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OBJECTIVE

Maternal glycemic dysregulation during pregnancy increases the risk of adverse
health outcomes in her offspring, a risk thought to be linearly related to maternal
hyperglycemia. It is hypothesized that changes in offspring DNA methylation
(DNAm) underline these associations.

RESEARCH DESIGN AND METHODS

To address this hypothesis, we conducted fixed-effects meta-analyses of epige-
nome-wide association study (EWAS) results from eight birth cohorts investigat-
ing relationships between cord blood DNAm and fetal exposure to maternal
glucose (Nmaximum 5 3,503), insulin (Nmaximum 5 2,062), and area under the curve
of glucose (AUCgluc) following oral glucose tolerance tests (Nmaximum 5 1,505).
We performed lookup analyses for identified cytosine-guanine dinucleotides
(CpGs) in independent observational cohorts to examine associations between
DNAm and cardiometabolic traits as well as tissue-specific gene expression.

RESULTS

Greater maternal AUCgluc was associated with lower cord blood DNAm at neigh-
boring CpGs cg26974062 (b [SE] 20.013 [2.1 × 1023], P value corrected for false
discovery rate [PFDR] 5 5.1 × 1023) and cg02988288 (b [SE]20.013 [2.3 × 1023],
PFDR 5 0.031) in TXNIP. These associations were attenuated in women with GDM.
Lower blood DNAm at these two CpGs near TXNIP was associated with multiple
metabolic traits later in life, including type 2 diabetes. TXNIP DNAm in liver biopsies
was associated with hepatic expression of TXNIP. We observed little evidence of asso-
ciations between either maternal glucose or insulin and cord blood DNAm.

CONCLUSIONS

Maternal hyperglycemia, as reflected by AUCgluc, was associated with lower cord
blood DNAm at TXNIP. Associations between DNAm at these CpGs and metabolic
traits in subsequent lookup analyses suggest that these may be candidate loci to
investigate in future causal and mediation analyses.

Gestational diabetes mellitus (GDM) has major health consequences for both mother
and child (1–3). Even among women without GDM, maternal hyperglycemia and
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hyperinsulinemia have been associated
with increased risk for pregnancy compli-
cations (1) and offspring cardiometabolic
disease (3). The latter relationships are
hypothesized to be mediated by altera-
tions in epigenetic factors, including
DNA methylation (DNAm), laid down
during prenatal development (4). Single
cohort studies have reported associa-
tions between GDM or maternal glyce-
mic measures and offspring DNAm
(5–8). The most comprehensive study to
date has been a Pregnancy and Child-
hood Epigenetics (PACE) consortium
meta-analysis of epigenome-wide asso-
ciation studies (EWAS) with assessment
of the association between GDM diag-
nosis and cord blood DNAm (9). This
study did not find evidence for robust
associations between mother’s GDM
status and offspring DNAm at the sin-
gle cytosine-guanine dinucleotide (CpG)
level, suggesting that GDM may not influ-
ence changes in the fetal epigenome.
However, this may also be partly

explained by methodological limitations
such as the heterogeneous definitions of
GDM, differences in GDM treatment
across cohorts, or limited statistical power
to identify changes across the DNA meth-
ylome (N 5 317 cases of GDM). In addi-
tion, GDM diagnosis is a clinical threshold
dichotomizing glucose levels, yet linear
associations have been reported between
various measures of glucose metabolism
and offspring outcomes (3). We therefore
opted to evaluate continuous measures
of maternal glycemic dysregulation in
relation to offspring DNAm.

In the current study, we conducted
fixed-effects meta-analyses of EWAS
investigating associations between con-
tinuous maternal glucose, insulin, and
area under the curve of glucose (AUCgluc)
measures from an oral glucose tolerance
tests (OGTT) conducted during preg-
nancy and cord blood DNAm. We used
AUCgluc as one of our exposures of inter-
est, as glucose measures at different
OGTT time points show similar linear

associations with health outcomes (1)
and capture both fasting and nonfasting
maternal glycemic regulation (10). The
findings from the meta-analyses were
subsequently looked up in complemen-
tary observational studies for assessment
of whether the variation of DNAm at
identified CpGs also potentially associ-
ated with cardiometabolic traits in chil-
dren (11) and adults (12). Additionally,
we performed lookup analyses investi-
gating relationships between DNAm at
these CpGs and gene expression in two
relevant human tissues (13).

RESEARCH DESIGN AND METHODS

Participating Cohorts
Seven cohorts with cord blood DNAm
and fasting glycemic data in midpreg-
nancy participated in the meta-analyses
(Table 1 and Supplementary Material).
These cohorts were from Southeast Asia
(Singapore: Growing Up in Singapore
Towards healthy Outcomes [GUSTO]
[14]), North America (Canada: Genetics
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of Glucose regulation in Gestation and
Growth [Gen3G] [15], U.S.: Healthy Start
[16]), and Europe (Finland: the Finnish
Gestational Diabetes [FinnGeDi] Study
[7,17] and Prediction and Prevention of
Preeclampsia and Intrauterine Growth
Restriction [PREDO] study [18], France:
EDEN [19], and Belgium: the ENVIRon-
mental influence ON early AGEing [ENVI-
RONAGE] [20]). One cohort, in the
Generation R Study (21) (the Nether-
lands), had nonfasting glycemic data
(included in a secondary analysis). Apart
from FinnGeDi (17), all studies included
general population–based birth cohorts.
Recruitment for the FinnGeDi control sub-
jects (FinnGeDi-control) was similar to
that for the other cohorts, while the Finn-
GeDi case subjects (FinnGeDi-GDM) were
recruited and glycemic markers were
measured much earlier in pregnancy (12–
16 weeks). Therefore, data for FinnGe-
Di-GDM and FinnGeDi-control were ana-
lyzed separately. Ethics approval and
informed consent were obtained follow-
ing national and international standards.

Meta-analysis: Participants and
Exclusion Criteria
We provided the analysis plan with R
scripts for running the EWAS to all inter-
ested cohorts (Supplementary Material).
Investigators for cohorts measured DNAm
in cord blood using either the Illumina
Infinium HumanMethylation450 (450k) or
Illumina MethylationEPIC (EPIC) BeadChip
array, which was normalized as investiga-
tors deemed appropriate (Supplementary
Material, including Supplementary Table
1). Only term singletons (gestational age
[GA] >37 weeks) were included in the
analyses. We excluded siblings and off-
spring from mothers with type 1 or type
2 diabetes prior to the pregnancy.

Glycemia-Related Traits (Exposure)
We investigated three glycemia-related
traits as continuous exposures: fasting
glucose (FG) (in millimoles per liter),
fasting insulin (FI) (in picomoles per
liter, log2 transformed), and AUCgluc
(mmol/L*min). For each cohort, mater-
nal blood samples were collected by
trained professionals. If multiple meas-
urements were available during preg-
nancy, the earliest measurement was
used. If samples were collected during
an OGTT, the glucose and/or insulin
concentration at the start of the OGTT
was used as the “fasting” measure. The
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Generation R Study had standardized, but
nonfasting, glucose and insulin measure-
ments available (N � 1,100) (6). The
OGTT were performed with a bolus of 50
g (ENVIRONAGE), 75 g (FinnGeDi, PREDO,
and Gen3G), or 100 g pure glucose
(EDEN, Healthy Start) in accordance with
respective national guidelines. The AUCgluc
was calculated from glucose concentra-
tions (in millimoles per liter) measured at
time 0, 60, and 120 min with the method
of Matthew et al. BMJ 1990, appendix II.

Cohort-Specific Analyses
For all analyses, DNAm was analyzed as
normalized untransformed b values. b

values denote DNAm levels, where 0
approximates 0% and 1 approximates
100%. Effect estimates were converted
to percentages throughout the manu-
script with multiplication of the b values
by 100. Investigators for each cohort per-
formed EWAS on glucose/insulin/AUCgluc
using robust linear regression (rlm) from
the R MASS package with the White esti-
mator for robust SEs, as implemented in
the R package sandwich (22), which
leads to a model robust for outlying b

values and heteroscedasticity. We used
the b values of each CpG as the out-
come and each of the glycemic variables
as the predictor in separate models.
Directed acyclic graphs (Supplementary
Material) were used to investigate and
determine the necessary minimal set of
covariates to include in the model. Each
EWAS was adjusted for the sex of the
child (female/male), GA at maternal gly-
cemic samplings (days), maternal age
(years), GA at birth (days), parity (nullipa-
rous yes/no), and imputed cord blood
cell proportions (23) from the estimate-
CellCounts function in the minfi R pack-
age (24) with use of the “Bakulski
reference” data set for cord blood. In
addition, investigators of the cohorts
were instructed to adjust for cohort-spe-
cific variables as needed (Supplementary
Material). EWAS results from each
cohort were evaluated with the R QCE-
WAS package (25).

Meta-analysis
After quality control, we filtered out all
probes that 1) did not map to unique
genomic locations, 2) overlapped single
nucleotide polymorphisms (minor allele
frequency >5% in 1,000 genomes), or
3) had >0.2 mean b value differences

between the 450k and EPIC array (26).
EWAS often suffer from deflation/infla-
tion (l) and bias (m) (as apparent in
quantile-quantile plots [QQ-plots]) in
the test statistic distribution, which may
lead to spurious findings (27). We there-
fore used the R Bioconductor package
bacon to estimate and mitigate the l and
m for each EWAS (27) (Supplementary
Tables 2, 3, and 4). A fixed-effects meta-
analysis with inverse variance weighting
was then run for the cohort-specific
bacon adjusted results for FG, FI, and
AUCgluc with the R package metafor (28).
We also ran leave-one-out analyses
for all probes using metafor. Heteroge-
neity was assessed with the Cochran
Q test. In the meta-analysis with FG as
an exposure, we observed genome--
wide heterogeneity (Supplementary
Fig. 1A), and the EDEN cohort was
identified as the source of heteroge-
neity (Supplementary Fig. 1B), so in
the final FG meta-analysis we excluded
EDEN (N 5 2,404). The addition of non-
fasting data from the Generation R Study
did not introduce heterogeneity (Supple-
mentary Figs. 2 and 3). Among the six
cohorts for which values were provided
for AUCgluc, in EDEN (N 5 32), ENVIRON-
AGE (N 5 86), and Healthy Start (N 5
48) only measurements of women at
high risk of developing GDM were
included. There was heterogeneity in the
meta-analysis (Supplementary Fig. 4A),
which was mitigated with omission of
these three cohorts (Supplementary Fig.
4B–D). The removal of the FinnGe-
Di-GDM sample had no effect on hetero-
geneity (Supplementary Fig. 4E). There-
fore, in this meta-analysis we excluded
EDEN, ENVIRONAGE, and Healthy Start
but included the FinnGeDi-GDM sample.
The meta-analyses were performed by
two independent analysts to reduce the
possibility of human error. All reported P
values are two sided, and multiple test-
ing corrections were performed with use
of Benjamini-Hochberg (i.e., false discov-
ery rate [FDR]). P values corrected by
FDR are designated as PFDR. P values that
were not corrected by FDR (for instance,
from lookup analyses) are designated as
Pnominal. In EWAS meta-analyses, raw
Pnominal values <1 × 10�6 were deemed
suggestive and PFDR values <0.05 were
considered statistically significant. All
probes were annotated to the human
reference genome version 19, build 37.
Meta-analysis results are deposited to

the EWAS catalog (29), Zenodo DOI
https://doi.org/10.5281/zenodo.58869
97. The presence of differentially met-
hylated regions (DMR) in relation to
the glycemic exposures was evaluated
with the R packages ipDMR (30) and
DMRcate (31), with use of each
respective meta-analysis test statistic
file. A DMR was considered robust if
identified with both methods.

Cross-sectional Lookup Analyses
For the Study in TEENs of the natural
course of type 1 DIABetes (TEENDIAB)
cohort (11) (Germany) and the Northern
Finland birth cohort of 1966 (NFBC
1966) (12), DNAm data were provided
for blood of children and adults, respec-
tively, for conducing cross-sectional lookup
analyses for loci of interest with cardio-
metabolic phenotypes. In addition, inves-
tigators for the Biological Atlas of Severe
Obesity (ABOS) study (France) (13) pro-
vided DNAm and RNA-sequencing data
for liver and muscle tissue from adult
women with obesity who had undergone
gastric bypass surgery (Supplementary
Material). In all three cohorts, we used
rlm to determine the association between
DNAm at specific probes and each phe-
notype of interest. In the TEENDIAB
cohort analyses, we adjusted for the
child’s sex, the age of the child (years),
maternal type 1 diabetes status (binary),
six imputed blood cell types (32), paren-
tal socioeconomic status (low, medium,
and high), and batch (sentrix position).
In the NFBC1966 (adults), we adjusted
for sex, the imputed blood cell types
(32), socioeconomic status (low, medium,
or high), and batch. For the ABOS cohort,
we adjusted for age (years), BMI, and
type 2 diabetes status (binary).

RESULTS

Cohort Summaries
Characteristics of each cohort are
described in Table 1. Mean maternal age
ranged from 27.6 to 33.5 years and
mean BMI from 23.9 to 28.8 kg/m2. The
French EDEN cohort had the lowest
mean FG (4.3 mmol/L), while the Finnish
cohorts had the highest mean FG (Finn-
GeDi-control 4.6 mmol/L, FinnGeDi-GDM
5.3 mmol/L, PREDO 4.9 mmol/L). Mean
FI differed between Gen3G (64 pmol/L)
and Healthy Start (92 pmol/L), likely due
to a lack of standardization of this
measurement.
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Glucose and Insulin
The maternal FG meta-analysis (N 5
2,404, l 5 1.047, m 5 0.056) yielded
evidence for an association between FG
and DNAm at CpG cg26104143 (b [SE]
�0.26 [0.04], PFDR 5 6.6 × 10�3, N 5
2,404) (Table 2). This CpG (chromosome
[chr]4: 41874579–41874580) is located
upstream of TMEM33. The heterogeneity
for association at this specific CpG was
considerable (I2 5 42%) and driven by
the ENVIRONAGE cohort (Supplementary
Fig. 5), as the association was attenuated
and no longer significant after exclusion
of ENVIRONAGE (b [SE] �0.09 [0.07],
Pnominal = 0.19). Adding nonfasting glucose
data from the Generation R Study did not
reveal CpGs reaching statistical signifi-
cance (PFDR > 0.073, N 5 3,503, l 5
1.042, m 5 0.059) (Table 2). No robust
DMRs were identified for FG.

Next, we investigated FI, which was
measured in Gen3G (N 5 438) and
Healthy Start (N 5 523). We did not
find evidence of a statistically significant
association between maternal FI and
DNAm in offspring cord blood (PFDR >

0.11, N 5 961, l 5 1.027, m 5
�0.078). Adding nonfasting insulin data
from the Generation R Study did not
reveal CpGs reaching statistical signifi-
cance (PFDR > 0.14, N 5 2,062, l 5
1.036, m 5 0.004). The CpGs at which
DNAm was nominally associated with FI
or FG (Pnominal < 1 × 10�6) are

presented in Table 2. No robust DMRs
were identified for FI.

Glycemic Excursion During the OGTT
The AUCgluc meta-analysis that included
data from FinnGeDi, Gen3G, and PREDO
(N 5 1,505, l 5 1.027, m 5 �0.004)
identified significant associations between
a higher AUCgluc and lower DNAm at
cg26974062 (b [SE] �0.013 [2.1 × 10�3],
PFDR 5 5.1 × 10�3, N 5 953) and
cg02988288 (b SE�0.013 [2.3 × 10�3],
PFDR 5 0.031, N 5 953). These two CpGs
are located in thioredoxin interacting pro-
tein (TXNIP) (cg26974062 at chr1,
145440734, and cg02988288 at chr1,
145440445) (Fig. 1A). The meta-analysis
on FG identified suggestive associations
with lower DNAm at both TXNIP CpGs
(Table 2) (cg26974062, b [SE] �3.0 [0.56],
Pnominal 5 3.0 × 10�7, N 5 1,056;
cg02988288, �3.2 [0.64], Pnominal 5 1.8 ×
10�6, N 5 1,056), consistent with the
direction of effect observed in our EWAS
for AUCgluc.

DNAm at the probes located
upstream (15 kb) of these CpGs were
not associated with AUCgluc (Pnominal >

0.29). Directly downstream of the newly
identified CpGs, DNAm at cg19693031
(chromosome 1: 145441552) has been
associated previously with multiple
adult metabolic traits and the risk of
type 2 diabetes development (33). In
our data set, cord blood DNAm at

cg19693031 was nominally associated
with a greater AUCgluc (b [SE] �1.0 ×
10�5 [4.4 × 10�6], Pnominal 5 0.019,
N 5 1,505) and with higher maternal FG
(�0.4 [0.1], Pnominal 5 9.4 × 10�6, N 5
2,404) but not with FI (Pnominal 5 0.60)
(Fig. 1A). However, this region was not
designated as a DMR and we did not iden-
tify any robust DMRs for AUCgluc.

Despite mitigation of genome-wide
heterogeneity, heterogeneity was high
for associations between AUCgluc and
cord blood DNAm at cg26974062 (I2 5
52.1%) and cg02988288 (I2 5 60.3%).
Both CpGs are represented on the EPIC
array but not the 450k array (unlike
cg19693031, which is present on both).
Therefore, both probes were only avail-
able for the two FinnGeDi groups and
Gen3G. The heterogeneity for these
probes originated from a lack of associa-
tion among offspring born to FinnGeDi-
GDM mothers (Supplementary Fig. 6). A
similar observation was made in stratifi-
cation of Gen3G participants by GDM
status (Fig. 1B). However, there was no
statistical evidence of interaction to
support a moderating effect of GDM in
either the FinnGeDi or Gen3G cohorts
(PAUCgluc × GDM > 0.10). Excluding GDM
pregnancies from the AUCgluc meta-
analysis did not reveal any additional
CpGs, apart from cg26974062 and
cg02988288, reaching statistical signifi-
cance thresholds (data not shown).

Table 2—Cord blood DNAm associations with maternal glycemic traits (P value <1.0 × 1026)

Glycemic
trait

Probe
identifier Position (hg19)

Nearest
gene

Restricting to fasting participants Including nonfasting participants

N b (SE) P† I2 N b (SE) P† I2

Glucose cg26104143 chr4: 41869579 TMEM33 2,404 �0.26 (0.04) 7.9 × 10�9 42.7 3,503 �0.18 (0.033) 1.1 × 10�7 62.2

Glucose cg26974062 chr1: 145440734 TXNIP 1,056 �3.0 (0.56) 3.0 × 10�7 0 1,056 �3.0 (0.56) 2.6 × 10�7 0

Glucose cg21686486 chr2: 172377802 CYBRD1 1,056 1.2 (0.22) 3.2 × 10�7 57.4 1,056 1.2 (0.22) 2.8 × 10�7 57.4

Insulin cg21139325 chr6: 32729470 HLA-DQB2 961 0.55 (0.11) 2.8 × 10�7 0 2,062 0.16 (0.029) 3.1 × 10�7 15.2

AUCgluc cg26974062 chr1: 145440734 TXNIP 953 �0.013
(2.1 × 10�3)

6.3 × 10�9 52.1

AUCgluc cg02988288 chr1: 145440445 TXNIP 953 �0.013
(2.3 × 10�3)

7.9 × 10�8 60.4

AUCgluc cg09049566 chr5: 132165605 SHROOM1 1,505 �2.0 × 10�3

(3.9 × 10�4)
9.2 × 10�7 1.9

Overview of the meta-analysis results with a P value <1.0 × 10�6 after correction for inflation/bias with the bacon R package. The used rlm
with robust SEs was as follows: b value

e

glycemic trait 1 GA at maternal sampling 1 sex of the child 1 imputed cord blood cell proportions
1 maternal age 1 GA at birth 1 parity and cohort-specific (technical) variables. †P value after correction for inflation and bias with the
bacon R package. Correction is based on the entire distribution of test statistics of each meta-analysis and may therefore (slightly) differ
between the fasted and combined meta-analyses as the sample size is increased for many CpGs.
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Cross-sectional Lookups

To investigate whether DNAm at the
two newly identified CpG sites in TXNIP

may play a role in offspring metabolic
health, we investigated associations
between blood DNAm at these two

CpGs and metabolic phenotypes at vari-
ous time points across the life span.
First, we did an in silico lookup analysis
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Figure 1—Overview of findings at TXNIP. A: Chromosomal and gene map for the TXNIP locus (top), followed with the locations of the CpGs incorpo-
rated in the meta-analysis. Highlighted with red dotted lines are CpGs cg02988288, cg26974062, and cg19693031 in the panels with �log10 nomi-
nal P values for the meta-analyses on FG, FI, and AUCgluc for the measured CpGs in TXNIP. B: Forest plot for the AUC of an OGTT meta-analysis
stratified by GDM status for the two CpGs that were genome-wide significant. Gen3G-GDM, GDM case subjects from the Gen3G cohort; NCBI,
National Center for Biotechnology Information; FE, fixed-effect.
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using data from TEENDIAB (11), a pro-
spective study where DNAm (EPIC array)
was measured in the blood of children
(4–19 years of age) born to mothers
with (N 5 162) or without (N 5 221)
type 1 diabetes, a condition character-
ized by relative maternal hyperglycemia
during pregnancy in the majority of
women, despite tight glycemic targets.
Exposure to maternal type 1 diabetes
in utero was associated with lower child
blood DNAm at both cg26974062 (b
[SE] �0.76 [0.34], Pnominal 5 0.024) and
cg02988288 (�0.89 [0.29], Pnominal 5
2.4 × 10�3), and the directions of effect
were consistent with our analyses of AUC-

gluc and FG. In contrast, child blood DNAm
at the four CpGs with suggestive associa-
tions with FG and FI (see Table 2) did not
show associations with in utero exposure
to maternal type 1 diabetes (P > 0.05).

Next, we investigated cross-sectional
associations between blood DNAm at
these loci and metabolic phenotypes in
childhood and adulthood. At both
TXNIP CpGs, lower DNAm in childhood
blood was associated with higher child
HOMA of insulin resistance and, for
cg02988288, higher FI (Table 3 and
Supplementary Table 5). Similarly, using
metabolic traits in adults at 46 years
of age in NFBC1966, we observed con-
sistent negative cross-sectional associations
between blood DNAm at cg26974062
and cg02988288 and all of the metabolic
traits tested (serum glucose, insulin,
AUCgluc, HbA1c, and BMI) (Table 3 and

Supplementary Table 4). In contrast, of the
CpGs that showed suggestive associations
with FG and FI in our meta-analysis
(Table 2), we only found cg21139325 to
be nominally associated with adult BMI
(Supplementary Table 6).

Finally, we investigated DNAm levels
at cg26974062 and cg02988288 and
TXNIP expression measured in muscle
and liver biopsies of women with obe-
sity in the ABOS cohort (13). Lower
DNAm at cg26974062 (b [SE] �1.1 ×
10�2 [5.2 × 10�3], Pnominal 5 0.031,
N 5 319) and cg02988288 (�4.5 × 10�2

[1.2 × 10�2], Pnominal 5 3.2 × 10�4, N 5
319) was associated with higher TXNIP
gene expression in liver but not in muscle
(N 5 71). In contrast, the CpGs with
suggestive associations with FG and FI
(Table 2) were not associated with gene
expression (Supplementary Table 7).

Lookups in Literature
We checked the CpGs that we identified
(Table 2) in the EWAS catalog (29),
which documents (suggestive) associa-
tions (P < 10�4). Cord blood DNAm at
cg26974062 had a nominal association
with maternal 1-h glucose in the UK
Pregnancies Better Eating and Activity
Trial (UPBEAT) (5). Next, we checked
recently published data on maternal
HbA1c levels and cord blood DNAm
(Gen3G [N 5 412]) (8), and both TXNIP
probes showed nominal associations
with maternal HbA1c (cg02988288, b
[SE] �4.5 [0.16], Pnominal 5 3.9 × 10�3;

cg26974062, �3.8 [1.5], Pnominal= 0.012)
in a direction consistent with that of
our AUCgluc and FG meta-analyses.
None of the other CpGs with suggestive
associations in Table 2 were associated
with maternal HbA1c. Finally, the CpGs
that showed (suggestive) associations
with FG, FI, and AUCgluc were not asso-
ciated with GDM (or probes were not
available) in the prior PACE meta-analy-
sis (Pnominal > 0.48) (9).

In “reverse lookups,” we found little
evidence for the reported associations
with maternal FG and 1-h or 2-h glu-
cose from UPBEAT participants cord
blood analyses: only 5 of 609 reported
CpGs for 1-h or 2-h glucose were nomi-
nally associated with AUCgluc with the
same direction of effect (namely,
cg24914185, cg13874780, cg04322572,
cg03795071, and cg23913963) (5). Cord
blood DNAm at a CpG near URGCP
reportedly associated with maternal
HbA1c (8) was not associated with any
glycemic trait in our meta-analyses
(Pnominal > 0.074), and none of the
CpGs located in DMRs identified for
GDM in a prior PACE report were asso-
ciated either (9) (Pnominal > 0.18).

CONCLUSIONS

We did not find evidence for robust
associations between maternal prenatal
glucose and insulin levels and offspring
DNAm in cord blood (9). Collectively,
these findings might argue against the

Table 3—Cross-sectional associations of blood DNAm at cg02988288 and metabolic phenotypes in childhood and adulthood

TEENDIAB participants
(German Europeans ages

4–19 years [49.6% female])§

NFBC1966 participants
(Finnish Europeans ages
46 years [56% female])†

b (SE) P N b (SE) P N

Fasting plasma glucose (mmol/L) �0.37 (0.30) 0.22 366 �0.71 (0.16) 1.20 × 10�5 680

Fasting plasma insulin (pmol/L) �0.41 (0.17) 0.014 369 �0.044 (0.013) 9.9 × 10�4 685

AUCgluc (mmol/L*min) �1.4 × 10�3 (1.5 × 10�3) 0.33 232 �2.1 × 10�3 (6.5 × 10�4) 1.3 × 10�3 589

BMI (kg/m2) �7.3 × 10�2 (5.3 × 10�2) 0.17 383 �0.077 (0.022) 5.0 × 10�4 693

Body fat (bio-impedence) NA NA NA �0.039 (0.014) 4.3 × 10�3 671

Waist-to-hip ratio �0.14 (0.17) 0.42 365 NA NA NA

HOMA-IR �0.29 (8.4 × 10�2) 5.0 × 10�4 365 NA NA NA

HbA1c (mmol/L) �8.5 × 10�3 (4.7 × 10�2) 0.85 361 �0.090 (0.024) 2.6 × 10�4 693

Type 2 diabetes NA NA NA �1.46 (0.52) 4.7 × 10�3 507

HOMA-IR, HOMA of insulin resistance. NA, not available for assessment. §Outcome of analyses in the TEENDIAB cohort. Columns denote the
results from an rlm with robust SEs adjusting for sex, age at blood draw, batch, imputed cell heterogeneity, maternal type 1 diabetes status,
and parental socioeconomic status. †Outcome of analyses in NFBC1966. The results from an rlm with robust SEs adjusting for sex, batch,
imputed cell proportions, and socioeconomic status.
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hypothesis that maternal hyperglycemia
during pregnancy and later childhood
health phenotypes can be mediated by
changes in DNAm (4). However, our meta-
analysis of AUCgluc did reveal inverse asso-
ciations with cord blood DNAm at two
CpG sites located within an exon of TXNIP
(cg26974062 and cg02988288). In analyses
stratified by GDM status, these associa-
tions were only observed among partici-
pants without GDM. Consistent with an
interpretation that this association reflects
an association with maternal hyperglyce-
mia, we found that exposure to higher
maternal FG, HbA1c and maternal type 1
diabetes was also nominally associated
with a lower DNAm in TXNIP in (cord)
blood. In addition, we found suggestive
associations with liver gene expression and
multiple metabolic traits.
TXNIP encodes for a thioredoxin-inter-

acting protein involved in the regulation
of glucose-sensing and redox processes.
Several studies meta-analyzed by
Walaszczyk et al. (33) have reported asso-
ciations between blood DNAm at
cg19693031 (also located in TXNIP) and
lipid traits, type 2 diabetes, and prediabe-
tes. Upon lookup in the results of our pre-
sent meta-analysis, we observed evidence
for associations between maternal AUCgluc
and FG and cord blood DNAm levels for
cg19693031, which is located down-
stream of cg26974062 and cg02988288.
Furthermore, we found that the methyla-
tion at TXNIP was negatively associated
with TXNIP gene expression in the liver,
but not in skeletal muscle, further sup-
porting the role of liver TXNIP as a future
therapeutic target. In fact, a TXNIP inhibi-
tor (SRI-37330) is currently under investi-
gation as a therapeutic target for diabetes
(34). We found both cg26974062 and
cg02988288 to be associated with multi-
ple cardiometabolic traits. To date, only
one other study has reported an associa-
tion for both probes, namely, with type 2
diabetes (35). Both probes are unique to
the EPIC array; it is therefore possible that
these associations were missed in previ-
ous studies, which have largely used the
450k array.
Interestingly, we observed a high level

of heterogeneity for the associations
between DNAm at cg26974062 and
cg02988288 and maternal AUCgluc poten-
tially due to a lack of association among
participants with GDM. In included studies,
the women with GDM were instructed to

self-monitor their blood glucose, modify
their diet and physical activity, and, if nec-
essary, use pharmacologic agents aiming
to normalize their blood glucose levels.
Adequate glucose control can prevent
GDM-associated pregnancy complications,
but the effect of GDM treatment on long-
term offspring health remains an unre-
solved question (36).We speculate that by
moderating maternal hyperglycemia dur-
ing the last trimester of pregnancy, GDM
treatment may also influence the associa-
tion between maternal AUCgluc and cord
blood DNAm at TXNIP. Consistent with this
hypothesis, it was reported that the associ-
ations between maternal glycemia during
pregnancy and cord blood DNAm were
attenuated as a result of UPBEAT where
mothers were randomized to a lifestyle
intervention during pregnancy (5). In this
latter study, lower cord blood DNAm at
cg26974062 was nominally associated
with higher maternal 1-h glucose (with a
direction of effect consistent with our AUC-

gluc meta-analysis) and cord blood DNAm
at cg02988288 was associated with GDM;
however, the association between GDM
and cord blood DNAm at cg02988288 did
not seem attenuated by the UPBEAT
lifestyle intervention.

Our study has several limitations.
First, while this collaborative effort is, to
our knowledge, the largest inquiry on
this topic to date, our sample size
remains modest and may have been
underpowered to detect some smaller
associations against the null hypothesis
(37). Second, our meta-analysis covered
a small fraction of the known 28 million
CpGs of the human epigenome. This lim-
itation is somewhat remedied by the
EPIC array, as it covers most known
enhancers (26), which may be particu-
larly sensitive to prenatal exposures (38).
However, this array was used for only
half of the cohorts. Another known limi-
tation (37) is that we measured DNAm
in (cord)blood and our results may be
influenced by tissue heterogeneity and
may not extrapolate to other tissues.
Similarly, genetic variation may likewise
influence DNAm. With the exception of
cg21139325 (HLA-DQB2) (39), no genetic
variation was reported to be associated
with blood DNAm among the identified
CpGs (in Table 2). Another important
consideration is that nutritional status and
maternal glucose levels as early as gesta-
tional weeks 4–12 have been associated

with postnatal growth (40), and studies of
prenatal famine exposure have indicated
that early gestation is an especially sensi-
tive window for remethylation, which
happens during this period (37). We are
unable to test the influence of gestational
timing of maternal glycemic exposures.
However, in a recent study with compari-
son of the association between early and
late measures of maternal HbA1c during
pregnancy and cord blood DNAm, no evi-
dence was found for robust associations
related to early pregnancy exposure (8).

In conclusion, our meta-analyses of
maternal glycemic traits identified one
sole exon of TXNIP at which higher
maternal hyperglycemia, as reflected by
higher AUCgluc (and to a lesser extend
FG, type 1 diabetes, and HbA1c), was
robustly associated with lower cord
blood DNAm, and we found that these
associations were attenuated in treated
GDM pregnancies. We found little evi-
dence for additional associations between
maternal glucose and insulin levels during
midpregnancy/late pregnancy and the
cord blood methylome. In suggestive
lookup analyses, TXNIP blood DNAm in
childhood was similarly associated with
prenatal exposure to maternal type 1 dia-
betes. TXNIP blood DNAm later in life was
cross-sectionally associated with glycemic
and anthropometric variables. Thus,
future investigations of the links of in
utero hyperglycemia exposure, DNAm at
TXNIP, and cardiometabolic health across
the life course are warranted.
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