HTA 1.0 CEL files (Fig

1). The mean age at breast cancer diagnosis was 57 years and mean year of diagnosis was 1994.

262 (70%) of the breast cancer tumors with analyzable expression arrays were documented as

ER positive (ER+). ER status in medical reports was used to update 44 (12%) specimens with

missing data on estrogen receptor status from the expression assay.

Adequacy of FFPE expression quantification

It is understood that expression analysis of FFPE samples can be suboptimal owing to RNA

degradation and other chemical and structural effects of fixation [10]. To build confidence in

our expression quantifications, we acquired RNA-seq expression data on 1020 fresh-frozen

breast cancer samples as archived at TCGA with date tag 2015-11-01. HUGO gene identifiers

were matched between NHS and TCGA platforms for 9316 expression quantification targets.

We focused on the capacity of expression measures to discriminate tumor hormone receptor

status, as all samples were classified as estrogen receptor positive or negative (ER+ or ER-),

and progesterone receptor positive or negative (PR+ or PR-). The 2 x 9316 F-statistics for the 3

d.f. tests of equal mean expression over ER+, ER-, PR+, PR- samples exhibited positive rank

correlation (Spearman r = 0.43, p< 10^-10). A more focused assessment, based on 17 ele-

ments of the 21-gene Oncotype DX recurrence signature common to the NHS and TCGA

platforms, yielded a Spearman’s r = 0.85, p< 10^-10; see Fig 2. We conclude from this analysis

that the RNA extracted from the NHS FFPE samples is suitable for differential expression

analysis.

Breast cancer eQTLs
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Fig 2. Concordance of F statistics derived from 1020 fresh-frozen TCGA and 326 FFPE NHS samples. Tests are

for the 3 d.f. tests of common mean expression over ER+, ER-, PR+, PR- tumors, for 17 genes of the Oncotype Dx

breast cancer expression signature. Spearman’s r = 0.85, p < 10^-10. The guiding line is a robust regression fit with least

trimmed squares.

doi:10.1371/journal.pone.0170181.g002

Fig 1. Derivation of expression samples from Nurses’ Health Study participants for this analysis.

doi:10.1371/journal.pone.0170181.g001
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Overall eQTL results

Seventy-one (71) breast cancer risk SNP were analyzed in this report; see S1 Table for their

identifiers and information on genomic context. Separate analyses were performed for ER+,

ER-, tumor adjacent normal, and contrast between tumor and tumor adjacent normal tissue.

Test results were filtered to a maximum false discovery rate (FDR) of 10% per SNP, per tissue

type. With this procedure we identified, using an additive genetic model based on called geno-

types or imputed allelic dosage, a total of 27 trans-acting SNPs, exhibiting effects on expression

of 369 unique Affymetrix Human Transcriptome Array (HTA) version 1.0 transcript clusters

corresponding to 217 annotated genes. All but 10 significant associations involved SNPs and

genes on different chromosomes; for the significant same-chromosome associations, the mini-

mum SNP-gene separation was 6.4Mb. Consequently all associations are referred to as "trans-

eQTL". Table 1 enumerates SNPs with significant trans-eQTL in terms of location, tissue-type

Table 1. Identification and annotation of 27 SNPs for which at least one SNP/tissue-specific analysis revealed an HTA 1.0 transcript cluster as a

trans-eQTL target at FDR < = 10%.

dbSNP id Chr Addr. hg19 Tissues Variant context Transcript Clusters by Tissue MAF CADD

ER+ ER- NOR TUM/NOR

rs4245739 chr1 204518842 TUM/NOR Intronic(MDM4) 0 0 0 CD70 0.258 NA

rs2016394 chr2 172972971 TUM/NOR Quiescent/Low 0 0 0 Q9BU82 0.461 NA

rs999737 chr14 69034682 TUM/NOR Intronic(RAD51B) 0 0 0 (UNANN) 0.207 4.49

rs13329835 chr16 80650805 TUM/NOR Wk Rep PolyComb 0 0 0 ABHD10+1 0.237 1.26

rs8100241 chr19 17392894 TUM/NOR Coding(ANKLE1) 0 0 0 IL34+1 0.496 NA

rs10941679 chr5 44706498 ER+ Enhancers CCDC51 0 0 0 0.298 2.77

rs11075995 chr16 53855291 ER+ Intronic(FTO) (UNANN) 0 0 0 0.231 1.25

rs3760982 chr19 44286513 ER+ Weak Tx Q6ZRB7 0 0 0 0.484 1.73

rs2284378 chr20 32588095 ER+ Intronic(RALY) FAM123C 0 0 0 0.314 NA

rs17529111 chr6 82128386 ER- Weak Tx 0 24 0 0 0.251 NA

rs2046210 chr6 151948366 ER- Quiescent/Low 0 (UNANN) 0 0 0.363 NA

rs704010 chr10 80841148 ER- Intronic(ZMIZ1) 0 HOXA6 0 0 0.399 NA

rs17356907 chr12 96027759 ER- Quiescent/Low 0 (UNANN) 0 0 0.293 1.1

rs1292011 chr12 115836522 ER- Enhancers 0 CDK8 0 0 0.394 15.79

rs3803662 chr16 52586341 ER- Enhancers 0 (UNANN) 0 0 0.283 0.008

rs527616 chr18 24337424 ER- Enhancers 0 (UNANN) 0 0 0.365 16.26

rs2380205 chr10 5886734 ER+,ER- Strong Tx TMEM126A (UNANN) 0 0 0.424 4.35

rs11814448 chr10 22315843 ER+,ER- Enhancers KCTD13 FURIN+1 0 0 0.018 0.09

rs2588809 chr14 68660428 ER+,ER- Intronic(RAD51B) (UNANN) IFITM1 0 0 0.16 NA

rs11571833 chr13 32972626 (All) Coding(BRCA2) (UNANN) 186 25 AADAT 0.015 38.00

rs10771399 chr12 28155080 (All but ER+) Wk Rep PolyComb 0 9 (UNANN) CCL3L3 0.089 3.93

rs132390 chr22 29621477 (All but ER+) Intronic(EMID1) 0 86 4 GAGE12G 0.027 7.53

rs3757318 chr6 151914113 NOR,TUM/NOR Intronic(CCDC170) 0 0 4 5 0.085 NA

rs12662670 chr6 151918856 NOR,TUM/NOR Intronic(CCDC170) 0 0 (UNANN) FGG 0.09 NA

rs9790517 chr4 106084778 ER-,NOR Intronic(TET2) 0 HNRNPA1 ITSN2 0 0.235 2.91

rs4849887 chr2 121245122 NOR Quiescent/Low 0 0 (UNANN) 0 0.11 NA

rs614367 chr11 69328764 NOR Quiescent/Low 0 0 TNNC1 0 0.169 0.27

Annotations for tissues and variant context are described in text. For each SNP, numeric entries in columns 6–9 are counts of transcript clusters identified

as trans-associated in tissue-specific analysis. Minor allele frequency estimates were estimated for all women with available tumor samples. HUGO or

UNIPROT symbols are provided for singleton hits; +1 denotes another hit present; use the interactive bceBrowse utility for further details. (UNANN) denotes

unannotated HTA 1.0 transcript clusters.

doi:10.1371/journal.pone.0170181.t001
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analyzed, structural context of variants within genes, or epigenetic contexts of intergenic vari-

ants (as estimated with ChromHMM (11) on the HMEC cell line), the number of trans associ-

ations identified in different tissue types, minor allele frequency, and, when available, CADD

score for variant deleteriousness, reported on the PHRED scale[11]. Findings in Table 1 are

presented in the order: tumor vs. normal directly compared (5 SNP, column TUM/NOR),

ER+ (4 SNP), ER- (7 SNP), multiple tissue findings (9 SNP), findings in normal tissue only (2

SNP). Table 1 condenses information to one record per SNP; full information on all significant

associations is provided in S2 Table.

We have created a browser-driven utility (bceBrowse, in Bioconductor package bceQTL,

forthcoming, introductory video at https://www.youtube.com/watch?v=fJDXI5M7_mQ) that

allows searching, sorting and plotting the FDR-filtered association results to facilitate tabulat-

ing and navigating of our data. A Circos display of trans-eQTL relationships for expression

measured in ER- tumors is provided in Fig 3. Supplementary S1 and S2 Figs depict the rela-

tionships for findings in paired tumor/adjacent normal, and ER+ tumors.

Fig 3. Circos visualization of SNP-gene pairs identified as trans-eQTL with expression measured in ER-

tumor samples. Owing to label crowding, some SNP are not distinguished. Links lacking labels correspond to

unannotated HTA 1.0 transcript clusters. Details on all significant associations are provided in the bceBrowse utility

in the bceQTL package for Bioconductor.

doi:10.1371/journal.pone.0170181.g003
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To illustrate variation in expression present in trans associations inferred in this study,

the bceBrowse utility will display boxplots for selected SNP-gene pairs. Fig 4 provides examples

of 4 trans-eQTL findings, each stratified by ER status and tissue type (tumor vs. adjacent

normal).

Functional QTLs

We tested SNPs for association with gene groups defined by the Molecular Function (MF)

Gene Ontology terms to identify pathway-level associations for the 71 breast cancer loci. The

associations presented in Table 2 demonstrate that a unit increase in the dosage of a SNP mod-

ifies the mean expression of the genes in a pathway-specific gene set categorized as the MFs in

GO.

Discussion

At a SNP-specific false discovery rate threshold of 10% in separate analyses of ER+, ER-, and

tumor-adjacent normal paired samples, 27 of 71 meta-analytically identified breast cancer risk

SNP exhibited association with mean expression of at least one HTA 1.0 transcript cluster. The

total number of genes significantly associated with these SNPs in trans is 217. Five SNPs exhib-

ited association with mean expression of gene sets defined using Gene Ontology molecular

function categories; three of these fQTL did not show significant association with any tran-

script cluster in SNP-gene association testing. This analysis therefore distinguishes a total of 30

of 71 breast cancer risk SNPs as potentially acting through effects on gene expression. Tables 1

and 2 indicate that the majority of these SNPs are in intergenic or intronic regions.

Two of the breast cancer loci identified as trans-eQTL in this study involve DNA repair

pathways. These are rs11571833 (nonsense mutation in BRCA2), and rs2588809 (intronic in

RAD51B). The BRCA2 variant, rs11571833, on exon 27, results in a premature stop codon p.

Lys3326�, removing the last 92 amino acids at the C terminus of BRCA2 and shown to be path-

ogenic in in vitro splicing assays[12] and associated with risk of breast, prostate and ovarian

cancers[13,14]. The BRCA2 CCOH terminus interacts with Rad51 and homozygous germ-line

deletion of exon 27 disrupts homologous recombination-mediated DNA repair[15,16] and

results in hypersensitivity to ionizing radiation and rapid senescence[17]. RAD51B, a member

of the Rad51-like proteins, is involved in double-stranded break (DSB) repair and homologous

recombination.

The trans-acting SNPs (Table 1) in CCDC170 are located in the region on chromosome

6q25 in which a fusion event has been reported in breast cancer between the second exon of

ESR1α to the sixth and seventh exon of CCDC170[18].The rs12662670 eQTL and fQTL as well

as the rs3757318 eQTL are located 272 to 327 kilobases away from the genomic location of the

ESR1-CCDC170 fusion in breast cancer cell lines and patient samples (Reference [18] and per-

sonal communication with Dr. Xiaosong Wang). Further studies[19] are warranted to assess

if the QTLs in CCDC170 are associated with the ESR1-CCDC170 fusion in aggressive ER+

tumors. Variants on 6q25 associated with ER- tumors are located in four separate enhancer

elements and are associated with reduced expression of ESR1 and CCDC170.

Rs17529111, on chromosome 6 and 5’ to FAM46A, was identified as a trans-acting SNP and

an fQTL in ER- tumor tissue. The variant was associated with an almost two-fold increased

risk of triple-negative breast cancer among African American women[20]. Our eQTL and

fQTL results for rs17529111 suggest that it may be a potential regulatory SNP in ER- breast

tumors. Further bioinformatic and experimental analysis of these variants will be necessary to

fully elucidate mechanisms of germ-line variant modulation of breast cancer risk.

Breast cancer eQTLs
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Fig 4. a-d. Trans-eQTL findings for SNPs in BRCA2, EMID1, FTO, and ZMIZ1. In Fig 4a, the coding SNP

in BRCA2 exhibits statistically significant association with expression of TRPC6, but the result is based on a

single individual with a single copy of the rare allele. In Fig 4b, an intronic SNP in FTO shows association

specific to ER+ cases with abundance of an HTA 1.0 probe that has yet to be annotated. In Fig 4d, an intronic

SNP in ZMIZ1 with tumor- and receptor-type specific effect on expression of HOXA6.

doi:10.1371/journal.pone.0170181.g004
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We were unable to document any significant associations between the risk SNP analyzed in

this report and expression of genes in cis. S1 Table includes information derived from GTEx

[21] version 6 analyses of 183 post mortem normal breast tissue samples. Five SNPs, three

intronic, one intergenic, one coding, are identified in GTEx as cis-eQTL in normal breast tis-

sue. Denser genotyping of the FFPE samples from NHS could yield more insight into cis regu-

lation processes affected by the SNP available in this analysis.

The strengths of our study are in providing direct insight into SNP associated transcrip-

tome-wide and pathway-based perturbations in a large dataset of breast tumor tissue and

paired tumor adjacent normal tissue with well-annotated histopathological data and lifestyle

risk factor data. Our approach to integrate germline genetic risk alleles, somatic transcriptome

data with risk factor data and functional annotation data may enhance the precision of eQTL

analyses. In addition, the study provides validation for FFPE data quality for gene expression

using fresh frozen breast tumor samples that were included in the TCGA and outlines the

quality control best practices for FFPE tissue processing in gene expression analyses. Further,

to enhance data sharing, we have developed a breast cancer eQTL browser (bceQTL).

This study has limitations. Large-scale post-menopausal breast cancer datasets with tran-

scriptome data measured in breast tumor and tumor adjacent normal tissue are not available

for independent external validation of cis and trans eQTLs. Our study was also limited by the

available genomic annotation. No cis regulatory variants were identified using rigorous thresh-

olds for statistical significance, although our identification of potentially regulatory SNPs were

consistent with single-gene fine mapping studies and single-gene functional studies.[14,22–29]

Further studies are needed to validate single SNP cis-eQTL analysis conducted using the

TCGA data[3,7,30].

Trans analysis in TCGA data identified three risk loci, ESR1, MYC, KLF4, for which the tar-

get genes are significantly enriched for transcription factor motifs.[7] These data demonstrate

that eQTL analyses offer insight on the breast cancer GWAS SNPs that are in introns or inter-

genic regions. Strength of the TCGA dataset is the sample size and ability to adjust for somatic

alterations. However, inability to account for clinical and lifestyle risk is a weakness.

Another limitation is that the gene expression profiling from tumor cores may reflect het-

erogeneous profiling of tumor epithelial and stromal cells33. Laser capture microdissection to

isolate specific cell types was not feasible considering the large sample size in this study. Fur-

ther, data on neoadjuvant endocrine treatment, which may influence estrogen related genes,

is not available in our dataset or in TCGA. Finally, our study is generalizable to Caucasian

Table 2. Results of fQTL analysis applied to all breast tumor and adjacent normal samples.

Tissue source dbSNP ID Context SNP position Pathway (GO MF) Risk beta FDR

Normal

rs12662670 CCDC170 (intronic) 6p25 Small GTPase binding -4.3 0.048

ER+

rs6762644 ITPR1 (intronic) 3p26.1 Phospholipase activity 4.3 0.075

ER-

rs2823093 intergenic 21q21.1 Oxidoreductase activity 4.52 0.03

rs17529111 intergenic 6q14 Hydrolase activity 4.41 0.06

Neuropeptide hormone activity 5.09 0.006

Sialyltransferase activity 4.46 0.052

rs17530068 intergenic 6q14 Hydrolase activity 4.39 0.066

Sialyltransferase activity 4.53 0.039

Nucleotide kinase activity 4.52 0.041

doi:10.1371/journal.pone.0170181.t002
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women. Diverse study populations and improved methodology to measure and analyze differ-

ential transcript isoforms, transcription factors in FFPE tissue may identify and validate addi-

tional eQTLs.[26] [31–33]

In summary, this large-scale study of paired breast tumor and tumor adjacent normal tissue

demonstrates the adequacy of FFPE based gene expression studies for cis and trans eQTL anal-

ysis, and indicates that QTLs can be identified using FFPE issue with rigorous quality control

metrics, including patient sample filtering, probe filtering, PCA to adjust for batch-to-batch

variation in sample preparation (e.g. RNA extraction), and evaluation of subtype concordance

by immunohistochemistry protein expression and HTA transcript cluster probe. Over 90% of

patient specimens collected worldwide are FFPE. Therefore, QTL analysis in clinically relevant

FFPE tissue that has been processed according to standard quality assurance protocols should

be useful for detailed investigation of transcriptional effects of genomic variants. While this

analysis indicates that several breast cancer risk SNP exhibit significant trans association with

numerous genes, the minor allele frequencies of these SNP are relatively low, and the infer-

ences on variant:expression association are driven by small numbers of individuals. Further

confirmatory work with larger sample sizes and more intense bioinformatic investigation of

unannotated HTA transcripts is warranted.

Methods

Study population

For any report of breast cancer, written permission was obtained from participants to review

their medical records to confirm the diagnosis and to classify cancers as in situ or invasive, by

histological type, size, stage of disease and presence or absence of metastases. The Human Sub-

jects Committee at Partners Healthcare System and Brigham and Women’s Hospital in Bos-

ton, Massachusetts, have reviewed and approved this study.

The Nurses’ Health Study cohort was established in 1976 when 121,701 female US regis-

tered nurses ages 30–55 responded to a mailed questionnaire inquiring about risk factors for

breast cancer. Study participants reported new breast cancer diagnoses on subsequent biennial

questionnaires. Pathology reports were also reviewed to obtain information on estrogen recep-

tor (ER), progesterone receptor (PR), and Human Epidermal growth factor Receptor 2

(HER2) status. Collection procedures for the breast cancer tissue blocks have been described

in detail previously[34]. Participants complete a biennial questionnaire on dietary and lifestyle

factors, reproductive factors, anthropomorphic measures, medication use, and health out-

comes. Health outcomes include nonfatal incident diseases such as cancer. The follow-up rate

in this cohort has been over 90%[35].

The Cancer Genetic Markers of Susceptibility (CGEMS) project (http://www.cgems.cancer.

gov) is an NCI initiative to conduct genome-wide association studies (GWAS) to identify

genes involved in breast and prostate cancer[36]. As a part of this project 1,145 cases were gen-

otyped using the Illumina 550 array (data is publically available in dbGAP). For the current

analysis, we identified invasive postmenopausal breast cancer cases diagnosed from 1990–2004

with GWAS data from the CGEMS project and sufficient RNA for expression profiling in

breast tumor and tumor adjacent normal breast tissue.

Informed consent was obtained from all Nurses’ Health Study participants, including con-

sent to collect and use blood samples and tissue specimens for genetic and genomic research

[1,35]. This study was reviewed by the Internal Review Board and approved by the Human

Subjects Committee at Partners Healthcare System and Brigham and Women’s Hospital in

Boston, Massachusetts.

Breast cancer eQTLs
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SNP selection

The 71 germline genetic variants used in the eQTL and fQTL analyses were the published loci

from breast cancer GWAS and the U19/GAME-ON meta-analysis [1–3] (http://gameon.dfci.

harvard.edu). Genotyped and imputed SNP dosages were obtained from the CGEMS study[1]

breast cancer cases.

Gene expression assay methods

RNA was extracted from multiple 1 or 1.5 mm cores (median number of cores was 5 in normal

samples and 3 in tumor samples) taken from representative portions of tumor or adjacent nor-

mal from the FFPE blocks. The RNA extraction was performed using the Qiagen AllPrep RNA

isolation kit. Total RNA was amplified using the NuGEN WT-Ovation FFPE System (NuGEN,

San Carlos, CA). Total RNA was used to synthesize double-stranded complementary DNA

(cDNA) utilizing a random priming method and then double-stranded cDNA was frag-

mented, labeled and hybridized to the Affymetrix Glue Grant Human Transcriptome Array

(HTA 1.0) pre-release version from Affymetrix, Santa Clara, CA[37]. CDNA yield was mea-

sured in subset of samples prior to hybridization as a quality control measure. After hybridiza-

tion and washing, processed slides were scanned with the Affymetrix GeneChip Scanner 3000

7G at the Dana-Farber Cancer Institute Microarrray Core Facility.

The Glue Grant Human Transcriptome Array was developed for high-throughput clinical

studies, allowing for comprehensive examination of gene expression and genome-wide identi-

fication of alternative splicing as well as detection of coding SNPs and noncoding transcripts

(23). The microarray can detect 34,834 lncRNAs and 39,224 transcript clusters (genes) curated

from the most authoritative databases such as RefSeq and Ensembl as well as the literature.

Repeat sequences and ncRNAs shorter than 200 bp were deleted. Each transcript was repre-

sented by 119 unique probes (on average) to improve statistical confidence. Each transcript

was represented by a specific exon or splice junction probe that can accurately identify individ-

ual transcripts.

Quality control analysis

The quality control procedures include patient sample filtering, probe filtering, PCA to adjust

for batch-to-batch variation in sample preparation (e.g. RNA extraction), and evaluation of

subtype concordance by immunohistochemistry and HTA probe. In Fig 1, we summarize the

number of NHS participants at each stage of the study, from 774 eligible breast cancer speci-

mens to the final sample size (639 specimens with gene expression and genotype data)

included in the analysis. To ensure data quality, we conducted quality control analyses (corre-

lation of four independent technical replicates across nine assay plates r�0.93), biological data

checks (probe concordance with markers measured by immunohistochemstry), as well as

probe filtering and Principal Components Analysis (PCA) to correct for assay batch-to-batch

variation. We included four independent breast tumor samples as technical replicates in each

assay plate. The technical replicate breast tumor specimens were identified from Beth Israel

Deaconess Medical Center. Sufficient RNA was extracted using the Qiagen AllPrep Kit at a

single time point to include in all assay plates. First, we excluded ten specimens (one cel file

per specimen) that could not be read by hGlueQC. We normalized the data using the robust

median average (RMA) method. Next, we evaluated sample quality and excluded 124 NHS

specimens with less than 0.55 area under the curve (AUC) threshold for distinguishing a posi-

tive and negative probe signal. Then, we evaluated the association of the first fifty principal

components (PCs) in the combined tumor adjacent normal and tumor specimens after robust

median average normalization with assay batch. We clipped the first PC associated assay batch
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Adequacy of FFPE-based expression assays

The NHS provides expression data on 326 FFPE samples. To assess the biological interpretabil-

ity of the NHS expression assays based on FFPE tissue, we obtained the RSEM-based RNA-seq

gene quantifications on 1020 non-FFPE samples from the TCGA BRCA cohort. Using HUGO

identifiers for genes, the two platforms had 9316 features in common. For platforms p2[22]

we fit (using regularized linear models [38]) the 9316 models

Vigp ¼ agp þ xi0bgp þ egp

with g indexing genes and i indexing individuals assayed on platform p. Here yigp denotes the

normalized expression level for gene g measured on subject i in platform p, xi is a dummy

3-vector indicating whether patient i is +-, -+, or ++ for ER/PR tumor status, and eigp is a

homoskedastic error assumed independent across individuals. The (regularized) F statistics

for Ho:βgp = 0 were computed for each platform as a basic measure of assay sensitivity to differ-

ences in tumor biology. Owing to the different sample sizes, the denominator degrees of free-

dom for the F statistics are very different (322 for NHS and 1016 for TCGA). We use the

statistics to rank the models, and thereby genes, according to their capacity to distinguish

expression variation between samples derived from tumors of different hormone receptor

types.

CADD annotation

Combined Annotation Dependent Depletion (CADD)[11] is a tool for scoring the deleterious-

ness of SNPs (included in Table 1). CADD integrates multiple annotations into one metric by

contrasting variants that survived natural selection with simulated mutations. C-scores are

highly associated with allelic diversity, pathogenicity of both coding and non-coding variants

and experimentally measured regulatory effects and also highly rank causal variants within

individual genome sequences. CADD can quantitatively prioritize functional, deleterious and

disease causal variants across a wide range of functional categories, effect sizes, and genetic

architectures.

Statistical analysis

To identify regulatory variants, we investigated the association of 71 breast cancer risk alleles

(each entered as a single continuous dosage variable as counts of the minor allele) in linear

regression models to identify associations with normalized gene expression levels (eQTL) or

biological pathways (fQTL). Covariate information for the breast cancer cases was obtained

from biennial questionnaires or extracted from medical records or a supplemental question-

naire. We included patient’s age at diagnosis and year of diagnosis along with array plate iden-

tifier as covariates in the multivariate linear regression model, and assumed an additive effect

of the SNP on the gene expression measurement. For s = 1,. . ., 71 enumerating the risk SNP,

g = 1,. . ., 26001 HTA 1.0 transcript clusters, and individuals i contributing tissues of a given

type, let yig denote the expression level of gene g for subject i, Xt
i denote the vector of subject’s

age of diagnosis, year of diagnosis, array plate number, and contribution to the principal com-

ponent adjustment for expression heterogeneity, and let Dis denote the dosage of the risk allele

for SNP s. Statistical significance of the association between SNP s and gene g is determined

using the FDR based on the moderated t-statistic for testing the null hypothesis Ho: β2sg = 0 in

the models

yig ¼ b0sg þ Xt
i b1sg þ b2sgDis þ �isg;
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where 2isg denotes a random quantity with mean zero and finite variance s2
sg . For the analysis

of paired tumor-adjacent normal samples, the model is elaborated to include fixed effects of

tissue type (dichotomous, tumor or normal) and allelic dose, and the parameter of interest is

the coefficient of the product of tissue type code and allelic dose.

Association tests were conducted separately for breast tumor (total tumor n = 376; by estro-

gen receptor 1 alpha [ERα] by IHC: ER+ tumor n = 262, ER- tumor n = 70) and tumor adja-

cent normal samples (n = 264) using Affymetrix Power Tools and the Bioconductor package

linear models for microarray data (LIMMA)[38]. LIMMA computes modified gene-specific t-
statistics for general linear predictors of mean expression, and incorporates the Benjamin-

Hochberg FDR multiple testing correction technique. Among 250 paired tumor-normal speci-

mens, we also conducted regression analysis testing for an interaction between SNP genotype

and tissue type, adjusting for all covariates noted above and including a fixed effect of individ-

ual contributing the paired samples.

fQTL analysis

Functional QTL (fQTL) analysis tests the hypothesis that SNPs influence not only the expres-

sion of single genes, but multi-gene processes such as those represented in pathways and anno-

tated in pathway databases such as Reactome[39,40] or the Gene Ontology: classification

system. Because we are testing for association between SNPs and groups of genes, fQTL analy-

sis identifies significant trans-associations between sequence variants and biological mecha-

nisms or pathways and treats the measurements of gene expression measures on individual

genes as repeated measures on processes. This procedure could be regarded as treating the

expression data for all genes in a group as a multivariate response. This solution is related to

but not identical to approaches for gene set testing in transcriptomics. The novel question we

are attempting to answer is whether there are particular genetic variants that are associated

with the expression of a functionally-related group of genes.

The rationale underlying the fQTL model is that a locus or loci within the genome may

affect the activity of an intermediary genomic factor, such as a transcription factor, micro

RNA, or gene promoter region and that this intermediate element may then affect the expres-

sion of a set of genes.[14,22–29] Procedures confronting this generic concern include methods

by Wolfringer[41], Goeman’s global test [42], Barry’s SAFE[43], GSEA[44] and several proce-

dures due to Wu and colleagues [45,46], We defined “pathways” using the GO Molecular

Function classifications and then were standardized using the mean and standard deviation

values for those genes, which were used to calculate Z-scores. Each pathway is then represented

as a vector and the size of this vector depends on the number of samples in the analysis. We

construct and fit a linear model of the form:

yijk ¼ b0 þ b1YrDxk þ b2AgeDxk þ b3SNP : Dosagek þ �ijk

where YrDx is the year of diagnosis, AgeDx is age of diagnosis and i is the gene set, j is for the

gene within the gene set and k is for the sample. The risk parameter β3 represents the increase

in the mean pathway specific Z-score for each unit increase in the SNP-dosage. It is important

to note that this model assumes that genes within a biological class have the same variance,

and that, by treating genes within a class as repeated measures on a process, we increase the

power of the analysis by reducing the effective number of tests in comparison to a more stan-

dard eQTL analysis.

In our fQTL analysis we tested for association between SNPs and the expression of 396

gene sets defined by the Gene Ontology Molecular Function classification for both the 376

tumor and the 263 tumor adjacent normal samples.
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Multiple comparisons

To adjust for multiple comparisons, we used the False Discovery Rate (FDR) for both eQTL

and fQTL analyses and present results for FDR< 10%[47]. The eQTL analyses incorporated

the Benjamini-Hochberg FDR multiple hypotheses correction technique[38]. For the fQTL

analyses, we calculated the FDR through a permutation procedure based on the genotype

information[48]. By permuting only the genotype information of the samples, the correlation

structure within gene expression and genotype data is preserved.

Supporting Information

S1 Table. Identifiers and genomic contexts of 71 breast cancer risk SNP. Context as deter-
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