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Abstract 

Background:  Breast cancer (BC) is the leading cause of death among women, and epigenetic alterations that can 
dysregulate long noncoding RNAs (lncRNAs) are thought to be associated with cancer metabolism, development, 
and progression. This study investigated the epigenetic regulation of lncRNAs and its relationship with clinical out-
comes and treatment responses in BC in order to identify novel and effective targets for BC treatment.

Methods:  We comprehensively analysed DNA methylation and transcriptome data for BC and identified epigeneti-
cally regulated lncRNAs as potential prognostic biomarkers using machine learning and multivariate Cox regression 
analysis. Additionally, we applied multivariate Cox regression analysis adjusted for clinical characteristics and treat-
ment responses to identify a set of survival-predictive lncRNAs, which were subsequently used for functional analysis 
of protein-encoding genes to identify downstream biological pathways.

Results:  We identified a set of 1350 potential epigenetically regulated lncRNAs and generated a methylated lncRNA 
dataset for BC, MylnBrna, comprising 14 lncRNAs from a list of 20 epigenetically regulated lncRNAs significantly associ-
ated with tumour survival. MylnBrna stratifies patients into high-risk and low-risk groups with significantly different 
survival rates. These lncRNAs were found to be closely related to the biological pathways of amino acid metabolism 
and tumour metabolism, revealing a potential tumour-regulation function.

Conclusion:  This study established a potential prognostic biomarker model (MylnBrna) for BC survival and offered an 
insight into the epigenetic regulatory mechanisms of lncRNAs in BC in the context of tumour metabolism.
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Introduction
Breast cancer (BC) is the most common malignancy 
in women and the leading cause of cancer-related 
deaths worldwide. BC, lung cancer, and colorectal can-
cer account for 50% of all new cancer diagnoses among 
women, whereas BC alone accounts for 30% of female 
cancers [1]. Despite the rigorous selection of multiple 
treatment options to prolong patient survival accord-
ing to each individual patient, many patients continue 
to experience BC recurrence and metastasis due to 
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treatment resistance and wide variations in individual 
genetic specificity [2]. BC can be difficult to treat owing 
to its genetic and molecular heterogeneity, especially in 
metabolically active or recurrent cases. Growing evidence 
suggests that altered molecular profiles offer insights into 
possible therapeutic approaches to improve cancer diag-
nosis, prognosis, and response to therapy [3]. Recently, 
long noncoding RNAs (lncRNAs) have become a hot-
spot in the field of biomarker research and have been 
extensively studied and characterized in various cancers. 
Aberrant expression of lncRNAs has also been observed 
in BC development, progression, recurrence, metastasis, 
treatment resistance, and targeted therapy [4]. Several 
lncRNA expression signatures have been proposed for 
predicting and monitoring disease status, prognosis, and 
drug sensitivity [5]. However, epigenetic regulation of 
lncRNAs and their potential function and clinical appli-
cations in BC, particularly their specific involvement in 
tumour metabolism, require further investigation. There-
fore, a deeper understanding of the molecular mecha-
nisms associated with BC tumorigenesis is critical.

Metabolic reprogramming is a primary characteristic 
of many cancer types [6], and BC cells exhibit distinct 
metabolic plasticity to fuel their proliferation and pro-
gression [7–9]. Reprogramming of cancer cell metabo-
lism is considered a ground-breaking hallmark that 
actively contributes to cancer development [10–12]. 
Through epigenetic regulation, metabolism actively 
contributes to tumorigenesis via integrated metabolite 
production, interactions with signalling pathways, and 
metabolite dependence. Alterations in the metabolic 
program of cancer cells further affect other cells in the 
tumour microenvironment and are involved in regulat-
ing other processes closely associated with cancer devel-
opment, such as angiogenesis, inflammation, and cancer 
immunity [11, 13]. Oncogenic events drive dysregulation 
of metabolic pathways to provide a selective advantage 
for cancer cells to proliferate and survive in the hostile 
microenvironment. Thus, analysis of the metabolic regu-
lation and altered characteristics of BC cells may reveal 
key vulnerabilities in the disease and identify new diag-
nostic and therapeutic perspectives.

LncRNAs constitute a class of noncoding RNAs with 
lengths > 200 nucleotides and minimal evidence of pro-
tein-coding ability and are crucial players in a variety 
of cellular and physiological functions [14]. Accumulat-
ing evidence has revealed that dysregulated expression 
of lncRNAs is involved in tumour initiation, progres-
sion, and metastasis [15]. In BC, lncRNAs are emerging 
as master regulators of tumour biology, with oncogenic 
functions associated with tumorigenesis and tumour pro-
gression (HOTAIR, MALAT-1, lincRNAp21, and GAS5) 
[16]. A recent study identified the hypoxia-responsive 

lncRNA BCRT1 as a tumour promoter in BC, with its 
expression unfavourably associated with tumour metas-
tasis and poor prognosis according to its involvement 
in sponging microRNAs through exosome-mediated 
transfer [17]. Another study showed that lncRNA DILA1 
overexpression increases tamoxifen resistance in BC by 
inhibiting the degradation of cyclin D1 [4]. Dysregula-
tion of these lncRNAs is associated with biological func-
tions such as invasion, proliferation, apoptosis, and cell 
cycle progression as well as clinical features such as cell 
survival, tumour progression, and risk of metastasis. 
Mechanisms related to oncogenic and tumour-suppres-
sive pathways are modulated by lncRNAs with direct or 
indirect effects, including gene expression regulation, 
chromatin remodelling, post-transcriptional regulation, 
and translational control [18, 19]. Mapping the expres-
sion patterns and action mechanisms of lncRNAs is of 
great value and may contribute to identification of new 
biomarkers for BC diagnosis as well as targets of poten-
tial therapies.

Gene methylation and epigenetics in tumour cells, 
especially aberrant gene methylation, has been detected 
in a variety of cancer types, involving coding and non-
coding genes for a variety of crucial tumour functions 
such as the cell cycle, DNA repair, toxic compound catab-
olism, cell adhesion, apoptosis, and angiogenesis [20, 21]. 
Recently a study reported that a DNA methylation model 
based on 11 DNA methylation biomarkers was developed 
and validated for use in clinical practice to detect early 
colorectal cancer [22]. Currently, N6-Methyladenosine 
(m6A) is the most common and widely researched mRNA 
modification that affects diverse biological processes in 
a reversible manner and involves regulation of protein 
expression through “writers,” “erasers,” and “readers” [23]. 
Because RNA m6A modifications are involved in gene 
expression regulation and various biological processes, it 
is reasonable to believe that aberrant RNA modifications 
play an important role in carcinogenesis. Increasing evi-
dence suggests that noncoding RNAs also actively affect 
signalling networks within tumour cells [22, 24, 25]; 
therefore, it is reasonable to suggest that lncRNA meth-
ylation, which is closely related to lncRNA expression 
and function, plays a key role in oncogenesis. While data 
on DNA methylation in BC has been reported, lncRNA 
methylation in BC has not been extensively studied. 
Studies on lncRNA modifications have been the focus of 
many investigations into BC progression and drug resist-
ance. A recent study found that aberrant activation of the 
histone methyltransferase EZH2 promotes ribosome syn-
thesis by regulating and silencing lncRNA PHACTR2-
AS1, which leads to over-activation of ribosome synthesis 
and instability of ribosomal DNA, promoting BC metas-
tasis [26]. However, the mechanism by which “writers” or 
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“erasers” regulate lncRNA methylation requires further 
investigation.

In this study, we explored the landscape of lncRNA 
transcription mediated by differential methylation in BC 
and investigated its association with tumour metabolism. 
Furthermore, analyses of the prognostic effects of these 
lncRNAs on BC-specific therapeutic responses identified 
potential prognostic biomarkers that will offer insights 
for subsequent tumour studies and possible clinical 
applications to improve patient survival.

Methods
Acquisition and analysis of DNA methylation data 
for patients with BC
Methylation data were obtained from UCSC Xena 
(https://​xena.​ucsc.​edu/), pre-processed, and subse-
quently analysed using the R package RnBeads (https://​
www.​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​
RnBea​ds.​html). We then performed pre-processing and 
subsequent differential methylation analyses of the data. 
Imputation was performed by calculating the median 
methylation level for each sample across all CpG sites 
and replacing all missing values for a given sample at an 
individual CpG site with the median across all CpGs in 
the sample. Imputation replaced the median of two miss-
ing values per sample by estimations.

P-values at the site level were computed using the 
limma method [27]. Hierarchical linear models from 
the limma package (https://​bioco​nduct​or.​org/​packa​ges/​
relea​se/​bioc/​html/​limma.​html) were employed and fit-
ted using an empirical Bayes approach on the derived 
M-values. The differences in mean methylation levels 
between the cancer and normal tissue groups were com-
pared, and a statistical test (limma or t test depending on 
the settings) was performed to determine whether the 
methylation values in the two groups originated from 
distinct distributions. The sites were ranked accord-
ing to each metric and assigned a combined rank (each 
site was assigned a rank based on each of three criteria: 
the quotient in mean methylation levels, the quotient in 
mean methylation ploidy levels, and the P value for meth-
ylation), with this computed as the maximum (i.e., worst) 
rank among the three ranks according to the criteria (the 
smaller the combined rank for a site, the more evidence 
for differential methylation at that site). Volcano plots 
and heat maps of differentially methylated sites were 
constructed, and the methylation sites in the genomic 
regions were annotated (four genomic regions in total), 
as follows: 1) methylation values at the gene level were 
extracted for each site for differential methylation anal-
ysis, and 2) a volcano plot and a heat map of differen-
tially methylated genes were constructed. Functional 
enrichment of differentially hypermethylated genes was 

performed using the R package GOstats (https://​bioco​
nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​GOsta​ts.​html).

Acquisition and analysis of differentially methylated 
LncRNAs
Differentially methylated sites were selected accord-
ing to a false discovery rate (FDR)-adjusted P < 0.05 and 
an absolute mean methylation difference > 0.3, and the 
lncRNA expression profile was obtained from UCSC 
Xena. The Z-score of the lncRNA expression profile was 
normalised, and Pearson’s correlation test between dif-
ferentially methylated sites and lncRNA expression was 
performed. LncRNAs with an absolute correlation > 0.4, 
correlation P < 0.01, and with differentially methylated 
sites were selected for further analysis.

Identification of prognostic LncRNA markers mediated 
by differential methylation
We then used the differentially methylated lncRNAs to 
analyse patient survival by calculating the hazard ratio 
(HR), 95% confidence interval (CI), Z value, and P value 
for each lncRNA, followed by application of the survival 
R package (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​survi​
val/​index.​html) after dividing the data into a training set 
and test set. Specifically, to identify the optimal combina-
tion, we added variables that resulted in the greatest sig-
nificant improvement and removed variables that caused 
the most insignificant deterioration in the quality of the 
prediction model at each step, assessed based on the 
Akaike information criterion. This process was repeated 
until the model no longer improved at a statistically sig-
nificant level.

Evaluation of model performance in BC prognosis
Cox regression was applied to the training set, and a risk 
score was generated for each patient. A median risk score 
of 0.375 was used as the threshold to divide patients into 
high-risk (> threshold) and low-risk (≤ threshold) groups 
for further prognostic analysis. Survival curves were gen-
erated according to the groups within the training set, 
including their overall survival (OS), disease-free survival 
(DFS), disease-specific survival (DSS), and progression-
free survival (PFS). The P values were not indicated in the 
survival curves of the training set. We then performed 
univariate Cox analysis to generate a Cox regression 
model, with HRs, 95% CIs, Z values, and P values deter-
mined for the 14 potential lncRNA prognostic markers 
using multivariate Cox analysis on the training set. The 
same method was used for survival analysis on the test 
set and the overall set to evaluate the model performance 
in BC prognosis.

https://xena.ucsc.edu/
https://www.bioconductor.org/packages/release/bioc/html/RnBeads.html
https://www.bioconductor.org/packages/release/bioc/html/RnBeads.html
https://www.bioconductor.org/packages/release/bioc/html/RnBeads.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/GOstats.html
https://bioconductor.org/packages/release/bioc/html/GOstats.html
https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/survival/index.html
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Determination of correlations between prognostic markers 
and metabolism
A total of 10 major categories and 86 metabolism-
related pathways previously reported in tumour cells 
were obtained from the Kyoto Encyclopaedia of Genes 
and Genomes (KEGG) database [28]. Using gene set 
variation analysis [29], we converted the gene expres-
sion profile data into profiles of metabolic pathway 
activity based on relationships between the metabolic 
pathways and corresponding genes. Using the limma 
method [27], we performed a pathway activity differ-
ence analysis for the high-risk versus low-risk groups 
using the dataset, with metabolic pathways having a 
corrected P < 0.05 considered significantly different.

Functional enrichment analysis
To explore the functions of the potential lncRNA bio-
markers, we performed functional enrichment analy-
sis using mRNAs demonstrating correlations between 
their expression and the level of each lncRNA. The 
association between lncRNA and mRNA expression 
was measured by calculating the Pearson’s correla-
tion coefficient, with the top 50 mRNAs considered 
“related” to each lncRNA. We then performed func-
tion enrichment analysis using Gene Ontology (GO) 
and KEGG analyses to infer possible functional roles 
of the lncRNAs using the R package clusterProfiler 
(https://​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​
clust​erPro​filer.​html). GO terms or KEGG pathways 
with an adjusted P < 0.05 were considered significantly 
enriched.

Statistical analysis
All statistical analyses were performed using SPSS (v25.0; 
IBM Corp. Armonk, NY, USA) and R Statistical Software 
(v3.6.3; https://​www.r-​proje​ct.​org/). Qualitative variables 
were compared using the chi-square test, survival curves 
were prepared according to the Kaplan‒Meier method, 
and survival was compared using the log-rank test. Sta-
tistical significance was set at P < 0.05.

The workflow of this study is presented in Fig. 1.

Results
Gene expression and methylation data
BC methylation data were obtained from UCSC Xena, 
including a total of 485,577 probes and 885 samples 
(789 tumour samples and 96 normal samples). Of these, 
10,131 probes enriched in single-nucleotide polymor-
phisms (SNPs) were removed owing to the overlap of 
the final three bases in their sequences with those in the 
SNPs; 80,378 probes with > 10% missing values were also 

removed. This left a total of 391,918 probes and 885 sam-
ples in the final dataset (Fig. 2A and B).

We captured the distribution of methylation values 
for the differentially methylated sites according to an 
FDR adjusted P < 0.05 and an absolute mean methyla-
tion difference > 0.3 (Additional file 1: Table S1). Follow-
ing extraction of methylation values at the gene level, we 
performed differential methylation analysis (Additional 
file 2: Table S2). We counted the distribution of methyla-
tion values for the differentially methylated genes in each 
group and generated a volcano plot of the differentially 
methylated genes (Fig.  2C and D). Figure  2E shows the 
5775 differentially methylated sites as a heat map of the 
distribution between the two groups for further analysis.

LncRNA markers identified according to differential 
methylation
We selected the 5775 differentially methylated sites and 
obtained 14,629 lncRNA expression profiles. By col-
lapsing the methylation markers to genes, we paired the 
methylation sites with the lncRNAs to yield 1350 dif-
ferentially methylated lncRNAs for subsequent analysis 
(Additional file 3: Table S3).

Prognostic validation of LncRNAs demonstrating 
differential methylation
We then performed follow-up survival analysis using the 
1350 differentially methylated lncRNAs. Removal of sam-
ples lacking survival information yielded a dataset with 
1073 BC tumour samples, which was then divided into a 
training and a test set containing 537 and 536 samples, 
respectively. Survival analysis of 1350 lncRNAs from 
the 537 samples in the training set for survival identi-
fied 20 survival-related lncRNA markers. According 
to Akaike information criterion for the optimal com-
bined model, 14 lncRNAs were ultimately selected as 
the prognostic model (MylnBrna). The optimal combi-
nations and models were, as follows: ensg00000235576, 
ensg00000237248, ensg00000250971, ensg00000232352, 
ensg00000280241, ensg00000235840, ensg00000236859, 
ensg00000264589, ensg00000224509, ensg00000258077, 
ensg00000272463, ensg00000261215, ensg00000233723, 
and ensg00000224271. Table 1 provides details regarding 
this set of differentially methylated lncRNAs.

Performance of the model in BC prognosis
To evaluate whether the performance of MylnBrna in 
BC prognosis was independent of other clinical fea-
tures, we conducted univariate Cox regression (Addi-
tional file 4: Table S4) and multivariate Cox regression 
(Table  2) analyses for the individual clinical vari-
ables. Scatter plots were generated for the results of 

https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
https://www.r-project.org/
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Fig. 1  Workflow of this study
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single-factor and multivariate Cox analyses for the 
score distributions and survival status (Fig.  3A), and 
a heat map showing marker expression in the patients 
from the training set was constructed (Fig.  3B). We 
analysed both the training sets (Fig.  4A–D) and test 
sets (Fig. 4E–H), as well as the overall dataset (Fig. 4I–
L) and generated 3- and 5-year survival curves (i.e., 
OS, DFS, DSS, and PFS) to demonstrate the prognostic 
value of MylnBrna.

Prognostic LncRNA markers and up‑regulated tumour 
metabolic pathways
To investigate the roles of the prognostic lncRNAs 
and their correlation with tumour metabolism, we 
performed association analysis. For the 10 major cat-
egories containing the 86 pathways (Additional file  5: 
Table  S5), we determined whether the pathways 
within each category were significantly up-regulated 
or down-regulated in the high-risk group. Among 
the 14 potential lncRNA biomarkers, those related to 
amino acid metabolism pathways showed the high-
est up-regulation (Fig.  5A), followed by those related 
to lipid, carbohydrate, glycan, cofactor and vitamin, 
energy, xenobiotic, nucleotide, terpenoid, and polyke-
tide metabolism, as well as secondary metabolites. A 
heat map of significant pathways was drawn from the 
61 pathways with significantly elevated activity, among 
which amino acid metabolism was associated with 
prognostic lncRNAs modified by methylation, indicat-
ing a potential correlation between the 14 lncRNAs 
and tumour metabolism (Fig. 5B).

Functional enrichment
To infer the potential biological roles of the identified 
lncRNAs, we calculated the Pearson’s correlation coef-
ficient between their expression and those of the cor-
responding mRNAs. The top 50 mRNAs considered 
as lncRNA-related (Fig.  6A) were selected. Then we 
performed GO (Additional file  6: Table  S6) and KEGG 
(Additional file 7: Table S7) functional enrichment anal-
yses for 642 lncRNA-related mRNAs, among which 14 
potential lncRNA prognostic biomarkers were function-
ally enriched in the GO database (Fig. 6A). We identified 
the top 10 KEGG pathways with the highest enrich-
ment, with cytokine-receptor interaction being the most 
enriched pathway (Fig. 6B–D).

Discussion
This study investigated the roles of differentially methyl-
ated lncRNAs in BC to determine possible biomarkers 
of altered BC tumour metabolism as well as prognostic 
markers of chemotherapy response. The analysis included 
885 samples and 91,918 probes, resulting in the identi-
fication of 1350 differentially methylated lncRNAs for 
subsequent analysis. Screening identified 14 lncRNAs as 
prognosis-related markers for BC, with KEGG analysis 
of possibly altered metabolic pathways confirming that 
lncRNAs related to amino acid metabolism were signifi-
cantly up-regulated in the high-risk BC group, suggesting 
the prognostic significance of these lncRNAs.

Although numerous lncRNAs are involved in BC devel-
opment, treatment, and recurrence, few have been iden-
tified as playing a significant role [30, 31]. A previous 
study reported that up-regulated lncRNAs are associ-
ated with cyclin D1 binding and subsequent degradation, 
resulting in BC resistance to endocrine therapy and 
recurrence [4]. Other studies reported the effectiveness 
of targeted lncRNA therapy in animal experiments, sug-
gesting the potential role of lncRNAs as prognostic bio-
markers of drug resistance in patients with BC [4, 32]. 
For recurrent and refractory BCs resistant to chemother-
apy and endocrine therapy, as well as triple-negative BCs, 
lncRNA-specific targeted therapies represent valuable 
and promising remedial treatment options based on their 
reported contribution to tumour progression [33–35].

Epigenetic modifications mediated by lncRNAs can 
lead to reprogramming of energy metabolism through 
complex and diverse pathways, including ubiquitina-
tion, phosphorylation, and acetylation. A recent study 
reported organelle-associated lncRNAs as potential clini-
cal targets for manipulating cellular metabolism and dis-
ease, with mitochondria-localized lncRNAs identified as 
tumour suppressors favouring cellular energy homeo-
stasis [36]. Additionally, previous studies indicate that 
epigenetically regulated lncRNAs may correlate with 
tumour metabolism, thus playing a vital role in enhanc-
ing tumour proliferation and progression and potentially 
resulting in BC resistance to treatment [37, 38]. Given 
the large amounts of data associated with gene regula-
tion made available by advanced methods, the establish-
ment of models capable of prognostic predictions related 
to treatment outcomes will promote subsequent research 
and clinical benefits.

(See figure on next page.)
Fig. 2  Analysis of gene expression and methylation data. A Distribution of methylation values for differentially methylated sites in the cancer and 
normal tissue groups. B Volcano plot of differentially methylated sites. C Distribution of methylation values for the differentially methylated genes 
in each group. D Volcano plot of differentially methylated genes. E Heat map of differentially methylated sites showing distribution of methylation 
values between the two groups (one row for a site, and one column for a sample)
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Fig. 2  (See legend on previous page.)
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The number of functional lncRNAs that have been 
well-studied for epigenetic regulation is relatively triv-
ial compared to the numerous lncRNAs identified and 
documented in public databases. Among the 14 lncR-
NAs in MylnBrna, several lncRNAs have been well 
studied in several abnormal metabolic diseases and 
tumours. For instance, ensg00000237248 (LINC00987) 
has been reported to ameliorate chronic obstruc-
tive pulmonary disease through modulating lipopol-
ysaccharide-induced cell apoptosis, oxidative stress, 

inflammation, and autophagy via regulating other 
gene signalling pathways [39]. The down-regulation of 
ensg00000232352 (lncRNA SEMA3B-AS1) was related 
to risky outcomes of patients with Wilms tumour [40]. 
Additionally, ensg00000236859 (lncRNA NIFK-AS1) 
was highly expressed in hepatic cancer tissues due to 
m6 methylation, and the knockdown of NIFK-AS1 sen-
sitized tumour cells to sorafenib through upregulation 
of drug transport proteins [41]. This lncRNA NIFK-
AS1 has also promoted the proliferation, migration 
and invasion of endometrial cancer cells by enhanc-
ing inhibition of M2-like polarization of macrophages 
through down-expression [42]. ensg00000264589 
(lncRNA MAPT-AS1), present in the antisense strand 
of the promoter region of MAPT (microtubule-asso-
ciated protein tau), was positively associated with 
improved patient survival [43]. To further understand 
the functional role of MylnBrna in BC, we performed 
a functional enrichment analysis of the genes encoding 
related proteins that epistemically regulated lncRNAs 
by considering their co-expression relationships and 
found that MylnBrna is associated with known tumour 
metabolic pathways, perhaps thereby serving as a can-
cer-related biological pathway.

Follow-up studies are required and planned. 
Although the significance of this field of research is 
widely recognized, relevant studies are limited, and 
existing knowledge has not been fully translated into 
clinical applications. Furthermore, given the scarcity 
of a large clinical database of BC-specific genes and 
lncRNA libraries available for exploration, the results 

Table 1  The 14 potential lncRNA prognostic markers

ENSG ID Position (CHR: Start–End) Aliases Strand

ENSG00000235576 Chromosome 2: 7,725,801–7,730,705 LINC01871 Forward

ENSG00000237248 Chromosome 12: 9,240,003–9,257,960 LINC00987 Forward

ENSG00000250971 Chromosome 4: 187,005,944–187,060,930 Lnc-F11-2 Forward

ENSG00000232352 Chromosome 3: 50,266,641–50,267,371 SEMA3B-AS1 Reverse

ENSG00000280241 Chromosome 4: 153,948,718–154,300,500 lnc-FGB-3 Forward

ENSG00000235840 Chromosome 2: 120,319,007–120,326,298 lnc-TMEM185B-6 Forward

ENSG00000236859 Chromosome 2: 121,649,320–121,728,563 NIFK-AS1 Forward

ENSG00000264589 Chromosome 17: 45,799,390–45,895,680 MAPT-AS1 Reverse

ENSG00000224509 Chromosome 2: 104,936,241–105,038,496 MRPS9-AS2 Reverse

ENSG00000258077 Chromosome 12: 75,563,202–75,984,015 lnc-GLIPR1-7 Reverse

ENSG00000272463 Chromosome 6: 708,592–711,405 lnc-IRF4-8 Reverse

ENSG00000261215 Chromosome 9: 34,661,903–34,666,029 lnc-IL11RA-2 Reverse

ENSG00000233723 Chromosome 2: 58,427,799–59,063,766 LINC01122 Forward

ENSG00000224271 Chromosome 22: 47,630,827–48,023,004 EPIC1 Forward

Table 2  The prognostic performance of the 14 lncRNA markers

* The hazard ratio ((HR) with 95% confidence interval (CI)) and P-value from the 
multivariate Cox regression analysis of each lncRNA are indicated

lncRNA ID HR (95% CI)* P value

ENSG00000235576 0.54 (0.38, 0.78) 0.00092

ENSG00000237248 0.60 (0.41, 0.87) 0.0079

ENSG00000250971 0.73 (0.49, 1.07) 0.001

ENSG00000232352 0.57 (0.40, 0.81) 0.0015

ENSG00000280241 1.55 (1.28, 1.87) 4.70E-06

ENSG00000235840 0.17 (0.07, 0.42) 0.00011

ENSG00000236859 1.51 (1.12, 2.03) 0.0072

ENSG00000264589 0.56 (0.39, 0.79) 0.0013

ENSG00000224509 1.33 (1.09, 1.63) 0.0049

ENSG00000258077 1.49 (1.14, 1.95) 0.0037

ENSG00000272463 0.61 (0.43, 0.87) 0.0057

ENSG00000261215 0.75 (0.53, 1.05) 0.095

ENSG00000233723 0.57 (0.35, 0.94) 0.028

ENSG00000224271 1.51 (1.19, 1.90) 0.00054
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Fig. 3  Performance of the MylnBrna model in BC prognosis. A Scatterplots of patient score and survival status distributions as well as a heat map 
of marker expression in the training set. B Box plots of the expression of four lncRNAs as potential prognostic markers in both high-risk and low-risk 
groups in the training set. BC, breast cancer



Page 10 of 14Song et al. BMC Medical Genomics          (2022) 15:105 

Fig. 4  Survival curves over 3 and 5 years for low-risk and high-risk groups. Overall survival curves, disease-free survival curves, disease-specific 
survival curves, and progression-free survival curves generated using data from the (A–D) training set, (E–H) test set, and (I–L) overall dataset, 
respectively

Fig. 5  Prognostic lncRNA markers and upregulated tumour metabolic pathways. A Bar graph of significantly different metabolic pathways between 
the two groups showing high and low risk of survival. B Heat map showing activity of the 61 significantly up-regulated pathways between the 
high-risk and low-risk groups (pathway information acquired from Kyoto Encyclopaedia of Genes and Genomes database developed by Kanehisa 
Laboratories, https://​www.​kegg.​jp/). n.s., no significant difference

(See figure on next page.)

https://www.kegg.jp/
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Fig. 5  (See legend on previous page.)
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of this study provide data for subsequent epigenetic 
studies of specific BCs, and the findings offer new 
perspectives on BC-specific tumour metabolism. The 
prognostic model of methylated lncRNAs in BC estab-
lished in this study (MylnBrna) supports further evalu-
ation and identification of biomarkers and therapeutic 
targets associated with tumour metabolism.

Conclusion
A model of 14 lncRNAs that are associated with BC 
prognosis and that altered tumour metabolism was 
identified. Further studies are required to investigate 
other lncRNAs as potential metabolic biomarkers with 
predictive capacity for immunotherapeutic outcomes of 
patients with BC.

Fig. 6  Functional enrichment analysis of MylnBrna. A Functional enrichment map of Gene Ontology (GO) results for the 14 lncRNA prognostic 
biomarkers. The top 50 from among 642 mRNAs were determined. B Ten GO terms showing the highest enrichment are shown. C Bubble chart 
for Kyoto Encyclopaedia of Genes and Genomes (KEGG) functional enrichment (pathway information acquired from KEGG database developed by 
Kanehisa Laboratories, https://​www.​kegg.​jp/). D Ten pathways showing the highest enrichment are shown

https://www.kegg.jp/
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