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Review Article

IntroductIon

The arrival of the precision medicine era brings new 
opportunities and challenges for patients undergoing 
precision diagnosis and treatment.[1] The morbidity and 
mortality rates associated with malignant tumors have 
increased year by year, and the burden of malignant 
neoplasms is increasing.[2-4] Therefore, precision oncology 
has become an important branch of precision medicine. 
Minimally invasive surgical treatment, minimally 
invasive treatment guided by imaging navigation, and 
specific therapy of targeted drugs are important aspects 
of precision oncology. With further development of 
medical imaging technology, information from different 
imaging modalities can be integrated and comprehensively 

analyzed by the imaging fusion system, which provides 
more image information of tumors from different angles 
and dimensions to accurately make qualitative and 
quantitative diagnoses and achieve the aim of precision 
tumor treatment. Multimodality image fusion technology 
has become the main trend in the development of future 
imaging technology.[5] This article reviews the application 
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of several imaging fusion techniques in the diagnosis and 
treatment of tumors.

the PrecIsIon MedIcIne Plan and MultIModalIty 
IMagIng fusIon technology

In 2015, “the precision medicine initiative” proposed by the 
US had a profound impact all over the world.[6] Precision 
medicine is based on individual diagnosis and treatment; 
in essence, it analyzes and verifies the occurrence and 
development of diseases from a genetic and molecular level, 
thereby accurately identifying the cause of diseases and the 
target of drug action, to achieve maximum therapeutic effect 
and minimum adverse reactions.

Nowadays, malignant tumors are a global health concern; 
also, the morbidity and mortality rates associated with 
malignant disease have increased considerably in recent 
years.[4] Owing to the complexity of tumors and their 
development mechanisms, completely different genes 
may determine similar signs and symptoms while the 
same gene may cause different symptoms and signs. It has 
been observed that the “destructive” and “one size fits all” 
treatment methods for malignant tumors often result in 
a serious waste of medical resources, cause considerable 
economic burden to patients, and seriously affect patients’ 
quality of life. Precision oncology is an important branch 
of precision medicine, that uses “individual treatment”, 
has the advantage of causing less trauma, causing fewer 
complications, and offering good prognosis; therefore, 
precision oncology has become the cutting‑edge field that 
needs prioritization in precision medicine.[7] Precision 
oncology must always consider three aspects of malignant 
tumors: prevention, diagnosis, and treatment, none of which 
is dispensable.[8] In the background of the current social 
medicine, any clinical method that can achieve individual 
diagnosis and treatment of malignant tumors, improve 
therapeutic effects, and reduce adverse effects belongs to the 
precision oncology.[9] Minimally invasive treatment guided 
by medical imaging navigation is one precise treatment 
method for malignant tumors.[10,11]

Medical imaging plays an important role in the qualitative 
and quantitative assessment of tumors, the precise and 
individual design of a surgical plan, and preoperative 
surgical simulation. While different imaging modalities 
provide diagnostic information at different levels, each 
imaging method has its own advantages, disadvantages, 
and specific indications.[12,13] Many types of imaging 
technologies complement each other to assist in precise 
qualitative and quantitative diagnosis of tumors and to 
achieve a more reasonable and comprehensive treatment 
plan.[14,15] The multimodality imaging fusion system 
takes contrastive analysis of the same lesion in different 
imaging modalities and provides more imaging information 
from different dimensions and angles; further, it uses a 
complementation assay and cross-validation to achieve 
accurate qualitative and quantitative diagnosis of tumors 

and offers a strong technical support for the implementation 
of precision oncology.[16]

PosItron eMIssIon toMograPhy/coMPuted 
toMograPhy IMagIng fusIon technology

Computed tomography (CT) is based on anatomical imaging 
while position emission tomography (PET) imaging is 
based on functional imaging that imparts information on 
tissue metabolism and physiological function. A PET/CT 
imaging fusion is, thus, an integration of functional and 
anatomical imaging at a cellular and molecular level, and 
it reflects the physiological and biochemical characteristics 
and anatomical structure of the diseased tissue.[17] PET/CT 
has an important guiding significance in tumor localization 
and qualitative diagnosis, tumor staging, tumor‑biopsy‑site 
selection, and development of radiotherapy planning.[18]

Precise localization and qualitative diagnosis of tumors
PET/CT can accurately locate tumors through high spatial 
resolution of CT; in addition, it can reflect the metabolic 
information of tumor cells to make an accurate judgment of 
the tumor’s pathologic type. With only single PET imaging, 
it is difficult to precisely locate the tumor site; PET/CT 
fusion imaging improves the accuracy of tumor localization, 
especially in the head and neck region and for abdominal 
tumors.[19,20] PET/CT reduces the misdiagnosis and missed 
diagnosis rate of early‑stage tumors, which can guide the 
choice of surgical methods and the resection scope of tumors, 
and also improve the quality of life for patients.[21]

A study[22] showed that PET/CT was highly accurate in 
characterizing indeterminate pulmonary nodules detected in 
lung cancer screening with low‑dose CT, and it was helpful 
for the early diagnosis and treatment of lung cancer. Because 
there are various tumor types in the head and neck region, PET 
imaging alone is not sufficient to accurately locate these tumors. 
However, a PET/CT scan can provide precise positioning and 
qualitative diagnosis of such tumors. It is necessary to strictly 
control the radiation dose when planning radiotherapy for 
tumors in the head and neck region where are many important 
organs; moreover, precise delineation of gross tumor volume is 
the basis for reducing the radiation injury of normal tissue.[23] 
Hideghéty et al.[24] reported that PET/CT‑based gross tumor 
volume delineation helped make modifications to radiotherapy 
planning in head and neck squamous cell carcinoma. The 
results showed that on the basis of the initial and post‑ICT 
PET/CT comparison in 15/20 patients more than 50% volume 
reduction and in 6/20 cases complete response were achieved. 
Besides that, PET/CT is significantly valuable in monitoring 
tumor recurrence and distant metastasis. Suenaga et al.[25] 
reported that PET/CT had higher value in the surveillance of 
head and neck squamous cell carcinoma recurrence and distant 
metastasis than contrast-enhanced CT.

Determination of tumor stage and formulation of 
radiotherapy planning
The aim of most treatment methods is to maximally improve 
the local control rate of tumors and reduce the damage to 
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normal tissue, while simultaneously increasing the cure rate of 
the tumor; precise staging plays a decisive role in formulating 
tumor‑therapy strategies. A whole‑body PET/CT scan can 
detect the existence of early lesions before morphological 
changes. PET/CT has the advantage of a large scanning 
range, and it can reveal tumor occurrence and metastasis 
in all tissues and organs and precisely locate the primary 
tumor and distant metastases. In addition, PET/CT can detect 
lymph node metastases measuring <1.0 cm in diameter 
anywhere in the body and help accurate TNM staging of 
tumors.[26‑28] The purpose of radiotherapy is to provide the 
target area with an adequate curative radiation dose while 
exerting the least possible irradiation dose to the surrounding 
normal tissue. PET/CT can clearly indicate active regions 
of tumor metabolism and liquefaction of a necrotic area, in 
addition to accurately delineating tumor radiotherapy target 
volume that can help guide the radiation field and radiation 
dose distribution design, in order to prevent normal tissues 
from receiving unnecessary irradiation and improve the 
efficacy of tumor radiotherapy.[29,30] Nam et al.[31] reported 
that the PET/CT plan was better than the conventional point 
A plan in terms of target coverage without subjecting the 
normal tissue to an increased dose, which made optimized 
three‑dimensional (3D) brachytherapy treatment planning 
possible. Whole‑body PET/CT scans can also reduce missed 
diagnosis of metastatic lesions, help formulate individual 
treatment programs, and reduce the failure of locoregional 
therapy, thereby improving patient prognosis.

Accurate guidance of tumor‑biopsy site
PET/CT functional imaging can show the most active part of 
tumor metabolism and locate it accurately during the process 
of sampling, such that components of liquefaction necrosis 
and secondary infection sites of tumors can be avoided. 
Further, it assists in obtaining biopsy samples from the most 
active part of the tumor to reduce false negative results. 
In addition, PET/CT can make use of tumor cell radiation 
concentration characteristics when biopsying the required 
sample before morphological changes, to aid in accurate 
early qualitative diagnosis of lesions and increase the cure 
rate of tumors.[32] Guo et al.[33] applied PET/CT‑guided 
percutaneous biopsy with 51 patients of suspected lung 
cancer and bone metastases. The average biopsy time was 
30 min. The results showed that the first‑time diagnostic 
success rate of the biopsy was 96.1% (49/51), and the overall 
diagnostic success rate and sensitivity were both 100.0%; 
furthermore, no serious complications were encountered.

PET/CT imaging fusion technology has obvious advantages 
over magnetic resonance imaging (MRI), CT, radiography, 
and other single modality imaging techniques in tumor 
diagnosis and treatment, which can significantly reduce 
misdiagnosis and missed diagnosis rates, but PET/CT can 
also cause false negative and false positive results in tumor 
diagnosis. The imaging quality of PET/CT is affected by 
respiratory motion and it is easy to generate motion artifacts 
in the course of examination of thoracic tumors. To improve 
the quality of PET/CT fusion images, the selection of CT 

system still needs further clinical standardization; further, 
the methods to obtain a higher accuracy of PET/CT images 
should be addressed in further research studies.

PosItron eMIssIon toMograPhy/MagnetIc 
resonance IMagIng fusIon technology

PET/MRI fusion imaging can detect not only the anatomical, 
morphological, and functional information from MRI but 
also the cellular and physiological metabolism and molecular 
information from PET. MRI permits multi‑sequencing 
and multi-parametric imaging. MRI has higher soft-tissue 
resolution than CT and causes no radiation damage. Compared 
with PET/CT, PET/MRI can achieve quasi‑physiological 
synchronization and multi-functional information imaging. 
PET/MRI can provide more detailed tumor information and 
is likely more suitable for early screening and follow‑up 
observation after treatment.[34]

PET/MRI has greater potential for qualitative diagnosis of 
early tumors than PET/CT, and it plays an important role 
in displaying local and/or distant lymph node metastasis 
and determining the TNM stage of tumors.[35] Integrative 
PET/MRI has both high soft‑tissue resolution of MRI and 
high specificity of PET imaging, thus confirming that it 
has obvious advantages in the early diagnosis of head and 
neck tumors, breast cancers, and abdominal and pelvic 
tumors.[36,37] Heusch et al.[38] compared PET/MRI and 
PET/CT examination results and TNM staging in 22 patients 
with nonsmall cell lung cancer. Both imaging modalities 
showed consistent T‑staging in 16 patients, and all 16 patients 
were correctly staged with respect to histopathology and 
N‑staging. Overall, the accuracy of PET/MRI and PET/CT 
were 91% (20/22) and 82% (18/22), respectively, which 
indicated that PET/MRI had some advantages over PET/CT. 
Ohno et al.[39] reported that the accuracy of whole‑body 
PET/MRI with signal intensity (SI) assessment was superior 
to that of PET/MRI without SI assessment and PET/CT, 
for identification of TNM classification, clinical stage, and 
operability evaluation of patients with tumors. Growing 
research suggests that PET/MRI could be a new positive 
noninvasive alternative approach as compared to PET/CT 
for tumor staging. In recent years, PET/MRI examination 
has also been used for the delineation of gross target volume 
in tumor radiotherapy, which provides a reliable means for 
the accurate estimation of tumor volume, and has achieved 
remarkable results.[40,41]

At present, the research of PET/MRI is still in its infancy, 
and there is a certain gap between clinical research and 
clinical promotion. In addition, PET/MRI is expensive and 
the imaging speed is slow, and both imaging modalities 
sometimes interfere with each other to influence the 
clarity and accuracy of the image. Besides, the operation 
of PET/MRI scanning requires an experienced radiologist 
while skilled and specialized physicians of medical imaging 
and nuclear medicine are typically scarce. However, despite 
this, PET/MRI examination has high application value in the 
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diagnosis and treatment of tumors, especially for soft-tissue 
tumors.[42] When whole‑body PET/MRI scan is used as a 
means of imaging fusion technology, it integrates functional 
imaging and cellular biological metabolism imaging and has 
great research potential for tumor biological characteristics 
and targeted therapy, tumor angiogenesis, and tumor tissue 
metabolism. With the development of an integrative system 
and improved attenuation correction technique, PET/MRI, 
as a kind of multimodality molecular imaging technology, 
has the potential to initiate a future revolution in tumor 
diagnosis and treatment.

ultrasound‑coMPuted toMograPhy/MagnetIc 
resonance IMagIng fusIon technology

Precise and minimally invasive treatment of tumors is 
the development trend of clinical medicine, preoperative 
evaluation, and intraoperative monitoring. All postoperative 
evaluations of tumors require the support of imaging 
technology. Tissue biopsy guided by imaging technology 
improves the diagnostic accuracy, and imaging-guided 
tumor therapy is the embodiment of the individual and 
precise treatment of tumors. Ultrasound is the preferred 
imaging modality for puncture biopsy guidance and dynamic 
monitoring during operation of tumors, because of its 
convenience, real-time, high repeatability, and nonradiation. 
Ultrasound has its own shortcomings such as lack of spatial 
resolution, small imaging field, and many interference factors, 
whereas CT/MRI possesses high spatial resolution, larger 
imaging field, and less disturbances. Ultrasound‑CT/MRI 
fusion technology achieves the integration of real-time 
ultrasound, convenience, and high spatial resolution and 
perfectly combines the advantages of different imaging 
modalities. At present, Ultrasound‑CT/MRI fusion 
technology has become one of the research focuses in the 
field of interventional oncology.[43]

The spatial resolution of conventional ultrasound is low, 
and it is affected by gas, breathing movement, and body 
size. In addition, the ultrasonic wave produces attenuation 
in the process of transmission, hence making it difficult to 
access tumors in remote locations, leading to false negative 
results. With the development of multimodality ultrasound 
imaging technology, the diagnostic ability of ultrasound is 
also increasing.[44] However, ultrasound examination can still 
only poorly reveal tumors in isolated locations; therefore, 
tumor real-time puncture guidance, real-time monitoring of 
tumor ablation therapy, and other applications are limited. 
Ultrasound‑CT/MRI fusion imaging brings a new entry point 
for puncture guidance and ablation monitoring of tumors, 
which are difficult to be visualize in single ultrasound 
examination.[45] First, locating tumors using CT/MRI scans 
and then making an alignment and fusion with real‑time 
ultrasound examination that accomplishes real-time needle 
biopsy guidance for precise location puncture of isolated 
tumors, real-time ultrasound imaging can also be used to 
monitor tumor ablation under fusion imaging mode, which 
avoids damage to surrounding tissues.[46] Liu et al.[47] showed 

that all 18 target hepatocellular carcinoma (HCC) nodules 
could be detected with fusion images in all patients, but 
could not be detected on conventional ultrasound. The 
efficiency rate of microwave ablation assisted by real‑time 
fusion imaging navigation system for HCCs undetectable by 
conventional ultrasound was 94.4% (17/18). It often needs 
multi-point repeated placement of electrode needles for 
larger tumors to achieve complete ablation. The atomization 
gas produced in the process of tumor ablation can interfere 
with the display of lesions, which is known to influence the 
accuracy of the subsequent needle arrangement, thereby 
leading to residual tumor and recurrence. At present, 
tumor radiofrequency ablation (RFA) often uses routine 
ultrasound examination for guidance. However, during the 
process of ablation, RFA requires an experienced operator 
to obtain the 3D anatomical imaging of tumors to make the 
needle arrangements and design the puncture route in his 
mind, which is poor of objectiveness. Ultrasound‑CT/MRI 
fusion technology can be used to make a reasonable 
needle arrangement and design a suitable puncture route 
for the ablation of tumors by CT/MRI 3D reconstruction 
technology.[45] To reach minimum needle arrangement 
times and maximum ablation effect under the navigation of 
real‑time Ultrasound‑CT/MRI fusion imaging, the needle 
arrangement, needle insertion, and the ablation process 
should not be affected by the atomization gas. The operator 
subjective dependence is low, and the ablation process can 
be monitored in real time, which helps finally achieve the 
purpose of precise tumor ablation.[48]

Ultrasound‑CT//MRI fusion imaging has an important 
significance in the evaluation of tumor ablation effect, 
detection of residual and recurrent tumor lesions, and 
guidance of re-treatment.[49] Conventional ultrasound 
examination cannot show tumor tissue micro blood flow 
perfusion. Although contrast‑enhanced ultrasound (CEUS) 
can display real‑time tumor micro blood flow perfusion, it 
is difficult to detect tumors with lack of blood flow using 
this imaging technique, owing to requirements of a highly 
skilled and experienced operator. Moreover, scanning range 
limits can easily lead to missed diagnosis, and hence, this 
method cannot accurately assess the tumor ablation effect. 
The tumor ablation process needs to inactivate not only the 
whole tumor tissue but also the surrounding 5 mm normal 
tissue, namely the ablation margin (AM). Reaching the AM 
or not is an independent risk factor for tumor recurrence. At 
present, no single modality imaging can accurately assess 
the AM. Fusion imaging technology can be used to fuse 
or compare the images obtained before and after tumor 
ablation, thus making the assessment of AM possible.[50] 
Mauri et al.[51] applied real-time virtual navigation system 
with Ultrasound‑CT/MRI fusion imaging and found 295 
liver tumors that were completely undetectable with 
nonenhanced ultrasound from 2002 to 2012. A total of 282 of 
295 (95.6%) tumors were correctly targeted, and successful 
ablation was achieved in 266 of 295 (90.2%) tumors. This 
showed that Ultrasound‑CT/MRI fusion imaging is precise 
for targeting and achieving successful ablation of target 



Chinese Medical Journal ¦ December 20, 2016 ¦ Volume 129 ¦ Issue 24 2995

tumors undetectable with ultrasound alone. Song et al.[52] 
were able to detect 120 HCCs not visible on conventional 
ultrasound in 96 patients when fusion imaging was applied, 
and 38 (31.7%) of the 120 HCCs could be seen and RFA was 
feasible. Among the remaining 82 HCCs still not visible after 
image fusion, 26 (31.7%) were ablated under the guidance of 
fusion imaging, the technique based on peritumoral anatomic 
landmarks. Overall, 64 (53.3%) of 120 HCCs not visible on 
conventional ultrasound could be ablated under the guidance 
of the fusion imaging technique.

Ultrasound‑CT/MRI fusion imaging can not only be used to 
evaluate whether the tumor ablation can reach the AM but 
also be used to assess the ablation effect in real time through 
CEUS. Once residual lesions are detected, ablation was 
carried out in a timely manner until the tumor completely 
disappeared; this reduces the recurrence rate of tumors and 
improves the prognosis of patients.[53]

The accuracy of Ultrasound‑CT/MRI fusion imaging 
registration is affected by many factors such as patient 
posture and respiratory phase. To ensure the accuracy 
of registration, it is essential to maintain the same body 
position and breathing stage as far as possible during the 
CT/MRI scans. During ultrasound examination, the force 
applied by the operator should be gentle; otherwise, it will 
cause deformation of local tissue and affect the accuracy 
of image registration. The application of respiratory gating 
and motion tracking compensation technology in ultrasound 
examination has greatly improved the accuracy of image 
registration. Ongoing research indicates that ultrasound‑3D 
ultrasound/CEUS based on ultrasound images for fusion will 
overcome complex operation, image‑alignment difficulty, 
and other shortcomings as compared to Ultrasound‑CT/MRI 
imaging fusion.[54] Imaging fusion with real‑time ultrasound 
and new ultrasonic techniques will provide a more 
convenient, inexpensive, and precisely mediated platform 
for minimally invasive treatment of tumors.

conclusIons

Precision medicine plan brings new opportunities and 
challenges to the diagnosis and treatment of malignant 
tumors with advances both in the field of human genomics, 
metabolomics, and proteomics and considers data from other 
large-scale biological databases.

With our current understanding and background of 
medicine, methods of precision tumor treatment such 
as minimally invasive surgical treatment, minimally 
invasive interventional therapy, and targeted drug therapy 
are not possible without support from medical imaging. 
Multimodality medical imaging fusion technology has 
been widely applied in accurate tumor location, qualitative 
tumor diagnosis, tumor staging, treatment plan design, and 
real-time intraoperative monitoring. Multimodality medical 
imaging fusion technology will provide powerful technical 
support for the precise diagnosis and treatment of tumors in 
future clinical application. Currently, accurate registration 

and fusion method is still the most challenging aspect 
of imaging fusion technology. Further, interpretation of 
fusion imaging information is the main purpose of imaging 
fusion. Cultivating compound imaging talents is one of 
the challenges in fusion imaging technology. Finally, the 
selection of objective and optimal fusion imaging methods 
for different kinds of tumors is also a significant issue that 
needs to be addressed. With the continuous development 
of imaging and computer technology, multimodality 
imaging fusion technology will likely increasingly improve 
and mature with respect to fusion speed, stability, and 
accuracy. In addition, the development and application 
of multimodality contrast agents also opens new research 
avenues in multimodality imaging fusion technology.[55]

Multimodality fusion imaging brings more personalized 
and diversified diagnosis and treatment options to precision 
medicine, and these new diagnosis and treatment methods 
can accelerate the development of precision medicine.[56] 
Fusion imaging is very effective for tumor diagnosis and 
treatment. Therefore, the additional use of fusion imaging 
should be considered when single modality imaging is not 
satisfactory for tumor diagnosis and treatment.
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