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Background. The National Institute for Health and Care Excellence and a number of international health technology
assessment agencies have recently undertaken appraisals of histology-independent technologies (HITs). A strong and
untested assumption inherent in the submissions included identical clinical response across all tumour histologies,
including new histologies unrepresented in the trial. Challenging this assumption and exploring the potential for het-
erogeneity has the potential to impact upon cost-effectiveness. Method. Using published response data for a HIT, a
Bayesian hierarchical model (BHM) was used to identify heterogeneity in response and to estimate the probability of
response for each histology included in single-arm studies, which informed the submission for the HIT, larotrectinib.
The probability of response for a new histology was estimated. Results were inputted into a simplified response-
based economic model using hypothetical parameters. Histology-independent and histology-specific incremental
cost-effectiveness ratios accounting for heterogeneity were generated. Results. The results of the BHM show consid-
erable heterogeneity in response rates across histologies. The predicted probability of response estimated by the
BHM is 60.9% (95% credible interval 16.0; 91.8%), lower than the naively pooled probability of 74.5%. A mean
response probability of 56.9% (0.2; 99.9%) is predicted for an unrepresented histology. Based on the economic anal-
ysis, the probability of the hypothetical HIT being cost-effective under the assumption of identical response is 78%.
Allowing for heterogeneity, the probability of various approval decisions being cost-effective ranges from 93% to
11%. Conclusions. Central to the challenge of reimbursement of HITs is the potential for heterogeneity. This study
illustrates how heterogeneity in clinical effectiveness can result in highly variable and uncertain estimates of cost-
effectiveness. This analysis can help improve understanding of the consequences of histology-independent versus
histology-specific decisions.
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The National Institute for Health and Care Excellence
(NICE) and a number of international health technology
assessment (HTA) agencies have recently undertaken
appraisals of histology-independent technologies (HITs)
for the treatment of cancer.1–5 HITs are approved on the
basis of a target genetic mutation, rather than on tumor
histology, type, or location (hereafter referred to as ‘‘his-
tology’’ for simplicity). Larotrectinib and entrectinib have
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recently gained regulatory approval as HITs for treating
patients with advanced cancer with fusions involving the
neurotrophic receptor tyrosine kinase (NTRK) genes.6–8

Therefore, any patient with advanced cancer harboring an
NTRK gene fusion is eligible for treatment, subject to other
criteria in the marketing authorization.6–8

It is important to ensure that HIT reimbursement
decisions are supported by systematic and robust assess-
ments of clinical and economic evidence (i.e., how well
the medicine or treatment works and its value for money)
when considering their use in practice. Assessment of the
clinical and cost-effectiveness of such treatments, how-
ever, creates a number of challenges given the breadth of
the population covered by a histology-independent
approval (which is likely to cover many individual histol-
ogies) and the types of evidence generated in support of
these technologies.

Evidence of the effectiveness of HITs is commonly gen-
erated using basket trials. These largely early-stage, phase
II exploratory trials recruit small cohorts to baskets
defined by a common genetic mutation/marker or by
tumor histology, based on a master protocol common to
all baskets.9–11 Despite recommendations in the literature
for considering potential differences in response across
baskets,9,12–15 the clinical efficacy evidence used for deci-
sion making for larotrectinib16,17 consisted of an average
pooled overall response rate (ORR). Response is defined
by tumor shrinkage, measured across histologies included
in the basket trial, but with insufficient data to assess
response by individual histology. However, the use of an
average ORR to represent all histologies covered by the
marketing authorization implicitly assumes identical clini-
cal effectiveness across all histologies. This assumption

fails to allow for heterogeneity in clinical effectiveness
across histologies, that is, the fact that different groups of
patients may obtain different treatment benefits based on
observed characteristics (i.e., histology). In the context of
HITs, there may be clinical and scientific arguments for
heterogeneous treatment efficacy across tumor histolo-
gies18 as well as across other clinical characteristics such as
age, fusion type, and position in the treatment pathway.

This can present novel challenges to the decision mak-
ing of reimbursement bodies, whose determinations typi-
cally consider only a technology’s clinical and cost-
effectiveness in a single indication. Such decisions oper-
ate on the assumption that a single, expected incremental
cost effectiveness ratio (ICER) adequately represents the
cost-effectiveness of a technology across the whole eligi-
ble population, including patients not represented in the
available evidence. Failure to account for heterogeneity
in cost-effectiveness across histologies may result in the
reimbursement of a HIT for histologies in which it is not
cost-effective.

Furthermore, if the assumption of homogeneous clini-
cal effectiveness fails to hold across the histologies pres-
ent in the clinical evidence, this casts further doubt on
the assumption that homogeneity extends to histologies
for which there is no evidence. The potential cost and
health consequences of this uncertainty (i.e., of making
an ‘‘incorrect’’ decision) could be significant. Thus, the
consequences of heterogeneity for decision uncertainty
should be quantified to allow for informed and accoun-
table decision making.19–21

Bayesian hierarchical modeling (BHM) frameworks,
which have been more typically used in adaptive basket
trial designs,22–25 can be used to overcome some of the
limitations and assumptions highlighted above. Estimates
of the level of heterogeneity across histologies, as well as
pooled treatment effects for each histology, can be pro-
duced. They work on the assumption that treatment effects
across histologies are exchangeable (i.e., drawn from the
same distribution of effects) rather than identical—a more
reasonable assumption in the absence of evidence to the
contrary. In addition, these frameworks allow the predic-
tion of the clinical effect in unrepresented histologies as
long as they can also be assumed to be exchangeable with
the included histologies.

Although, in theory, the BHM can be applied to
dichotomous (e.g., histology response) and to time-to-
event (TTE) outcomes (e.g., progression-free survival
[PFS] and overall survival [OS]),26 the assumption of
exchangeability of the effects of treatment on survival
outcomes across histologies is harder to justify than the
equivalent assumption made for the effects of treatment
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on response. Prognostic heterogeneity usually means
pooled survival is harder to disentangle than pooled
response,10,27 and survival data tend to be immature at the
time of reimbursement applications, making estimation of
a hierarchical model for time-to-event outcomes even more
challenging.

The aim of this study is to consider heterogeneity in
response rates across histologies and to characterize its
implications to the cost-effectiveness of HITs. A BHM
framework is used to analyze published clinical evidence
of an existing HIT to demonstrate the potential for het-
erogeneity in response rates across histologies. An eco-
nomic model, using a simplified model structure and
hypothetical data, considers how such heterogeneity may
affect estimates of cost-effectiveness and decision uncer-
tainty faced by HTA and reimbursement agencies.
Finally, some of the issues raised by these approaches
and possible alternatives are discussed.

Methods

Clinical Data

The analysis is based on the response rates used in the
regulatory approval of the histology-independent Trk-
inhibitor, larotrectinib.16,17 The data set consists of a
post hoc pooling of 55 patients covering 12 histologies
and can be considered typical of the type of data that will
be available when appraising the value of histology-
independent drugs.8,16,28–30 The ORR observed across
the 55 patients is 74.5% and ranges from 0% to 100%
across histologies. For a breakdown of the individual his-
tology response rates from the trial, see Supplementary
Material Table S1.

Predictive Response Using the BHM Framework

The BHM assumes that for each of the histologies j,
the log-odds of response, uj (i.e., the measures of treat-
ment effects), are exchangeable and follow a normal
distribution31:

uj ; Normal m,s2
� �

where s is the standard deviation quantifying the between-
histology heterogeneity and m is the pooled mean effect
across all histologies. Prior distributions must be selected
for m and s and are likely to have some influence on the
posterior estimates,31,32 particularly when a small number
of groups, each containing few patients, are included. A
normal prior distribution for m is used, centered on a prob-
ability of response of 0.3, with a variance of 10 across all

histologies. A relatively conservative uniform prior distri-
bution for s (i.e., a priori assuming limited sharing of
information across histologies) is used, which was found to
be robust in a simulation study.32 The sensitivity of the
results to alternative priors presented in the literature is
assessed.31,32 The prior distributions used for the base-case
analysis are

m ; Normal �0:8473, 10ð Þ

s ; Uniform 0, 5ð Þ

When the outcome is binary, the probability of response
in each site, pj, is recovered as

pj =
exp uj

� �

1+ exp uj

� �

Because the evidence does not reflect every histology that
could be eligible for larotrectinib under the marketing
authorization, the predictive distribution for the response
rate in a new histology is calculated to reflect the full
degree of uncertainty both due to the sample size and the
observed heterogeneity in effects across the observed
histologies. The resulting distribution is the probability
of response in a ‘‘new,’’ that is, unrepresented, histology.

To illustrate the impact of assuming identical response
across histologies, a scenario in which identical response
rates are assumed is implemented. This is achieved by
analyzing the response data through a fixed-effects ver-
sion of the BHM to ensure consistency with the methods
of estimation.

The model is adapted from Thall et al.31 and estimated
using Markov chain Monte Carlo in OpenBUGS,33

implemented in R34 (version 3.6.0) using R2OpenBUGS35

(version 3.2.3.2). Code and implementation details are
presented in the supplementary material.

Model fit is assessed by plotting individual histology
contributions to the residual deviance (in a well-fitting
model, these are expected to be close to 1) and by com-
paring the total residual deviance to the number of histol-
ogies, G.

For all analyses, 55,000 iterations are run on 2 parallel
chains, and the first 5000 iterations are discarded as
‘‘burn-in.’’ Convergence is assessed by visual inspection
of the Brooks-Gelman-Rubin plots and assessment of
the R̂ statistic.36,37

Economic Evaluation

To assess the economic implications of characterizing
heterogeneity in clinical effectiveness, the cost-effectiveness
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of a hypothetical HIT for the treatment of solid tumors
harboring an NTRK gene fusion is assessed. The simpli-
fied economic model draws on evidence from an existing
Trk-inhibitor (larotrectinib) in the form of response out-
comes from the BHM but otherwise uses hypothetical
inputs and assumptions. The results of the model are
therefore for purely illustrative purposes. In line with the
NICE reference case,38 the model considers a National
Health Service and Personal Social Services perspective.
Costs and quality-adjusted life-years (QALYs) are dis-
counted using a 3.5% discount rate, and results are pre-
sented over a lifetime (30-y) time horizon. All parameters
used in the economic model are shown in Table 1.

The economic model uses a landmark response-based
structure that incorporates PFS and OS distributions,
conditional on response, as presented in Ouwens et al.41

The model structure consists of 3 mutually exclusive
health states: 1) progression-free disease, 2) progressed
disease, and 3) death. State occupancy is derived using
the partitioned survival technique, which uses PFS curves
to partition OS into those patients with progression-free
and progressed disease.

In the context of HITs, the general challenges of gen-
erating an appropriate control are complicated by the
need to cover multiple histologies and potentially use mul-
tiple data sets, each requiring adjustment for important

Table 1 Input parameters included in the economic model

Parameter Value 95% CI Source

Effectiveness
Response rate See Results section BHM16

Median progression-free survival
Responders 24 mo [21.6; 26.4] Assumed
Nonresponders 6 mo [5.4; 6.6] Assumed

Median overall survival
Responders 36 mo [32.4; 39.6] Assumed
Nonresponders 12 mo [10.8; 13.2] Assumed

Utilities
Progression-free survival

Hypothetical HIT 0.79 [0.71;0.87] Assumed
SoC 0.72 [0.65;0.79] Assumed

Postprogression survival
Hypothetical HIT 0.64 [0.57;0.71] Assumed
SoC 0.64 [0.57;0.71] Assumed

Costs (£)
Drug acquisition costs

Hypothetical HIT Value-based price — Assumed
SoC £20 — Assumed

Health state costs
Progression-free survival £350 [£315; £385] Assumed
Postprogression survival £500 [£450; 550] Assumed
Terminal care cost £6,878 — 39

Distribution of eligible patients
Soft tissue sarcoma 1.80% — 40

Appendix 5.80% —
Breast 1.80% —
Cholangiocarcinoma 0.00% —
Colorectal 8.30% —
GIST 1.40% —
IFS 9.80% —
Salivary gland 0.70% —
Melanoma 1.10% —
Lung 6.20% —
Pancreatic 6.20% —
Thyroid 2.20% —
Unrepresented 55.10% —

CI, confidence interval; BHM, Bayesian hierarchical model; HIT, histology-independent technology; SoC, standard of care; GIST, gastrointestinal

stromal tumour; IFS, Infantile fibrosarcoma.

168 Medical Decision Making 41(2)



prognostic factors. A number of approaches to generating
controls can be considered, including using nonrespon-
ders as a proxy for patients not receiving an active treat-
ment,42 differences in time-to-progression in the previous
line of treatment,43 literature estimates of postprogression
survival,43 the use of ‘‘big data,’’44 and elicitation meth-
ods.45 For the purpose of this study, nonresponders are
used as a proxy for controls, that is, the standard-of-care
(SoC) arm. This approach is considered appropriate
because of the ease with which potentially important
prognostic factors are matched between arms (i.e., the
number of prior lines of therapy within histologies and
the presence of NTRK gene fusions).

Survival in the hypothetical HIT arm is calculated as a
weighted average of the responder and nonresponder sur-
vival curves based on the percentage response. In model
scenarios in which unrepresented tumors are included,
the response rate of the unrepresented tumors is based on
the predictive distributions of the BHM model. Survival
in the SoC arm is modeled assuming a 0% response. This
assumption is considered appropriate, as the hypothetical
HIT is assumed to be used as an end-of-line treatment
and therefore not displacing any active treatments. The
plausibility of this assumption and the appropriateness
of basing the control on nonresponders would need to be
considered in a real economic analysis.

It is assumed that the survival functions of responders
and nonresponders follow an exponential distribution;
parametric survival curves are fitted to hypothetical esti-
mates of median PFS and OS for responders and nonre-
sponders. Hypothetical estimates of median PFS and OS
were used. In practice, the trial data are likely the most
appropriate source of PFS and OS data. However, the
reliance on surrogate outcomes and lack of a concurrent
randomized control arm represents a key limitation of
the trial designs for HITs. As a result, additional external
data (e.g., surrogate evidence based on landmark response
outcomes) may be required to more appropriately
inform extrapolations, particularly where there is very
short follow-up or there is significant confounding.

It is assumed that patients are treated with the hypo-
thetical HIT until progression and a monthly drug acqui-
sition cost is applied while patients receive treatment.
The hypothetical HIT price is set at a level that results in
an ICER close to NICE’s cost-effectiveness threshold.
This is done using a version of the economic model in
which the unrepresented tumors are included in the anal-
ysis (see the Decision Options section).

For the purpose of this analysis, the hypothetical HIT
was assumed to meet NICE’s end-of-life criteria, allow-
ing a cost-effectiveness threshold of £50,000 per QALY

gained. To represent forthcoming one-off treatment
modalities such as gene therapies, a scenario analysis in
which a technology with a one-off drug cost applied at
the start of treatment is modeled. This scenario also sets
the price such that the ICER is close to NICE’s end-of-
life threshold.

Hypothetical health state utility values, monthly
health state costs, and monthly costs of SoC are used in
the economic model. It is assumed that the hypothetical
HIT is associated with a benefit to health-related quality
of life while in the progression-free health state. It is also
assumed there is no cost of identifying patients eligible
for the HIT. A one-off terminal care cost, obtained from
Georghiou and Bardsley,39 is applied upon transition
from the progressed disease state to the death state. The
distribution of patients eligible for hypothetical HIT by
histology is estimated using the approach outlined in the
literature40 and is used to reweight the histology-specific
results.

To assess the uncertainty surrounding the variables
included in the cost-effectiveness model, a probabilistic
sensitivity analysis is undertaken using 10,000 samples.
Uncertainty in the response rates is captured through
inputting 10,000 iterations from the BHM into the eco-
nomic model. To reflect uncertainty in the utility values,
health state costs, and survival, standard errors are
assumed to be 10% of the mean. All results are calcu-
lated as the mean average of the 10,000 iterations.

Decision Options

To compare the economic implications of allowing for
heterogeneity in the response rates, the economic analysis
considers 4 alternative approaches to generating ICERs
of the hypothetical HIT compared with SoC. Three
HTA decision options (decisions 1–3) can be considered
true histology-independent decisions in which a single
ICER is used to represent the cost-effectiveness of the
technology across all histologies covered by a histology-
independent marketing authorization, although they dif-
fer in how this common ICER is obtained. A fourth deci-
sion (decision 4) shows the range of ICERs for histology-
specific decisions. The decision options are as follows:

� Decision 1: Uses the response rate produced by the
fixed-effects version of the BHM. This assumes
homogeneity in response across all histologies.

� Decision 2: Uses the individual histology response
rates generated by the BHM to generate incremental
costs and QALYs for each individual histology
included in the clinical evidence. A single ICER is
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then generated as a weighted average according to
the distribution of patients in each histology making
up the eligible population.

� Decision 3: Uses the approach in decision 2 but also
including the unrepresented histologies in the calcula-
tion of the single ICER.

� Decision 4: Uses individual histology response rates
produced by the BHM to show the range of histology-
specific ICERs. These demonstrate the potential range
of individual histology-specific ICERs when moving
away from a histology-independent recommendation.

Results

Calculation of Response

The BHM estimates substantial heterogeneity in response
between the histologies presented in the clinical evidence.
The posterior median of s was 2.86 on the log-odds scale,
although there is considerable uncertainty (95% credible
interval [CrI], 0.92 to 4.83; Figure 1).

The posterior distribution of the response probability,
accounting for heterogeneity, is presented in Figure 2
and has an estimated mean response rate across all histol-
ogies of 60.9% with 95% CrI (16.0% to 91.8%). This
value is lower than the naı̈ve pooled mean response rate
of 74.5% (i.e., the value obtained under a homogeneity
model).

The mean response probability predicted for an unre-
presented histology is 56.9%; however, the 95% CrI is
wide, meaning this probability could be as low as 0.2%
or as high as 99.9%. The uncertainty in the response of a
histology unrepresented in the trial population represents

both the underlying uncertainty in the mean response
and the estimated heterogeneity across observed histolo-
gies (Figure 2).

The predictive and posterior probabilities of response
were insensitive to the use of a half-normal prior, an
inverse gamma prior, and a uniform prior centered on a
probability of response of 0.5, the result of which can be
seen in Table S2 of the supplementary material. Model
fit statistics for the base-case and the sensitivity analyses
are presented in the Supplementary Table S3.

The estimated probabilities of response for each histol-
ogy are shown in Table 2. The estimated mean response
of the fixed-effects version of the BHM shows a small
difference in the probability of response compared with
the observed pooled response: 74.2% compared with
the observed response of 74.5%. This is likely a result
of simulation error.

The effect of allowing borrowing of information across
the histologies is to shrink the observed response proba-
bilities toward the pooled mean response probability.
Histologies with few patients borrow more information
than histologies with more patients. Although the observed
response suggested that cholangiocarcinoma, cancer of the
appendix, breast cancer, and pancreatic cancer did not
respond to larotrectinib, results of the BHM suggest the
estimated mean response is greater than zero, by borrow-
ing information from other histologies with more allocated
patients and more promising response rates. The posterior
distributions for these histologies are very wide, illustrating
that there is very little information in the data to obtain
estimates of the response rate with a sample size of 1 for
these histologies.

Figure 1 Prior and posterior distributions for the between-
group heterogeneity standard deviations.

Figure 2 Posterior and predictive distributions of response

probability.
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Economic Evaluation

Drug acquisition cost. Assuming continuous treatment,
the cost of the hypothetical HIT is estimated to be £2200
per month; for a one-off cost, it was estimated to be
£50,000.

Economic evaluation results. Relaxing the assumption of
homogeneity in histology response has an impact on
the ICER of the hypothetical HIT compared with SoC
(Table 3). In the base case, the mean histology-independent
ICER produced from the fixed-effects BHM model
(decision 1) is almost £4000 under the cost-effectiveness
threshold: £46,137 (£41,206 to £64,733). This is in con-
trast to the histology-independent decisions, which allow
for heterogeneity in response (decisions 2 and 3): the
ICERs are approximately at the cost-effectiveness
threshold; however, the CrIs around the ICERs have
increased: £50,339 (£42,899 to £71,959) and £50,009
(£41,487 to £83,857), respectively. When using the BHM
response rates to generate histology-specific decisions
(decision 4), the mean ICERs show considerable varia-
bility in the cost-effectiveness across histologies. The
ICERs range from £43,639 (£39,356 to £60,540) per
QALY for infantile fibrosarcoma (IFS) to £73,446
(£43,985 to £389,728) for cholangiocarcinoma. This var-
iation can also be seen in the incremental costs and
incremental QALYs. The 95% CrIs around the ICERs
reveal the increase in uncertainty in the economic results
of histologies in which the response was based on small
patient numbers. For example, the 95% CrI around the

ICER of the hypothetical HIT compared with SoC for
appendiceal cancer ranges from £41,760 to £373,368.

The results of the scenario analysis in which a one-off
cost of the hypothetical HIT was modeled at the start of
treatment can be seen in Table 4. The mean histology-
independent ICERs for the scenario analysis show a simi-
lar trend to the monthly cost scenario; however, the 95%
CrIs around the ICERs are larger (£32,167 to £133,343
compared with £41,487 to £83,857 for decision 3). The
range of histology-specific ICERs has increased as a
result of the scenario analysis. The mean ICERs range
from £33,530 to £115,526, considerably larger than was
generated under the monthly cost of the hypothetical
HIT model assumption. The results of this scenario anal-
ysis also show much larger 95% CrIs around the ICERs
compared with the base case.

The influence of the uncertainty on each of the
histology-independent decisions can be seen in the prob-
ability of decisions being cost-effective in Table 3. For
decision 1, the probability of the hypothetical HIT being
cost-effective at a cost-effectiveness threshold of £50,000
is 78%. This drops to 48% for decisions 2 and 3, despite
only a small change in the mean ICER. Table 3 also
shows the range of probabilities of individual histologies
being cost-effective at a cost-effectiveness threshold of
£50,000: approximately 93% for IFS to 11% for cholan-
giocarcinoma. A similar trend can be seen for the sce-
nario of a one-off cost of treatment (Table 4). Cost-
effectiveness acceptability curves illustrating the prob-
ability of the hypothetical HIT being cost-effective at dif-
ferent cost-effectiveness thresholds for the base case and

Table 2 Probabilities of response for all histologies

Histology Observed Response Estimated Mean Response Based on BHM (%) 95% CrI

Fixed effects
Pooled 41/55 = 74.5% 74.20% 62.0%284.7%

Random effects
Soft-tissue sarcoma 10/11 = 90.9% 88.10% 66.0%299.1%
Salivary gland 10/12 = 83.3% 81.80% 58.0%296.8%
IFS 7/7 = 100% 93.30% 70.5%2100%
Thyroid 5/5 = 100% 91.60% 63.0%2100%
Lung 3/4 = 75.0% 72.60% 30.4%297.8%
Melanoma 2/4 = 50.0% 52.50% 12.4%289.4%
Colon 1/4 = 25.0% 32.00% 2.6%275.5%
GIST 3/3 = 100% 88.30% 49.3%2100%
Cholangiocarcinoma 0/2 = 0% 21.00% 0.0%275.7%
Appendix 0/1 = 0% 30.00% 0.1%289.7%
Breast 0/1 = 0% 30.00% 0.1%290.1%
Pancreas 0/1 = 0% 29.80% 0.1%289.7%
Unrepresented — 56.90% 0.2%299.9%
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the alternative pricing scenario can be seen in the
Supplementary Figure S1 and Figure S2.

Discussion

In this article, we used a BHM framework to explore the
potential for heterogeneity in the clinical effectiveness
evidence supporting a HIT. The results of the BHM
analysis identified substantial evidence of heterogeneity
in clinical effects across histologies, demonstrating the
importance of appropriately accounting for heterogene-
ity when estimating clinical effects.

Using a simplified model based on hypothetical data,
we illustrate how alternative approaches to characteriz-
ing the clinical effectiveness of a hypothetical HIT affect
the cost-effectiveness and the uncertainty around the
ICER. The histology-independent ICERs ranged from
£46,137 (£41,206 to £64,733) per QALY under the
assumption of homogenous response rates to £50,009
(£41,487 to £83,857) per QALY once we accounted for
heterogeneity and included unrepresented histologies.

In addition, histology-specific estimates of cost-
effectiveness may vary substantially, ranging from £43,639
(£39,356 to £60,540) per QALY in IFS to £73,446 (£43,985
to £389,728) in cholangiocarcinoma because of the differ-
ent response rates between histologies; in our analysis, 7 of
the histologies would be considered cost-effective at a
threshold of £50,000 per QALY in the base case, while a
further 6 histologies would not. If a histology-independent
reimbursement decision was made, a large proportion of
patients under the marketing authorization would not be
treated cost-effectively. This has consequences for reimbur-
sement agencies considering HITs such as entrectinib and
larotrectinib, as they have the opportunity to optimize rec-
ommendations by limiting reimbursement to where bene-
fits are greatest, increasing allocative efficiency.19,20

The results of our analysis demonstrate the importance
of appropriately accounting for uncertainty when consid-
ering histology-specific estimates of cost-effectiveness and
how point estimates of the ICERs independent of the
uncertainty may result in misleading conclusions. For
example, the mean estimated ICERs for melanoma and
the unrepresented histologies are both approximately
£50,000 per QALY (Table 3). However, comparison of
the uncertainty reveals that the unrepresented histology
has a 95% CrI 5 times the width, with an upper limit of
£301,731 per QALY.

The results also demonstrate the potential masking of
heterogeneity by considering only the ICERs for differ-
ent decisions. In the base case, the results of the eco-
nomic model show large variation in the incremental

QALYs and less variation in the ICERs. Because time
on treatment is linked to PFS, a large variation in PFS
results in an almost proportionate variation in costs.
This effect was demonstrated in the scenario in which a
fixed, one-off cost of treatment was modeled. This could
have important implications for HIT reimbursement
decision making. Currently, approved HITs (such as
entrectinib and larotrectinib) link time on treatment (and
therefore cost) to PFS. However, given the ongoing bas-
ket trial evaluating a gene therapy,46 it is plausible that a
technology requiring a one-off treatment cost could seek
a histology-independent recommendation in the future.

Strengths and Limitations of the Proposed
Analytical Framework

The principal strength of the BHM framework is that it
allows the restrictive assumption of identical effectiveness
across histologies to be relaxed and for individual histol-
ogy response rates to be estimated even when patient
numbers are small or where no evidence exists. These
histology-specific response rates are required for a num-
ber of reasons. First, the NICE reference case recom-
mends the exploration of heterogeneity in clinical and
cost-effectiveness.38 Exploration of clinical heterogeneity
would not be possible for each histology separately given
limited patient numbers. Second, generating a single
ICER requires the distribution of patients eligible for
treatment in the trial to reflect the distribution expected
in the population. Any reweighting of the results to
match the trial distribution to the expected real-world
distribution (to improve the external validity) requires
individual histology results. Third, histologies not in-
cluded in the evidence are still included in a histology-
independent decision. Without the predictive distribution
provided by the BHM, decisions are being made about a
potentially substantial number of histologies with no
empirical evidence.

The BHM approach relies on the assumption that
response rates are exchangeable across histologies (i.e.,
that they are similar to one another rather than being
either equal or completely different). Hierarchical designs
have been criticized when there is insufficient information
in the outcome data to determine whether borrowing
across subgroups is appropriate.13,47 Alternative forms of
BHM that restrict the borrowing of information to simi-
lar baskets while avoiding optimistic borrowing from
extreme baskets can be used.47 This, however, requires
judgments to be made (based on clinical and/or empirical
criteria) about the set of baskets within which informa-
tion can be borrowed.
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The use of a landmark response framework presents a
further limitation, as it makes strong assumptions about
the relationship between survival outcomes (PFS and
OS) and response. Specifically, it assumes that response
is not only a good predictor of future survival outcomes
but also that this relationship is constant across histolo-
gies. In reality, it is unlikely that this assumption will ever
hold and will frequently be far from being a reasonable
approximation, as there will be a degree of variability in
the strength of response as a predictor and the nature of
this relationship.48–50 When applying a response-based
modeling approach for the evaluation of HITs, it is
therefore important to consider the strength of evidence
supporting the surrogacy assumptions and whether the
ability to generate histology-specific ICERs outweighs
any associated uncertainties. Where there are substantive
concerns regarding the potential for heterogeneity in sur-
vival endpoints, alternative analysis methods may be
more appropriate.

The application of flexible parametric models and
mixture models may allow for heterogeneity in survival
outcomes to be reflected. However, in the context of
HITs, this has a number of limitations. First, the use of a
single full-population ICER across multiple tumor sites
with potentially different treatment effectiveness, com-
parators, costs, and health-related quality of life will be
difficult to interpret. Given the amount of heterogeneity
associated with HITs, estimating the average cost-
effectiveness for the full patient population covered in
the scope may not provide enough information to deci-
sion makers. Second, the approaches rely on extrapola-
tions of the observed survival data, which will potentially
be immature, resulting in highly uncertain predictions.
This is likely to be the case for trials that are powered on
response endpoints, such as larotrectinib and entrecti-
nib.6–8

Heterogeneity in PFS/OS could also be explored using
the BHM in a similar way to response.26 However, given
the immaturity of the survival data and restrictions
around the requirement of a common parametric distri-
bution across histologies, it is unclear whether this type
of model would provide useful results. To address con-
cerns regarding the maturity of the TTE endpoints, the
BHM could alternatively be applied to specific landmark
survival time points (e.g., 6 or 12 mo) for which more
robust data exist, with surrogate relationships employed
to predict longer-term survival conditional on survival
up to these specific time points.

A further alternative would be to apply the BHM
response assessments to conditional PFS and OS distri-
butions from the overall population or to link them to

external surrogate data. Although such an approach is
less desirable than having robust TTE data for the over-
all population and each specific subgroup of interest, it
may provide a basis for initial explorations of the poten-
tial impact and importance of heterogeneity as well as
guide further data collection and help prioritize specific
subgroups.

Limitations of the Exemplar Analysis

Because of a number of simplifying assumptions, it is
possible that our results underestimate potential hetero-
geneity, as we focused only on heterogeneity in clinical
effects. In reality, there may be a number of other input
parameters that vary across histologies. For example, in
our hypothetical economic analysis, health state utility
values, health state costs, and comparator costs are all
assumed to be identical across histologies. It is, however,
likely that these have the potential to vary substantially,
along with important patient characteristics such as line
of therapy and NTRK-fusion partner, further contribut-
ing to heterogeneity in the estimates of cost-effectiveness.
These simplifying assumptions are also likely to mean
that the predicted estimates of uncertainty are underesti-
mates because several parameters were excluded from the
probabilistic analysis. For example, uncertainty around
the predictive value of response is not included in the
model nor is uncertainty in the response rate for SoC
which is assumed to be zero.

Importantly, our model ignores testing costs associ-
ated with identifying patients who are NTRK fusion pos-
itive. Testing costs may vary substantially across
histologies because of variation in current testing avail-
ability and in the prevalence of NTRK fusions. Such var-
iations are likely to further exacerbate the heterogeneity
in cost-effectiveness estimates across histologies.

This article focused on histology as the main source of
heterogeneity. However, heterogeneity could be explored
using a range of alternative characteristics and sub-
groups. To move from histology as the main source of
heterogeneity to considering a wider range of characteris-
tics requires an understanding of how different charac-
teristics can be used and combined in different ways in
decision making. This is a complex question that requires
further research.

Further, although this study emphasized the impor-
tance of characterizing the uncertainty associated with
heterogeneity, we do not consider the consequences of
uncertainty. An exploration of the value of distinguish-
ing between different types of patients, known as the
value of heterogeneity,19–21 would inform reimbursement
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decision makers of the consequences of alternative policy
options and be an appropriate subsequent exploration of
heterogeneity in the context of HITs. Furthermore, given
the decision uncertainty identified in this analysis, value
of information could also be conducted to help provide
reimbursement decision makers with information on the
drivers of decision uncertainty.

Conclusion

Histology-independent treatments represent a potentially
important shift in the treatment of cancer. However, it is
important to properly address the clinical and cost-
effectiveness of these technologies. This study found con-
siderable heterogeneity in response rates across histolo-
gies, which can result in highly heterogeneous histology-
specific estimates of cost-effectiveness. This study calls
into question the assumption of homogeneity in HIT
response rates across different histologies, which under-
mines the appropriateness of histology-independent
reimbursement decisions. Where there is evidence of het-
erogeneity, decision makers may consider making more
optimized recommendations in which a HIT is approved
for only specific subgroups or histologies for which effi-
cacy evidence is sufficiently robust.
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