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Abstract
Vitellogenesis and vitellocytes of Cainocreadium labracis were studied by transmission electron microscopy (TEM) and TEM
cytochemistry. Four developmental stages were distinguished during vitellogenesis: (I) stem cell of high nucleo-cytoplasmic
ratio; (II) early differentiation with chief activity focused on the beginning of protein synthesis and shell globule formation; (III)
advanced differentiation with rapid intensification of protein synthesis, progressive fusion of single shell globules into large
globule clusters, and formation of unsaturated lipid droplets surrounded by β-glycogen particles; and (IV) mature vitellocyte.
Early vitellogenesis with vitellocyte maturation consists of: (1) increase in cell volume; (2) increased development of large,
parallel cisternae of GER with production of proteinaceous granules; (3) development of small Golgi complexes that package
granules; and (4) within vacuoles, progressive enlargement of proteinaceous granules into shell globule clusters formed during
vitellogenesis. Three types of inclusions accumulate in large amounts in mature vitelline cells: (1) shell globule clusters,
important component in the formation of egg shell; (2) numerous unsaturated lipid droplets. Though fewer, there are also diphasic
droplets consisting of saturated and unsaturated lipids in the same droplet, and (3) a relatively small amount of β-glycogen
particles, usually surround a few groups of lipid droplets. The β-glycogen and lipid droplets are nutritive reserves for embryo-
genesis. General pattern and functional ultrastructure of vitellogenesis greatly resemble those observed in some lower cestodes,
such as bothriocephalideans and diphyllobothrideans. Variations and differences in the amount of lipids and of glycogen during
vitellogenesis in lower cestodes and other trematodes are compared and discussed.
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Introduction

Vitellocytes of parasitic Platyhelminthes are a key element in
the production of mature eggs containing invasive larvae (for
a review, see Świderski and Xylander 2000). An interruption
in vitellocyte formation results in immediate blockage of the
infective egg production and thus an interruption of the para-
site’s life cycle.

While much is known of the functional ultrastructure and
cytochemistry of vitellogenesis and vitellocytes among para-
sitic Platyhelminthes, that include numerous cestode species
from a wide range of hosts, similar TEM studies on trema-
todes appear somewhat neglected. Most work on trematodes
has been focused on species of medical, veterinary, or eco-
nomic importance, such as schistosomes or liver flukes, which
have many intact vitellocytes (about 20–30) with the ovum in
a large egg. Such studies include work on schistosomes by
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Erasmus et al. (1982), Paragonimus ohirai (Paragonimidae)
by Fukuda et al. (1983), and Fasciola hepatica (Fasciolidae)
by Björkman and Thorsell (1963), Thorsell et al. (1966), Irwin
and Threadgold (1970), and Hanna (1976). Among the few
studies on non-economically related trematode parasites in-
clude, e.g., papers on Maritrema linguilla (Microphallidae) by
Hendow and James (1989), Gorgoderina vitelliloba
(Gorgoderidae) by Irwin and Maguire (1979), and the
aspidogastreanAspidogaster limacoides byLevron et al. (2010).

As with cestodes, TEM data on vitellogenesis is desirable
from a diverse sample of trematodes when considering how
any character can be considered as useful for phylogenetic and
evolutionary studies of the Platyhelminthes (Świderski and

Xylander 2000; Świderski et al. 2009). Knowledge of vitello-
genesis in diverse parasitic Platyhelminthes may also have an
important applied aspect (Erasmus 1975; Mehlhorn et al.
1981; Shaw and Erasmus 1988) particularly with respect to
measuring the effects of prospective antihelminthic drugs.
Since degeneration of vitellocytes usually causes loss of egg
production, it is possible to judge the effects of prospective
ovicidal drugs by measuring their effects on the high metabol-
ic rate of vitellocytes (Moczoń and Świderski 1983, 1992;
Shaw and Erasmus 1988).

The aim of the present study is to describe the functional
ultrastructure of vitellocytes and vitellogenesis in the trema-
tode Cainocreadium labracis and compare it with data from
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Fig. 1 Diagram of four
developmental stages of
vitellogenesis in digenetic
trematode Cainocreadium
labracis. Note four consecutive
stages of vitellogenesis reflecting
vitellocyte cytodifferentiation and
maturation: (stage I) a stem cell
stage of the gonial type, (stage II)
an early differentiation stage,
(stage III) an advanced stage of
maturation, and (stage IV) mature
vitellocyte. The early stages (I and
II) are predominantly at the
periphery of the follicles, whereas
the more advanced stage of
maturation (stage III) and mature
vitellocytes (stage IV) are
localized mainly in their central
region. I–IV consecutive stages of
vitellogenesis, I stem cell of
gonial type, II early and III
advanced stages of vitellocyte
differentiation, IV mature
vitellocyte, β-gl beta-glycogen,
GER granular endoplasmic
reticulum, GV Golgi vesicles,
HCh heterochromatin islands, L
lipid droplets, m mitochondria, N
nucleus, n nucleolus, PG
proteinaceus granules, SB
spherical bodies, SG shell
globules, SGC shell globule
clusters
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other trematodes and some lower cestodes, chiefly parasites of
fishes.

Materials and methods

Live adult specimens of C. labracis (Dujardin, 1845) were
collected in December 2015 from the digestive tract of the
European seabass Dicentrarchus labrax (L., 1758)
(Teleostei: Serranidae) from the Mediterranean Sea, off La
Chebba (34° 14′ N, 11° 06′ E) (Tunisia).

Several worms were rinsed with a 0.9% NaCl solution
and fixed in cold (4 °C) 2.5% glutaraldehyde in a 0.1-M
sodium cacodylate buffer at pH 7.4 for a minimum of 2 h,

rinsed in 0.1 M sodium cacodylate buffer at pH 7.4, post-
fixed in cold (4 °C) 1% osmium tetroxide with 0.9% potas-
sium ferricyanide in the same buffer for 1 h, rinsed in Milli-
Q water (Millipore Gradient A10), dehydrated in an ethanol
series and propylene oxide, embedded in Spurr’s resin, and
polymerized at 60 °C for 72 h. Ultrathin sections (60–90 nm
thick) were obtained using a Reichert-Jung Ultracut E ultra-
microtome. Sections, placed on 200-mesh copper grids,
were double-stained with uranyl acetate and lead citrate
according to the Reynolds (1963) procedure and examined
in a JEOL 1010 transmission electron microscope operated
at an accelerating voltage of 80 kV, in the “Centres
Científics i Tecnològics” of the University of Barcelona
(CCiTUB).

Fig. 2 a and b General
topography of the vitelline follicle
showing the localization of
vitellogenesis developmental
stages I–III within the follicle.
Note the peripheral position of
stem cell of gonial type and
central localization of advanced
stages of vitellogenesis reflecting
gradient of cytodifferentiation. I
stem cell of gonial type, II early
stage of vitellocyte
differentiation, III advanced stage
of differentiation and IV mature
vitellocyte, GV Golgi vesicles,
HCh heterochromatin islands, L
lipid droplets, N nucleus, n
nucleolus, PG proteinaceus
granules, SB spherical bodies, SG
shell globules, SGC shell globule
clusters
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Sections placed on gold grids were treated according to the
Thiéry (1967) test to reveal the presence of glycogen. Thus,
they were treated in periodic acid (PA), thiocarbohydrazide
(TCH), and silver proteinate (SP) as follows: 30 min in 10%
PA, rinsed in Milli-Q water; 24 h in TCH, rinsed in acetic
solutions and Milli-Q water; and 30 min in 1% SP in the dark
and rinsed in Milli-Q water. Sections were examined in a
JEOL 1010 transmission electron microscope in the CCiTUB.

Results

General topography of the vitelline system

The vitellaria or vitelline glands of the digenetic trematode
C. labracis are follicular as described by Bartoli et al. (1989)
as follows: The forebody lateral fields of vitellaria are

restricted to the dorsal plane, sometimes fusing medially,
whereas in the hindbody lateral fields occur dorsally and ven-
trally. Vitelline fields fuse in the post-testicular zone and ex-
tend to the level between the intestinal bifurcation and mid-
pharynx in the anterior direction (see Bartoli et al. 1989). The
size of vitelline follicles can vary from 15 to 40 μm.
Vitellocytes at different stages of maturation are close to each
other (Figs. 1 stages I–IV and 2 a, b). No interstitial or nurse
cells were observed. Although vitellogenesis is a continuous
process, we follow the system that divides the process into
four discrete developmental stages (Figs. 1 stages I–IV; 2a,
b; 3a, b; 4a, b; and 5a–c) described previously by Irwin and
Threadgold (1970) in digeneans and by Świderski and
Mokhtar (1974) in cestodes. Terminology is that of
Świderski and Xylander (2000). These four stages of vitello-
genesis in C. labracis are illustrated diagrammatically on
Fig. 1. We distinguished: (stage I) a stem cell of gonial type,

Fig. 3 a and bHigh-power TEM-
micrographs illustrating
ultrastructural details of a stem
cell of the gonial type (stage I) (a)
and an earliest stage (II) of
vitellocyte cytodifferentiation (b).
Compare differences in the
ultrastructure of their cell
organelles and inclusions. Note:
(1) very large nuclei (N) contain
prominent spherical nucleoli (n)
and numerous large islands of
heterochromatin (HCh) adjacent
to the nuclear envelope or
randomly dispersed in the
nucleoplasm, and (2) a very high
nucleo-cytoplasmic ratio. The
granular cytoplasm contains
extended profiles of granular
endoplasmic reticulum (GER)
adjacent to Golgi complexes, with
a few membrane-bounded
vesicles containing dense material
of shell globule primordia and
several small shell globule
clusters (SGC) at stage II of early
vitellocyte differentiation. GV
Golgi vesicles, m mitochondria,
PG proteinaceus granules, SG
shell globules
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(stage II) early differentiation, (stage III) advanced differenti-
ation, and (stage IV) mature vitellocyte. Stages I and II are
chiefly at the follicle edge, while stages III and IVare usually
in the central part of the cell (Fig. 2a, b). As a whole, vitello-
genesis and vitellocytes are very similar to that described from
Maritrema feliui by Świderski et al. (2011a).

Ultrastructure of consecutive stages

Gonial-type stem cell

Gonial cells about 6–7 μm in diameter have a high nucleo-
cytoplasmic ratio and are usually at the follicle periphery
(Figs. 2b and 3a). The thin layer of cytoplasm has a large
concentration of free ribosomes, few mitochondria, and short
profiles of granular endoplasmic reticulum (Fig. 3a).
Prominent, spherical nucleoli characterize the large nuclei.

The nucleoplasm has many randomly dispersed islands of
heterochromatin (Fig. 3a).

Early and advanced differentiation stages: protein synthesis
and shell globule formation

Early stage II (Figs. 1 and 3b) and stage III (Figs. 1 and 4a)
cells characteristically increase in size rapidly, up to approxi-
mately 10–12 μm in diameter. Their nuclei show large, spher-
ical nucleoli and numerous heterochromatin islands. At the
same time, the cytoplasm shows increase in number of mito-
chondria, formation of numerous large, parallel profiles of
granular endoplasmic reticulum (GER), and adjacent to them
small vesicles originating fromGolgi complexes. The smallest
individual proteinaceous shell granules are synthesized in the
GER and packaged as small granules in membrane-bounded
Golgi vesicles. It appears that there is further growth and dif-
ferentiation of the granules, increasing their size and forming

Fig. 4 a and b TEM micrographs
illustrating advanced stages of
vitellocyte cytodifferentiation
(stage III). Note: (1) parts of large
nuclei (N), with several
heterochromatin islands,
randomly dispersed in the
nucleoplasm; (2) extended areas
of well-developed, parallel
cisternae of GER; (3) numerous
cell inclusions, namely shell
globules (SG) and shell globule
clusters (SGC), several groups of
unsaturated lipid droplets (L)
surrounded by accumulations of
β-glycogen particles (β-gl) and a
few spherical bodies. Note the
large vitellocyte, which in spite of
a very heavy accumulation of
numerous shell globule clusters,
still contains a large nucleus (N)
with prominent nucleolus (n) and
well-developed cytoplasmic
organelles, such as extended GER
cisternae, Golgi complexes, and
numerous mitochondria (m),
which may confirm active protein
synthesis. GER granular
endoplasmic reticulum, GV Golgi
vesicles, HCh heterochromatin
islands, PG proteinaceus granules
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shell globules (Figs. 3b; 4a, b; and 6a–c). The fusion of mem-
branes of several proteinaceous shell globules results in for-
mation of shell globule clusters (Figs 4a, b; 5a, b; and 6c–e).
The size of shell globule clusters and the number of electron-
dense islands or sub-units in the clusters increase progressive-
ly into mature vitellocytes (compare Figs. 4a; 5a, b; and 6c–e).
A cluster is made up of numerous loosely packed electron-
dense globules of various sizes embedded in a moderately
electron-dense matrix (Figs 5a, b and 6e). Transformation of
proteinaceous granules into shell globule clusters resulting
from individual shell globule fusion is illustrated in Fig. 6a–
e. This progressive advanced stage of maturation is apparently
completed when a large number of shell globule clusters is
formed within the vitellocyte cytoplasm.

Mature vitellocyte stage

Stage IV or mature vitellocyte (see: Figs. 1 and 5a, b), mea-
suring about 15 μm in length by about 18 μm in width, is
characterized by a high accumulation of four types of inclu-
sions: (1) heterogeneous shell globule clusters, (2) numerous
unsaturated lipid droplets of two kinds, (3) small accumula-
tions of β-glycogen particles surrounding the lipid droplets,
and (4) a few spherical bodies (Figs. 5a, b; 6f; and 7a, b).
Spherical bodies resemble two or three mitochondria grouped
together, which are surrounded by a common plasma mem-
brane. The degenerating nuclei were found in some mature
vitellocytes (Fig. 5a); however, they were not found in other
vitellocytes (Fig. 5b). The lipid droplets in the mature

Fig. 5 a-c TEM-micrographs
illustrating mature vitellocytes
(stage IV). In a, note the presence
of degenerating nucleus (N) in a
mature vitellocyte. The cytoplasm
is completely filled by large
amounts of shell globule clusters
(SGC), unsaturated lipid droplets
(L), spherical bodies (SB), and β-
glycogen particles (β-gl).
Glycogen particles are mainly
surrounding shell globule clusters
and lipid droplets (b and c). m
mitochondria
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vitellocyte of C. labracis appear to be of two kinds: one is
completely dense, highly osmiophilic, of unsaturated lipids
(Figs. 5b; 6f; and 7a, b) and the other is a diphasic droplet that
is dense, highly osmiophilic, and containing from one to five
round osmiophobic inclusions of various sizes (Figs. 5b, c; 6f;
and 7a, b). Some of the inclusions are quite large, giving the
droplet the appearance of a donut (Fig. 7a). We did not ob-
serve any droplets that were completely of low electron den-
sity because of only saturated lipid.

Discussion

The ultrastructural characteristics of vitellogenesis in
C. labracis are essentially similar to those described previous-
ly in different species of digenean trematodes, i.e., Fasciola
hepatica (see Irwin and Threadgold 1970), schistosomes
(Erasmus 1975; Erasmus et al. 1982), and Maritrema spp.
(Hendow and James 1989; Świderski et al. 2011a). To some
extent, they resemble also those reported in some lower ces-
todes, i.e., bothriocephalideans (Świderski andMokhtar 1974)
or diphyllobothrideans (Yoneva et al. 2014, 2015). The
caryophyllideans, however, are exceptional in this respect
among all other Platyhelmithes. They show an entirely differ-
ent type of vitellogenesis, characterized by a large amount of

not only cytoplasmic glycogen but also a unique, large accu-
mulation of so-called “nuclear glycogen,” never observed in
other normally developing cells, except in human liver cancer
cases (for a review, see Świderski and Mackiewicz 1976).

More recent papers on vitellogenesis and vitellocytes of
d i g e n e a n s c on c e r n Crep i d o s t omum me t o e c u s
(Allocreadiidae), Azygia lucii (Azygiidae), Aphallus tubarium
and Metadema depressa (Cyptogonimidae), Phyllodistomum
angulatum (Gorgoder idae) , Plagiorchis e legans
(Plagiorchiidae), or Brandesia turgida (Pleurogenidae) (see
Table 1 for a comparative analysis of characteristics of mature
vitellocytes).

Vitelline cells of trematodes and cestodes play two very
important functions: (1) formation of a hard, dense, and resis-
tant egg shell, and (2) storage and supplying of nutritive re-
serves for the developing embryos. It, therefore, is essential
for production ofmature eggs containing invasive larvae (for a
review, see Świderski and Xylander 2000).

Egg shell formation takes place in the ootype and results
from the combined action of shell globules of vitelline cells
and Mehlis’ gland secretion (Smyth and Clegg 1959). The
Mehlis’ gland PAS-positive secretion acts on the groups of
vitelline cells surrounding each fertilized oocyte passing
through the ootype, causing release of all of the shell globules
that fuse together to form a thick, electron-dense egg shell.

Fig. 6 a-f High-power TEM
micrographs illustrating
transformation of proteinaceus
granules into shell globule
clusters (a–e) and some details of
mature vitellocyte (f). Note
several large diphasic,
unsaturated lipid droplets (L) with
small circular areas of low
electron density resembling that
of the osmiophobic saturated
lipids (white arrowheads). β-gl
beta-glycogen, GER granular
endoplasmic reticulum, HCh
heterochromatin islands, N
nucleus, PG proteinaceus
granules, SB spherical bodies, SG
shell globules, SGC shell globule
clusters
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Ultrastructure and histochemistry of egg shell formation have
been described in different species of digeneans (Eklu-Natey
et al. 1982a, 1982b; Świderski 1984, 1985, 1994).

An important aspect of vitellogenesis in trematodes concerns
the nature of the glycogen reserves. Much is known of the ultra-
structural aspects of glycogen reserves in mature vitellocytes of
F. hepatica, andmedically important species of schistosomes; for
details, see the comparative Table 1. The amount of glycogen
reserves shows great differences in these two digenean taxa. In
F. hepatica, the reserves are always very heavy (Björkman and
Thorsell 1963; Thorsell et al. 1966; Irwin and Threadgold 1970;
Hanna 1976). This glycogen occurs as both α-glycogen rosettes
for a long storage, and single β-glycogen particles for rapid,
immediate utilization (see Świderski and Mackiewicz 1976;
Świderski et al. 2004, 2009). On the other hand, in schistosomes
(Erasmus et al. 1982; Świderski 1984, 1985, 1994), some lower
cestodes (Świderski and Xylander 2000), and in C. labracis, the
glycogen is only in very small accumulations of single β-
glycogen particles for a short storage.

In schistosomes, this condition may be explained by the fact
that miracidia develop in eggs that are in the host tissue
(Świderski 1984, 1985, 1988, 1994). Since these miracidia have
been shown to utilize exogenousmetabolites from the host tissue

(Sternholm and Warren 1974; Kawanaka et al. 1983), little nu-
trient reserves are required from vitellogenesis, with most vitel-
line metabolites being used for shell formation. Indeed, it may be
that the schistosome egg itself is parasitic, as suggested by
Tinsley (1983).

With regard to C. labracis, the very limited amount of
nutritive reserves in their vitelline cells may probably be ex-
plained also by its life cycle. As outlined by Maillard (1976),
the three-host life cycle can be briefly summarized as follows.
The adult stage parasitizes the mid-intestine of the definitive
host, sea bass Dicentrarchus labrax, and also other teleosts.
Miracidia that hatch from eggs are infecting the first interme-
diate host, gastropods, mainly Gibbula adansoni. The
cotylicerc cercariae leave the mollusk and infect the second
intermediate host, small benthic teleosts, mainly gobies
(Gobiidae), where they form encysted metacercariae. The
metacercaria produces paralysis of gobies’ fins and disorders
in the normal function of the eyes, thus facilitating the preda-
tory action of the sea bass acting as a final host. The metacer-
caria then completes its development and transforms into an
adult stage in the intestine of the sea bass.

Comparison of the life cycle ofC. labracis indicates that, as
with Schistosoma spp., the protective role of vitelline shell

Fig. 7 a and bHigh-power TEM-
micrographs showing positive
reaction for glycogen after the
Thiéry test and illustrating
ultrastructural details of mature
vitellocytes. Note a heavy
accumulation of four types of cell
inclusions: shell globule clusters
(SGC), diphasic unsaturated lipid
droplets (L) with low electron-
dense islands (white arrowheads),
β-glycogen particles (β-gl), and
several spherical bodies (SB). m
mitochondria, N nucleus
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globules in the egg shell formation appears more important
than the nutritive role of the small amount of β-glycogen
particles and unsaturated lipid droplets. The nutrition of the
developing embryos is probably supplied by intrauterine em-
bryogenesis. Unfortunately, there is no information on the
type of embryogenesis in this species.

Vitellogenesis like that described in our study has been
observed in lower cestodes as follows: in gyrocotylids by
Xylander (1987), amphilinids by Xylander (1988),
caryophyllidids by Bruňanská et al. (2012, 2013a, 2013b),
bothriocephalids by Świderski and Mokhtar (1974) and
Levron et al. (2007), and spathebothriids by Bruňanská et al.
(2005) and Poddubnaya et al. (2005, 2006). Common to these
cestodes is a similar egg type, with a thin shell and operculat-
ed, resembling the eggs of most trematodes. These cestodes
also have vitellocytes with heavy accumulations of shell glob-
ule clusters and lipid droplets, though generally less glycogen.
Caryophyllidea, an order of lower monozoic cestodes of fresh-
water fishes, differs greatly from C. labracis as well as from
Amphilinidea and Gyrocotylidea by having a very large
amount of α-glycogen rosettes and β-glycogen particles in
the cytoplasm, with dense concentrations in the nucleoplasm
(Mackiewicz 1968; Świderski and Mackiewicz 1976;
Świderski et al. 2004, 2009; Bruňanská et al. 2009).

Little is known of spherical bodies that are described for the
first time in this study. As far as we know, they have never
been reported previously in vitellocytes of other
Platyhelminthes.

Unlike glycogen, the functional significance of lipids in the
vitellocytes of C. labracis, or other trematodes, is less well
understood. As highly complex and diverse organic com-
pounds, lipids may function in many ways, including energy
source, component of biological membranes, and regulator of
cellular activity. According to Smyth and Halton (1983), lipids
are generally considered an important energy reserve, though
this may not be true for all trematodes. The apparent absence of
lipid droplets of osmiophobic saturated lipid droplets in
C. labracis, as found in M. feliui, for example (see Fig. 4 of
Świderski et al. 2011a), is puzzling. The significance of dipha-
sic droplets consisting of saturated (osmiophobic) and unsatu-
rated (osmiophilic) lipids in the same droplet is unknown. Are
they stages of lipid synthesis hitherto seldom observed? Do
they represent another kind of lipid droplet made up of a mix
of unsaturated and saturated lipids rather than droplets of indi-
vidual types of lipid? Or is this just another example of the
“remarkable diversity” recognized by Conn et al. (2018) as
present even in closely related trematodes? We do not know.
We are not aware of similar diphasic lipid droplets in any other
trematode. Concerning cestodes, however, diphasic lipid drop-
lets have been previously found in the vitellocytes of
Echinobothrium euterpes (Diphyllidea) (see Świderski et al.
2011b). On the other hand, they have never been observed in
other cestodes such as trypanorhynchids (see Świderski et al.

2012) or proteocephalideans (for a review, see Świderski and
Xylander 2000). The fact that the saturated islands within the
droplet are of different size and number suggests that there may
be a conversion of unsaturated lipid to the saturated state.
However, this does not explain why no droplets of only satu-
rated lipid were observed. Clearly, much remains to be learned
of lipidmetabolism in diverse taxa of parasitic Platyhelminthes.
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