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A B ST R ACT Retinal ganglion cells of the Y type in the cat retina produce two 
different types of response: linear and nonlinear. The nonlinear responses are 
generated by a separate and independent nonlinear pathway. The functional 
connectivity in this pathway is analyzed here by comparing the observed second- 
order frequency responses of Y.cells with predictions of a "saridwich model" in 
which a static nonlinear stage is sandwiched between two linear filters. The 
model agrees well with the qualitative and quantitative features of the second- 
order responses. The prefiher in the model may well be the bipolar cells and the 
nonlinearity and postfiher in the model are probably associated with amacrine 
cells. 

I N T R O D U C T I O N  

The ganglion cells of  the cat retina may be classified by the major qualitative 
features of  their response to modulated patterns of  light (Enroth-Cugell and 
Robson, 1966). The  X cells respond to fine patterns in a qualitatively linear 
way, whereas the response of  Y cells to such patterns is nonlinear. The purpose 
of  this paper is to provide a concise model of  the spatial and temporal structure 
of  the distinctive nonlinear pa thway of  the Y cell. The  form of  the model 
suggests a natural  correspondence of  the model with retinal anatomy. Nonlin- 
ear systems are in general more complex than linear systems but  they do offer 
one advantage. Because the sequence of  transductions in a nonlinear system 
matters, one can infer this sequence from input-output  studies (Spekreijse, 
1969). We have exploited this advantage in the work reported here, in order 
to establish the sequence of  transductions in the nonlinear pa thway of  the cat 
retina. 

It has already been established that Y ganglion cells possess a duplex 
receptive field organization. Such cells have a "linear" receptive field center 
and a "linear" surround mechanism, but  also receive input from another 
receptive field mechanism, the nonlinear subunits (Hochstein and Shapley, 
1976 b; Victor and Shapley, 1979). The nonlinear subunits give rise to the 
characteristic even-order nonlinear responses of  Y cells, for instance, frequency- 
doubling and second-order intermodulation. In this paper we present obser- 
vations of  the dynamics of  the nonlinear subunit  mechanism, and the theo- 
retical consequences of  such observations. The  simplest kind of  theoretical 
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model  tha t  includes spatial  in tegra t ion  wi th in  a subuni t ,  then  a nonl inear  
t ransduct ion ,  and  then  pool ing  o f  subuni t  signals, is a model  we refer to as a 
l i n e a r / n o n l i n e a r / l i n e a r  sandwich  model .  W e  will show tha t  a l inea r /non l in -  
e a r / l i nea r  " sandwich"  model  accounts  for the d y n a m i c  proper t ies  o f  the 
nonl inear  responses o f  Y cells. W e  have  also measured  the  d ep en d en ce  o f  the 
nonl inear  responses on  spatial  pa t t e rn  an d  contrast .  These  results al low us to 
infer the  physiological  and  ana tomica l  identi t ies o f  co m p o n en t s  o f  the  "sand-  
wich"  model .  

M E T H O D S  

Our procedures for recording the responses of retinal ganglion cells, producing visual 
stimuli, and analyzing the resultant impulse trains have been described previously 
(Victor and Shapley, 1979). We summarize these methods below. 

Physiological Preparation 
Recordings were made from single optic tract fibers of anaesthetized paralyzed adult 
cats. During recording, eats were anaesthetized with urethane and paralyzed with a 
gallamine triethiodide/diallylbis-(nortoxiferine) mixture. 

Contact lenses with a +2D correction and a 3-mm artificial pupil were affixed to 
both eyes. Optic discs were mapped on a tangent screen with a hand-held ophthal- 
moscope. If necessary, optics were corrected with spectacle lenses to be in focus at 57 
cm, the distance of the visual stimulus. 

Units were classified as X and Y by their response to contrast reversal of a just- 
resolvable luminance grating (Hochstein and Shapley, 1976 a). After classification, Y 
cells were studied quantitatively as described below. The data presented below are 
based on responses of 93 Y cells (67 on-center, 26 off-center). 

Visual Stimuli 
Patterned visual stimuli were generated on a cathode ray tube (Hewlett-Packard Co., 
Palo Alto, Calif., model 1321A). The display subtended a visual angle of 20 ~ • 20 ~ 
at a distance of 57 em. The mean luminance of the display was 20 cd /m 2. The control 
voltages for the cathode ray tube were produced by specialized electronic circuitry 
(Shapley and Rossetto, 1976). The frame rate of the display was 200 Hz, and there 
were 900 vertical raster lines in the display. A pattern wave form synchronized to the 
horizontal input was multiplied in an analog multiplier by a temporal modulation 
signal that was slow in comparison to the frame rate. The resulting spatiotemporal 
product was fed to the intensity input of the display. A temporal modulation signal 
of zero produced a uniform display at the mean luminance. A negative temporal 
modulation signal reversed the contrast of the spatial pattern. For classifying units, a 
2-Hz square wave constituted the temporal modulation signal. For quantitative 
analysis of Y cell responses, the temporal modulation signal was a computer-generated 
sum of sinusoids. 

In these experiments, the sum-of-sinusoids signal had eight component sinusoids; 
the frequency ~ of the j th  sinusoid was (2 j+~ - 1)/32.768 Hz. Thus, the eight 
frequencies were 0.214, 0.458, 0.946, 1.923, 3.876, 7.782, 15.594, and 31.219 Hz. 

Data Collection and Analysis 
A computer collected the occurrence times of neural impulses elicited by sum-of- 
sinusoids modulation of a spatial pattern. For each spatial pattern, the temporal 
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modulation signal was routinely presented at four contrasts: 0.0125, 0.025, 0.05, and 
0.10 per sinusoid. 5 s elapsed between the onset of each contrast level and the 
beginning of data collection. Each contrast level was presented for eight episodes of 
40 s, and episodes with different contrast levels were interleaved. The temporal 
modulation signal used at a given contrast level was 

8 

s(t) ffi a ~ sin [2r (1) 
j - I  

The first-order frequency kernel Kx (F) consists of Fourier components of the 
impulse train at the frequency J) in the input signal: 

gl(~/) ffi 2(r(t) �9 e-Z'~f/~). (2) 

In this equation, r(0 denotes the response of the neuron, which is treated as a train of 
delta functions. The brackets denote an average over time. The first-order frequency 
kernel (Eq. 2) is essentially the transfer function of the linear transducer that best 
approximates the transduction under study, and is thus a generalization of the transfer 
function of a linear transduction. To be explicit, the transduction we are considering 
is that from luminance to probability of impulse firing by the ganglion cell. 

The  second-order frequency kernel K2(F1, F2) consists of Fourier components of the 
impulse train at pairwise combination frequencies~ :t: fk of frequencies in the input 
signal: 

K2(f/, :l:fi) = 2(r(t) �9 e -2~( f f ' x ' fD t )  j # k 

K2(~,~) ffi 4(r(t) �9 e - ~ " ~ t ' t ~ ) .  (3) 

On successive repeats of each contrast level, the relative phases of the input sinusoids 
were varied. Thus, the averaging process of Eqs. 2 and 3 extends over input phase, as 
well as time. This removed fourth (and perhaps higher) even-order interactions from 
the measured second-order frequency kernel (Victor and Shapley, 1980). 

The frequency kernels KI(F) and K2(F1, F2) are viewed as continuous functions of 
their arguments. The sum-of-sinusoids technique provides an estimate of these func- 
tions at the mesh of frequencies present in the input ensemble. The frequency kernels 
were calculated off-line on a PDP 11/45 computer (Digital Equipment Corp., 
Marlboro, Mass.). The  experimental measurements of KI(])) and K2(J), :l:fi) at a 
discrete lattice of points were interpolated to form smooth functions KI(F) and 
K2(FI, F2) by a standard cubic spline (Ahlberg et al., 1967). The amplitude of the 
first-order frequency kernel, which is a function of one variable, is displayed on a log- 
log plot: The amplitude of the second-order frequency kernel, which is a function of 
two variables, is displayed as a contour map. For further details on the sum-of- 
sinusoids procedure and theoretical background, see Victor and Shapley (1979, 1980) 
and Victor and Knight (1979). 

R E S U L T S  

First, we show tha t  the Y cell non l inear  response is genera ted  locally in the 
recept ive  field. Th is  leads to a " sandwich  m o d e l "  for the nonl inear  pa thway .  
T h e n ,  the dynamics  o f  the non l inear  p a t h w a y  are analyzed.  Finally,  we 
consider  the spatial  character is t ics  an d  contras t  d ep en d en ce  o f  the co m p o n en t s  
o f  the  sandwich  model .  
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Local Generation of the Nonlinear Response 

The response of a Y cell to gratings of low spatial frequency contains both 
first- and second-order components (Victor and Shapley, 1979). The sum-of- 
sinusoids technique has provided strong evidence for the independence of the 
first- and second-order responses (Victor et al., 1977). The response of a Y cell 
to a low spatial frequency luminance grating modulated by a sum ofsinusoids 
has both first- and second-order components, but these components show 
qualitatively different dependences on spatial phase (Fig. 1). At one spatial 
phase, the "peak" spatial phase, the first-order responses are maximal (Fig. 1 
A), with a peak amplitude of 40 impulses per second. When the grating is 
shifted by one-fourth of a period, the first-order response vanishes into the 
noise (Fig. 1 B). However, the second-order response remains unchanged from 
the "peak" spatial phase, over the entire range of temporal frequencies. Thus, 
with great precision, the second-order response is independent of the first- 
order response. 

The spatial phase independence of the second-order response has an impor- 
tant implication for modelling the nonlinear pathway of the Y cell (Enroth- 
Cugell and Robson, 1966; Hochstein and Shapley, 1976 b, Victor et al., 1977). 
We discuss this implication here because it is necessary for the interpretation 
of later experiments. Spatial-phase independence implies that there must be 
a large number of distinct nonlinear pools. Consider instead the model of a 
single pool, whose output,  after a nonlinear transformation, generates the 
second-order response of the Y cell. Then, shifting the spatial phase of the 
grating would alter the net modulation of light flux into the pool, and hence 
would alter the second-order response. To account for the spatial-phase 
invariance of the second-order response, it is necessary to postulate a large 
number  of independent pools, the "subunits," each of whose outputs pass 
through a nonlinear transduction before contributing to the ganglion cell's 
response (Hochstein and Shapley, 1976 b). Such a receptive-field model is 
shown in Fig. 2. The nonlinear subunits are superimposed on the classical 
center and surround mechanisms, which generate the independent first-order 
response. The sensitivity profiles of the subunits are shown to be narrower 
than that of the center or surround mechanism, because the nonlinear response 
persists to higher spatial frequencies than does the first-order response (Hoch- 
stein and Shapley, 1976 b; Victor and Shapley, 1979). In any given position 
of the grating, about the same fraction of subunits will be maximally stimu- 
lated by the pattern's modulation. Because the light signal pooled by each 
subunit is postulated to undergo a nonlinear transformation, the subunit 
responses do not cancel each other out. Hence, the summed subunit response 
will be approximately constant as a function of spatial phase, despite variation 
of the first-order response from peak to null. 

In principle, the number of such nonlinear subunits can be estimated by 
the fractional variation of the second-order kernels with spatial phase. Assume 
that the subunits are distributed in space randomly; then their spatial phases 
with respect to a stimulus grating will be distributed randomly. With this 
assumption, one can calculate that M subunits will produce a fractional 
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FIGURE I. Dependence of first- and second-order response amplitudes of an 
on-center Y cell on spatial phase. The stimulus was a 0.1 cycle/deg grating, 
whose contrast was modulated by a sum of eight sinusoids. Each sinusoid 
produced a contrast of 0.05. (A) The grating produced a peak first-order response 
of 40 impulses/s. (B) The grating was shifted by one quarter of a spatial 
wavelength. The first-order response was 3 impulses/s or less, but the second- 
order response is virtually independent of spatial phase. Unit 13/14. 
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variat ion of  1/qC-M in the ampl i tude  of  the second-order f requency kernel, as 
spatial phase is varied. O u r  da ta  show that  the fractional  variat ion of  the 
second-order frequency kernel is - 0.1. Therefore,  a rough est imate  of  the 
number  of  subunits  M is 100. A more precise es t imate  would be inf luenced by 
error in the exper imental  de te rmina t ion  of  the second-order responses and  the 
details of  a model  for the nonl inear  t ransduct ion.  

CENTER 
MECHANISM 

SURROUND 
MECHANISM 

NONLINEAR 
SUBUNITS 

LUMINANCE 
PROFILE 

PEAK SPATIAL PHASE 
FOR FIRST-ORDER RESPONSE 

i 

NULL SPATIAL PHASE 
FOR FIRST-ORDER RESPONSE 

i I 

I 

FmURE 2. A receptive-field model that explains the spatial phase indepen- 
dence of the Y cell nonlinear response. Superimposed on a linear receptive-field 
model is an array of nonlinear subunits. Each subunit sums light linearly over 
its indicated spatial extent, but applies a nonlinear transduction to this signal. 
The outputs of the nonlinear suhunits are summed to generate the nonlinear 
response of the Y cell. The linear and nonlinear responses are thus generated by 
independent pathways. A sine grating in any spatial phase has peaks that line 
up with some nonlinear subunits, and zero-crossings that line up with other 
nonlinear subunits. Thus, in any spatial phase, about the same fraction of 
nonlinear subunits are stimulated by contrast modulation of the grating. There- 
fore, the second-order response is independent of spatial phase. The sensitivity 
profiles of the nonlinear subunits are narrower than those of the center or 
surround mechanisms, to indicate their higher resolution. 

Fur ther  evidence for the local generat ion of  nonl inear  responses can be 
obta ined  from experiments  wi th  localized stimuli. In Fig. 3, the response of  a 
Y cell to a modu la t ed  bar  is compared  with the response to a grat ing whose 
lobes are comparable  to the bar  in width.  The  bar  is positioned on the 
receptive-field center, so tha t  a large first-order response is produced;  the 
grat ing is positioned so tha t  no first-order response is produced.  T h e  second- 
order responses to these two stimuli  are nearly identical.  Thus ,  the second- 
order  response to a grat ing is not a result o f  interactions between distinct 
portions of  the receptive field. 
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FIGURE 3. Compar ison of  responses o f  an on-center Y cell to a bar  and a 
grating. (A) The  stimulus was a 1.0 ~ • 20 ~ vertical bar, positioned over the 
receptive-field center. (B) The  stimulus was an 0.6 cycle /deg grating, positioned 
near the null spatial phase for the first-order response. The  contrast modula t ion  
signal was a sum of  eight sinusoids, each producing a contrast of  0.05. Al though 
the m a x i m um  first-order response varied from 17 impulses/s (bar) to 3 impulses/  
s (grating), the second-order responses were virtually identical. Unit  13/10. 



678 T H E  J O U R N A L  O F  G E N E R A L  P H Y S I O L O G Y  �9 V O L U M E  74 �9 1 9 7 9  

Sandwich Model 
The above experiments led to a model of the nonlinear pathway of the Y cell 
as an array of subunits, each of which sums light linearly over its extent. Each 
subunit then applies a static nonlinearity, and the outputs of the subunits are 
summed by the ganglion cell to give the observed second-order response. The 
dependence of the second-order frequency kernel K~(F1, F~) on the frequencies 
FI and F2 (of. Figs. 1, 3) implies that there must be significant dynamical 
components in the nonlinear pathway. In the sandwich model, the dynamics 
may be introduced into the subunits themselves (before the nonlinearity), or 
after pooling of the subunits' output, or at both points. 

The linear pooling of light by a single subunit may be represented by a 
filter L1, with transfer function LI(F). The summing ofsubunit responses may 
be represented by a second linear filter L2, with transfer function L2(F). The 
predicted second-order frequency kernel of this linear/static nonlinear/linear 
transduction can be calculated by means of the relation of the frequency 
kernels to the Wiener kernels (Victor and Shapley, 1980): 

Kz(F1, Fz) = bLa(F1)L~(F~)I_a(F1 + Fz). (4) 

The qualitative features of the data (e.g., Figs. 1 and 3) immediately imply 
that both L~ and L2 are nontrivial transductions. IfLx were absent, the second- 
order kernel (Eq. 4) would be a function only of F1 + Fz. But the presence of 
distinct peaks in both the sum and difference regions shows that Kz(F1, Fz) is 
large only when neither frequency F1 or F2 is very close to zero. The presence 
of distinct p*aks thus reflects the tuning of the filter within the subunit, LI. 

Alternatively, if Lz were absent, then 

[K,(F~, F,) [ ,~. b [ LI(F~) I I Lx(F2) I 

---- b I tl(Fx) I I LI(F2) I (5) 

= b I f 

= [Kz(F1, -F2) [, 

which states that the amplitudes of the sum frequencies FI + Fz would be 
equal to the amplitudes of the corresponding difference frequencies/;'i - Fz. 
However, experimentally, this summetry between the sum and difference 
regions is consistently broken. The peak in the difference region usually has a 
smaller amplitude than the peak in the sum region. In many cells the peak in 
the difference frequency region occurs at a higher input temporal frequency 
than the peak in the sum frequency region. This suggests that Lz, the linear 
transduction which follows the static nonlinearity, has a gentle high-pass 
characteristic. 

These qualitative statements can be made rigorous and quantitative by 
fitting functional forms for La(F) and Lz(F). This procedure is carried out in 
Fig. 4 with data from a typical on-center Y cell (Fig. 4 A). We fit the sandwich 
model to the data by determining amplitudes and phases of LI and LL2 at a 
mesh of 20 frequencies equally spaced on a linear scale. The criterion for best 
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fit was the minimum-squared difference between the amplitudes and phases 
predicted by Eq. 4 and. the amplitudes and phases derived from the empirical 
second-order kernels. The  fitted amplitudes [ LI(F)  [ and [LKF)  [ are shown 
in Fig. 4 C, and have the characteristics expected from the qualitative 
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FIGURE 4. The sandwich model for the nonlinear pathway of the Y cell. (A) 
The second-order response of an on-center Y cell to an 0.25 cycle/deg grating 
positioned to elicit no first-order response is shown. The contrast of the grating 
was modulated by a sum of eight sinusoids, each producing a contrast of 0.05. 
(B) The second-order frequency kernel amplitudes of a model transducer 
consisting of a linear transducer LI, followed by a static nonlinearity, followed 
by a second linear transducer, L2. (C) The amplitudes of the transfer functions 
Ll(f) and L2(f). These amplitudes were chosen to maximize the agreement 
between the measured frequency kernel and the model values. Unit 14/15. 

discussion above. L1 is bandpass and L2 is a gentle, higher-pass filter. The  
phases of Ll( f )  and L2(f) are not uniquely determined, because the effects of  
delay before or after the nonlinearity are indistinguishable. Aside from this 
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ambiguity, the phase data  are consistent with the idea that L1 and L2 are 
causal transductions. 

The  second-order frequency response of  the model Fig. 4 B, corresponds 
closely to that of  the data. The  discrepancy between the measured values 
Kz(f,  :i: ~) and the values predicted Eq. 4 from the fitted values LI(F) and 
Lz(F) averages <1 impulse/s. The major peaks in the sum regions and the 
difference regions are at about the same input frequencies, and have the same 
heights and breadths. Thus, the linear/static nonlinear/ l inear transduction is 
a good initial description of the dynamics of the nonlinear response. 

Nature of the Nonlinearity 
The above analysis of  the shape of the second-order frequency kernel yielded 
nformation on the dynamics of the two linear filters of  the sandwich model. 

An analysis of  the overall size of the second-order response, as a function of 
the contrast of  the visual stimulus, provides information on the static nonlinear 
element N. 

The  root-mean-squared average of the second-harmonic components 
K2(F, F) is a convenient index of the strength of the nonlinear response. The 
dependence of this index on contrast of  a grating stimulus is shown in Fig. 5. 
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,x 0 . 4  cycle/deq 
o 1.0 c y c l e / d e g  

~ '  �9 

f f  s S" 

.0125 .025 .05 .I 

Contrast per sinusoicl 

FIGURE 5. The dependence of total second-order responses, as measured by the 
root mean square K2(F, ~, on the contrast of a spatial sine grating. The abscissa 
indicates the contrast per sinusoid of the eight-sinusoid sum that provided the 
temporal modulation for the pattern stimulus. Unit 22/13. 

As input contrast increases, the strength of the second-order response grows at 
first proportionally, and then more slowly. This dependence can be interpreted 
by comparison with the predicted behavior of a static nonlinearity such as 
N(x) -- [x ['. The  ampli tude vs. response of such a device is graphed in Fig. 6. 
Such a nonlinearity may be called a symmetric rectifier with a power law 
characteristic. For such a transducer, the curves in Fig. 5 of  log response 
ampli tude vs. log input ampli tude would be straight lines with slope equal to 
the exponent a. Thus, Fig. 5 indicates that for low contrast, the nonlinearity 
of the cat retina resembles such a rectifier. At higher contrasts, there seems to 
be a saturation in the nonlinearity�9 (The odd-order components of the 
nonlinearity in the cat retina cannot be determined from responses to the 
grating stimulus, since the effects of  the excursions above background are 
cancelled by the effects of the excursions below background. This problem is 
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not avoided by using a stimulus such as a spot or bar, because of  the linear 
mechanisms that overlap the nonlinear mechanism in space.) 

Further  evidence that the static nonlinearity in the retina resembles a 
rectifier can be obtained from an analysis of  higher-order components of  the 
response. The  method of  variation of  input phase suffices to isolate all 344 
third-order components  and 1,408 fourth-order components. In order to get 
more precise data, in some experiments the standard experimental protocol 
was repeated eight times to improve the signal-to-noise ratio. The  individual 
components of  the higher-order frequency kernels are too small to permit a 
detailed analysis. However,  useful information is present in the total power 
present at each order of  nonlinearity. 

Table  I shows the total power present at the first four orders in the response 
of  an on-center Y cell. The data  were obtained using a 0.75 cycles/deg grating 
that elicited a small first-order response (Victor and Shapley, 1979). This is 
manifest in the total first-order power, which increases by a factor of  3.81 as 

FIGUgE 6. Amplitude response characteristic for two sorts of symmetric power 
law rectifiers. These obey the relation N(x) =, Ix I ~ The characteristics of two 
such rectifiers, with a "= 1 and a '= 0.5 are shown. The retinal nonlinearity 
seems to be approximated best by a rectifier with a g 0.9. 

input contrast is doubled (a precisely linear transduction would show a 
fourfold increase). The total power in the third-order components probably is 
entirely due to noise, because it is independent of  input contrast and represents 
very small Fourier coefficients (~  0.2 impulses/s on average). 

The  even-order components reflect characterizations of  the nonlinearity. 
The  presence of  substantial fourth-order components at low levels of  input 
contrast supports the notion that the nonlinearity is similar to a rectifier of  
some kind. The second- and fourth-order powers increase by approximately 
the same factor, 3.04 and 3.08, as contrast doubles. This power ratio corre- 
sponds to an ampli tude ratio of  ~ 1.75 (~ 3~-6.06). A power law rectifier N(x)  
-- J x J~ would show this behavior for a = 0.87. Thus, the notion that the 
nonlinearity resembles a power law rectifier is supported by the scaling 
behavior of  the second-order frequency kernel and the overall power of  the 
fourth-order responses. 
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Dependence on Spatial Frequency 

The second-order frequency kernels of Y cells show a consistent pattern of 
dependence on the spatial frequency of the grating used to elicit the response. 
Fig. 7 shows the amplitudes of the second-order frequency kernels obtained 
from an on-center Y cell at two spatial frequencies. The amplitudes of high 
temporal frequency components increase with decreasing spatial frequency. 
The amplitudes of low temporal frequency components increase more slowly 
with decreasing spatial frequency and often show an opt imum at an inter- 
mediate frequency. As a consequence of these spatial changes, the second- 
order responses shift to higher temporal frequency with lower spatial fre- 
quency. 

The sandwich model (Eq. 4) is useful in analyzing this spatiotemporal 
coupling. A priori, the site of the spatiotemporal coupling of the second-order 
kernel might be either L1 or L2 or both filters in the sandwich. One can 

T A B L E  I 

TOTAL RESPONSE POWER OF DIFFERENT ORDERS OF 
RESPONSE 

Contrast per sinusoid 

Order 0.025 0.05 

Ompulses l s) 2 
1 4.7 17.9 
2 198.5 602.5 
3 8.2 9.5 
4 49.2 151.6 

Response power of a cat Y cell in response to a sine grating, amplitude-modulated in 
time by a sum of sinusoids. The stimulus grating had a spatial frequency high enough 
so that the first-order responses were small. First-order, second-order, third-order, and 
fourth-order responses were calculated by Fourier transforming the impulse train of 
the ganglion cell. Response power was calculated as the sum of the squares of the 
response amplitudes at each of the output frequencies appropriate for that order. 

evaluate the contrasting hypotheses that Lx alone, or that Lz alone, is respon- 
sible for the spatiotemporal coupling on the basis of qualitative features of the 
data. The first step in this procedure is to compare sensitivities as a function 
of spatial frequency, rather than absolute response sizes. Sensitivity is defined 
here as the reciprocal of contrast necessary for a criterion value of 2 impulses 
per second. By using a low criterion, responses at different spatial frequencies 
are compared at near-threshold contrasts. This is an attempt to minimize the 
confounding effects of the contrast gain control (Shapley and Victor, 1979). 

One can dissect apart the spatiotemporal coupling of the two filters in the 
sandwich model. This is done by choosing to study the spatial frequency 
dependence of second-order components which occur at almost identical 
output  frequencies. Ifspatiotemporal coupling is observed in such components, 
it must be due to the filter before the nonlinearity, L1. Any spatiotemporal 
coupling in L2 will not be revealed by comparing nearly identical output  
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FIQUaE 7. Amplitudes of the second-order frequency kernel of an on-center Y 
cell as a function ofspatial frequency. (A) 0.5 cycle/deg; (B) 0.2 cycle/deg. Each 
grating was positioned to elicit a maximal first-order response, and each 
component of the eight-sinusoid sum generated a contrast of 0.025. (C) Slices of  
the second-order frequency kernels along the diagonal of pure second harmonics 
are shown. A shift to higher temporal frequencies at lower spatial frequencies is 
evident. Unit 28/2. 
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frequencies. Data chosen for such a comparison are shown in Fig. 8. This 
figure shows a plot of  some second-order sensitivities as a function of spatial 
frequency for the on-center Y cell of  Fig. 7. The  two components/(2 (1.9, 1.9) 
and K2 (7.8, -3.9)  have nearly identical output  frequencies: the respective 
sum and difference frequencies differ by 0.06 Hz. Yet the sensitivities of  these 
two components display a remarkable difference in their spatial-frequency 
dependence. The  source of this difference must reside in L1, which acts on the 
input frequencies. One may use similar reasoning to isolate the spatiotemporal 

Y C E L L  

A IOO 

> . ~  50 

~ R  
E I 0  z - 

,9o 

8 

�9 K2( I .9  , L9 )  

o K2 (7.8 , - 3 . 9 )  

,'~ K2. ( 7 . 8 . 3 . 9 )  

I I _ ,  
o.I o.5 I.O 

SPATIAL FREQUENCY (cycles/de(j) 

FIOuRE 8. Sensitivities of components of the second-order frequency kernel of 
an on-center Y cell as a function of spatial frequency. At each spatial frequency, 
a sine grating was positioned to produce a minimal first-order response. The 
contrast of the grating was modulated by a series of eight-sinusoid signals, at a 
range of contrasts per sinusoid. Sensitivity was determined as the reciprocal of 
the contrast that gave a criterion second-order response amplitude of 2 impulses/ 
s. Sensitivities were calculated at the lattice points (1.9, 1.9) (0); (7.8, -3.9) 
(O); and (7.8, 3.9) (A). The dependence of sensitivity on spatial frequency 
depends primarily on the input frequencies, rather than the output frequencies. 
Unit 28/2. 

coupling in Ls, the filter after the nonlinearity. Here it suffices to compare the 
spatial frequency dependence of a sum frequency with the corresponding 
difference frequency. In such a case the input frequencies are exactly identical, 
but the output frequencies are widely different. For example, the two com- 
ponents Ks (7.8, 3.9) and Ks (7.8, -3.9) have equal input frequencies, yet 
output  frequencies that  differ by a factor of  3. These sensitivities, however, 
behave similarly as a function of spatial frequency. In general, the spatial 
frequency dependence of a component  K2(j], • Jg) depends on the input 
temporal frequencies J] and j~ more strongly than on the output temporal 
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frequencyfi  + J). Thus the first filter of  the sandwich model, L1, is the primary 
determinant  of  spatiotemporal coupling. 

The  quanti tat ive amount  of  spatiotemporal coupling varies across the 
populat ion of  Y cells. For instance, in some cells the values of  K2(7.8, + 3.9) 
decline at low spatial frequencies, which is unlike the behavior of  the cell in 
Fig. 8. However,  in every case I K2 (1.9, 1.9) l declines more at low spatial 
frequency than do I K2 (7.8, + 3.9) ]. The decline of  the second-order ampli- 
tudes at low spatial frequency suggests that there is a center-surround orga- 
nization in Lx, the prefilter in the sandwich model. 

Elevation of Mean Rate 

There is another characteristic nonlinear feature of  the responses of  Y cells 
which we can relate to the second-order frequency responses and to the 
"sandwich" model of  the nonlinear pathway.  This characteristic is the eleva- 
tion of  the mean rate in the presence of  a spatial pattern modulated in time. 
This effect was first noted in the Y cell responses to drifting grating patterns 
(Enroth-Cugell and Robson, 1966; Cleland et al. 1971). It is noticeable also in 
the responses of  Y cells to sine gratings modulated by a sum of sinusoids. 
Typica l  data  on the elevation of  mean rate with contrast are shown in Fig. 9 
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C O N T R A S T  

FIou~E 9. Elevation of mean rate with contrast. The mean rate of an on- 
center Y cell is plotted as a function of contrast. The results from two different 
experimental runs at two different spatial frequencies are shown: those for 0.5 
cycle/dog (0) and 2 cycles/dog (11). The 0.5 cycle/dog grating was placed at 
the null position for first-order responses. At 2 cycles/dog there were no first- 
order responses, only second-order responses. Also plotted in the figure are the 
s u m s  

8 

I K2@, -~-01 
. i -2  

which are a rough estimate of the contribution of the second-order nonlinear 
interaction to the elevation of the mean. These sums are shown for 0.5 cycle/ 
deg (A) and 2 cycles/deg (V). The thin horizontal line indicates the standard 
error for the sums of the second-order responses. Unit 29/32. 
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for one on-center Y cell. The circles are the mean rates for a 0.5 cycle/deg 
grating positioned so that it elicited essentially no first-order responses. The 
squares are mean rates in the same cell in response to a 2 cycles/deg grating. 
This spatial frequency was near the spatial resolution limit of  the cell and 
again there were no first-order responses. One  sees that the mean rate increased 
with increasing contrast at 0.5 cycle/deg, and that the mean rate was roughly 
constant up to 0.05 contrast at 2 cycles/deg and then increased between 0.05 
and 0.1 contrast. 

We have observed that the elevation of  the mean rate is highly correlated 
with the total strength of  the second-order frequency response. This suggests 
that the elevation of  the mean is caused by the same nonlinearity which 
produces the second harmonics and intermodulation components in the 
modulated response. We can check the consistency of  this notion quantita- 
tively. Suppose all the nonlinear responses are produced by a l inear/nonlinear/  
linear sandwich in which the static nonlinearity is a rectifier N(x) = Ix I". 
Then one can show that the elevation of  the mean should he 

1 s 
K0 = - K2 , -J0) 

a j . 1  

in the case of temporal modulat ion by a sum of eight sinusoids. Unfortunately,  
we cannot measure the set of  K2(J~, -~ )  separately because they all occur at 
the same output  frequency, namely zero frequency. But we can estimate 
roughly how large they are by considering the nearby components K2(fj, 
- f ,  za-1). The sums 

8 

Y. I Kz(j), I 
j - 2  

are graphed in Fig. 9 for 0.5 cycle/deg as triangles, and for 2 cycles/deg as 
inverted triangles. The standard error of  the mean of the sum is drawn in to 
indicate when the sum is significantly out of  the noise. Clearly, the increase in 
these difference-frequency components with contrast parallels the elevation of  
mean rate. At the high spatial frequency the mean only rises when the sum of 
the kernel amplitudes climbs out of  the noise. The mean rate of 0.5 cycle/deg 
rises uniformly as does the sum of  the ] K2~,  -~-1)  I. In fact, the approximately 
parallel slopes of  the mean and the sum of the kernel amplitudes at (J), -fj-1) 
implies that the value of  the exponent a is close to 1. 

The mean rate data  imply one further deduction, about  the postfilter L2 in 
the sandwich model. If  L2 went to zero at zero frequency, there would be no 
elevation of  the mean though there were significant second-order responses at 
higher output  frequencies. Thus, the elevation of the mean confirms our 
earlier inferences that L2 is more or less flat from zero frequency up to some 
intermediate frequency and then has a gentle high-pass characteristic. Both 
the estimate of  the contrast dependence of  the nonlinearity and inferences 
about  the characteristics of  the postfilter of  the sandwich model are confirmed 
by the results on the elevation of  the mean rate. 
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It should be noted that X ganglion cells have almost zero second-order 
frequency responses over the range in contrast from 0.0125 up to 0.10, and 
over this same range the mean rate is almost unaffected by modulation of 
pattern contrast. 

D I S C U S S I O N  

We have proposed a linear/nonlinear/linear model for the nonlinear pathway 
of the Y ganglion cells of the cat retina. This model accounts for the major 
features of the second-order nonlinear response of the Y cell, and for the 
elevation of the mean rate of Y cells with contrast. The nonlinear pathway is 
composed of an array of spatial subunits. Within each subunit, signals from 
photoreceptors are pooled by a mechanism with a center-surround organiza- 
tion. 

The subunit response passes through a static nonlinearity, whose operating 
curve is like a rectifier with a sharp corner. The output of many such subunits 
distributed over a wide area is pooled by a second filter, L2, to generate the 
nonlinear components of the Y cell response. The second filter, L2, must have 
gentle bandpass or highpass characteristics in order to explain the asymmetry 
between the sum and difference regions (Figs. 1 and 3), of the second-order 
frequency kernel. 

Anatomical Basis for the Y Cell Nonlinear Pathway 

Our model for the nonlinear pathway of the Y cell suggests some correlations 
with the retinal anatomy. We propose that the subunits of the Y cell 
correspond to the bipolar cells, that the nonlinearity is generated at the 
amacrine cell layer (Toyoda, 1974; Naka et al., 1975), and that amacrine cells 
are also responsible for the pooling of subunit signals. Evidence for this 
correspondence is drawn from the present physiological studies and direct 
investigations of the properties of interneurons in retinas of lower vertebrates. 

One can rule out the photoreceptors as the source of any of the nonlinearity 
seen in Y cells, for two separate reasons. First, X cells receive input from the 
same kind of photoreceptors as Y cells, but show little if any of the second- 
order responses so characteristic of Y cells (Hoehstein and Shapley, 1976 a; 
Victor et al., 1977; Victor and Shapley, 1979). Second, over the range of 
contrasts used here (0.05-0.2 rms contrast), the saturation seen in the second- 
order responses of Y cells is observed neither in the first-order responses of Y 
cells nor in the first-order responses of X cells (cf. Table I; Shapley and Victor, 
1978). A photoreceptor nonlinearity would affect all the responses of the 
ganglion cells. 

The model for the nonlinear pathway of the Y cell requires that the subunit 
has center-surround organization. In the goldfish (Kaneko, 1970, 1971), the 
carp (Toyoda, 1974; Famiglietti et al., 1977), the catfish (Naka et al., 1975), 
and the mudpuppy 0Nerblin and Dowling, 1969; Dowling, 1970), the bipolar 
cell is the first neuron encountered which has an antagonistic center-surround 
organization. In the cat, the spatial and temporal properties of the subunit, as 
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inferred from the sandwich model, closely resemble the spatial and temporal 
properties of  the X cell linear receptive-field mechanisms (Victor and Shapley, 
1979; So and Shapley, 1979). Thus, it is likely that the bipolar cell is the 
anatomical substrate of  both the subunit of  the Y cell and the center-surround 
organization of the X cell. 

In the retinae of lower vertebrates, the bipolar responses are qualitatively 
linear, whereas some amacrine cell responses are qual i ta t ively nonlinear 
(Werblin and Dowling, 1969; Dowling, 1970; Kaneko, 1970, 1971; Toyoda  et 
al., 1973; Toyoda,  1974; Naka et al., 1975). This supports the idea that the 
nonlinearity resides in an amacrine cell. If  the subunit nonlinearity resides in 
the amacrine cell layer, then so must the pooling of  subunit  responses over 
wide regions. Some amacrine cells of  the cat have wide dendritic spread 
(Gallego, 1971) and there are many amacrine-amacrine synapses (Kolb and 
Famiglietti, 1974). Our  hypotheses about  the amacrine cells demand great 
heterogeneity among amacrine cell types; this is consistent with present ideas 
about  the morphology and physiology of  these cells. 

Rigorous proof of  the above correspondence requires more than input- 
output  studies of  the cat retina; the properties of  cat retinal interneurons 
themselves must be investigated. We hope that these hypotheses are a stimulus 
for such experiments. However,  from the point of  view of one interested in the 
visual system as a whole, the value of  the sandwich model as a functional 
description of  the Y cell pathways is independent of  our hypotheses concerning 
the correspondence of  elements of  the model with retinal interneurons. 
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