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Abstract

Introduction: Transcranial Doppler (TCD) is a method used to study cerebral hemo-

dynamics. In the majority of TCD studies, regression analysis and analysis of variance

are the most frequently applied statistical methods. However, due to the dynamic

and interdependent nature of flow velocity, nonparametric tests may allow for better

statistical analysis and representation of results.

Method: The sample comprised 30 healthy participants, aged 33.87 ± 7.48 years;

with 33% (n = 10) females. During a visuo-motor task, the mean flow velocity (MFV)

in the middle cerebral artery (MCA) was measured using TCD. The MFV was

converted to values relative to the resting state. The results obtained were analyzed

using the general linear model (GLM) and the general additional model (GAM). The fit

indices of both analysis methods were compared with each other.

Results: Both MCAs showed a steady increase in MFV during the visuo-motor task,

smoothly returning to resting state values. During the first 20 seconds of the visuo-

motor task, the MFV increased by a factor of 1.06 ± 0.07 in the right-MCA and by a

factor of 1.08 ± 0.07 in the left-MCA. GLM and GAM showed a statistically significant

change in MFV (GLM:F(2, 3598) = 16.76, P < .001; GAM:F(2, 3598) = 21.63, P < .001);

together with effects of hemispheric side and gender (GLM:F(4, 3596) = 7.83, P < .005;

GAM:F(4, 3596) = 2.13, P = .001). Comparing the models using the χ2 test for goodness

of fit yields a significant difference χ2 (9.9556) = 0.6836, P < .001.

Conclusions: Both the GLM and GAM yielded valid statistical models of MFV in the

MCA in healthy subjects. However, the model using the GAM resulted in improved

fit indices. The GAM's advantage becomes even clearer when the MFV curves are

visualized; yielding a more realistic approach to brain hemodynamics, thus allowing

for an improvement in the interpretation of the mathematical and statistical results.

Our results demonstrate the utility of the GAM for the analysis and representation of

hemodynamic parameters.

Stefan Vetter and Daniel Schuepbach these authors have contributed equally to this work.

Received: 28 February 2021 Revised: 10 August 2021 Accepted: 1 September 2021

DOI: 10.1002/hsr2.400

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2021 The Authors. Health Science Reports published by Wiley Periodicals LLC.

Health Sci Rep. 2021;4:e400. wileyonlinelibrary.com/journal/hsr2 1 of 7

https://doi.org/10.1002/hsr2.400

https://orcid.org/0000-0002-0314-4929
mailto:stephan.egger@pukzh.ch
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/hsr2
https://doi.org/10.1002/hsr2.400


K E YWORD S

functional Transcranial Doppler (fTCD), general additional model (GAM), general linear model
(GLM), healthy participants, hemodynamics, statistical analysis

1 | INTRODUCTION

Transcranial Doppler (TCD) is a non-invasive imaging method, with high

temporal resolution. It is robust, less expensive, and easier to use than

other neuroimaging techniques used to assess cerebral blood flow.1,2 One

drawback of TCD, however, is the lack of a direct neuroanatomical

image.1,2 Over the past few decades, TCD has been used to study cerebral

hemodynamics in the main cerebral arteries1,3 in a wide range of neurolog-

ical and psychiatric conditions, thereby increasing our knowledge of the

pathophysiological anomalies of such disorders.1,4-7 Furthermore, it is also

used to refine diagnostic and prognostic approaches in conditions such as

stroke, vascular cognitive impairment, and vascular depression.8-10

The general linear model (GLM) can accommodate both quantitative

and categorical variables in a mathematical model. The label “linear
modelling” has traditionally been used to refer to regression analysis;

however, technically ANOVAs are particular instances of the GLM.11

The suitability of the GLM for many different types of study design

accounts for its widespread use in a wide range of research areas, includ-

ing psychology, medicine, and biology. The majority of studies of hemo-

dynamics employing TCD use the GLM (as either regression modeling or

analysis of variance) for statistical analysis; analysis is generally con-

ducted at group level, pooling change in flow velocity over several sub-

jects.1,2,4,5 Due to the dynamic nature of flow velocity and its

dependence on previously achieved velocity, the graphic representation

of a linear model may be counter-intuitive. Nonparametric tests, includ-

ing time-series analysis and the general additional model (GAM), allow

for a better representation of dynamic and interdependent results; how-

ever, their mathematical and statistical analysis is more complex than for

the GLM and therefore comparison is more demanding.11,12

The aim of this study is to improve the statistical analysis and rep-

resentation of the hemodynamic parameters obtained using functional

TCD. During a visuo-motor control task, the mean flow velocity (MFV)

in the middle cerebral artery (MCA) in healthy subjects was measured

using TCD. The results obtained were analyzed using the general linear

regression and the general additional models. The results of both

methods of analysis were compared with each other in terms of model

fit and interpretability. Analyzing dynamic and interdependent variables

such as flow velocity, we expect nonparametric statistical analysis such

as the GAM to outperform parametric methods such as the GLM

regarding statistical modeling and interpretability of the data.

2 | METHODS

2.1 | Sample population

Thirty healthy right-handed subjects with no medical, neurological, or

psychiatric condition at the time of examination participated in this

study. The participants had a mean age of 33.87 ± 7.48; 33% (n = 10)

females. All participants were native German speakers, with a mean

education of 19.17 ± 4.06 years and average intelligence of IQ 127.60

± 8.13 as measured using the multiple-choice vocabulary intelligence

test [German: Mehrfachwahl-Wortschatz-Intelligenztest: MWT-A].13,14

The ethics committee of the Canton of Zurich-Switzerland approved

the study (BASEC: 2019-00814), and all participants provided written

informed consent.

2.2 | Equipment and cerebral flow measurements

Doppler measurements were performed using a Multi-Dop X instru-

ment (DWL Elektronische Systeme GmbH, Sipplingen—Germany).

Two dual 2 MHz transducers were used to insonate both MCAs

at depths of 48-55 mm through the temporal bone window.15

The transducers were fixed with a headband, so motions of the

head did not alter the position of the transducers. As indicated

by measurement artifact data, we screened for MFV values out-

side the 60% to 150% range of the mean MFV recording of a

subject. This approach is supported by published evidence, dem-

onstrating that functional TCD is robust to position and move-

ment artifacts.16,17

2.3 | Visuo-motor task and cerebral
hemodynamics

Caffeine and nicotine can influence brain hemodynamics; therefore,

subjects were asked to abstain from the consumption of both 2 hours

prior to examination.18 Vital parameters, including respiratory fre-

quency, heart rate, and blood pressure, were measured before plac-

ing and after removal of the transducers. All participants had normal

vital parameters; no signs of anxiety or distress were observed.19,20

MFV data were recorded continuously before, during, and after the

visuo-motor task, integrating MFV data for each cardiac cycle. In a

paper-pencil visuo-motor task, participants were asked to randomly

connect circles (placed in a 10 by 10 cm square) with lines. Lines had

to be drawn at a pace of 1.0 Hz. This task simulates the visual scan-

ning and hand movements, which usually occur during a neuropsy-

chological paper-pencil test, thus controlling for neurocognitive

effort.21-25

2.4 | Statistical analysis

For the purposes of analysis, the MFV was converted to values rela-

tive to steady state, following procedures used in previous
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studies23,24,26: (a) integration of MFV from 100 Hz sampling to 1 Hz;

(b) normalization of digitized data with reference to pre-and post-task

rest phases (60 seconds intervals of rest with 30 seconds between

the first and last 15 seconds); and (c) relative MFV values (relative to

the resting state) were averaged and converted to percentage values.

All MFV values in this article are relative MFV, that is, the change in

cerebral blood flow velocity compared with resting phase values.16,24

The visuo-motor task comprised a time frame of at least 20 (range

20 to 22) seconds for all participants; thus, the first 20 seconds will be

considered for analysis.

Data are presented in tables, using simple descriptive statistics

(mean, SD, percentages). The data were fitted in a general linear

model (GLM) and a general addition model (GAM), to model the

change in MFV during the visuo-motor task (ie, time). The fit indices

(Akaike information criterion—AIC; generalized cross-validation—

GCV; and R2) of the models were extracted for comparison, and an

ANOVA was performed to assess the statistical differences between

models. Finally, both models were presented visually.

3 | RESULTS

3.1 | Hemodynamics

The MFV for the first 20 seconds increased by a factor of 1.07 ± 0.07

in relation to the resting state; the MFV in the right MCA increased

by a factor of 1.06 ± 0.07; and the MFV in the left MCA increased by

a factor of 1.08 ± 0.07. The distribution of the MFV raw values for

each time unit (second) is represented in Figure 1. For both MCAs,

there is a steady increase in flow velocity lasting approximately 8 sec-

onds, returning to the resting state after approximately 15 seconds.

The increase in flow velocity is slightly higher for the left MCA (see

Figures 1 and 2).

3.2 | General linear model (GLM)

We calculated the GLM change for the MFV during the course of the

measurement period (F (2, 3598) = 16.76, P < .001). We found a sig-

nificant hemispheric difference (F (3, 3597) = 4.534, P = .033),

together with differences attributable to hemispheric side and gender

(F (4, 3596) = 7.828, P = .005). The fit indices across the models

remained stable. For further details, see Table 2.

3.3 | General additional model (GAM)

We calculated the GAM change for the MFV during the course of the

measurement period (F (2, 3598) = 21.63, P < .001). A hemispheric

side difference was also demonstrated (F (3, 3598) = 4.687, P =.03),

together with differences attributable to hemispheric side and gender

(F (4, 3596) = 2.129, P = .001). The fit indices, particularly R2, were

F IGURE 1 Distribution of measured mean flow velocity (MCA, middle cerebral artery)
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improved when additional variables were added to the model. For fur-

ther details, see Table 1.

3.4 | Model comparison

Comparing the models using a chi-square test for goodness of fit

yields a significant difference (χ2 (9.9556) = 0.6836, P < .001). For fur-

ther details, see Table 1.

4 | DISCUSSION

In a sample of healthy participants, we measured the MFV in the

MCA during a visuo-motor task without cognitive effort, using TCD.

The resulting hemodynamic curve demonstrated a steady increase in

MFV, smoothly returning to resting state values. The obtained pattern

resembles previous findings in healthy probands,21,27-29 as well as

those with a psychiatric or neurologic condition.26,30,31 The resulting

hemodynamic curve probably results from the activation of brain

areas responsible for visuo-motor activity.32,33 The left MCA showed

a slightly greater increase in MFV; this finding is most likely attribut-

able to the fact that our study sample was exclusively right-

handed.33,34

Through the assessment of MFV, during a visuo-motor task in

healthy probands, we avoid the effects of cognitive effort and patho-

physiological anomalies of any given disorder.22,27,31,35,36 This

removes the requirement for clinical interpretation of our hemody-

namic findings,5,18,37,38 allowing the focus to remain on the statistical

analysis and visual representation of MFV.

The change in MFV in the MCA during a visuo-motor task was

analyzed using both the GLM and the GAM. Both approaches were

F IGURE 2 Mean flow velocity curves using the general linear model (GLM) (green) and the general additional model (GAM) (blue) models

TABLE 1 Fit indices and statistics
for the general linear model (GLM)
and the general additional model
(GAM); the difference between the
models is statistically significant: χ2

(9.9556) = 0.6836, P < .001; AIC,
akaike information criterion; GCV,

generalized cross-validation; and R2

Model Variables AIC GVC R2 Statistic P

GLM Time �7564.34 0.0072 0.004 F (2, 3598) = 16.76 <.001

GLM Time, side �7566.87 0.0072 0.005 F (3, 3597) = 4.534 =.033

GLM Time, side, gender �7578.45 0.0071 0.009 F (4, 3596) = 7.828 =.005

GAM Time �7679.25 0.0069 0.036 F (2, 3598) = 21.63 <.001

GAM Time, side �7681.94 0.0069 0.038 F (3, 3597) = 4.687 =.03

GAM Time, side, gender �7762.64 0.0067 0.062 F (4, 3596) = 2.129 =.001
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valid for analysis and yielded similar results. However, the model using

the GAM resulted in better measurement of fit indices, with this dif-

ference between indices reaching statistical significance. This is partic-

ularly the case when gender is included as a variable in the statistical

model, resulting in improved fit indices and allowing further differenti-

ation of the hemodynamic curves between groups. Age is also a

known factor influencing brain hemodynamics.39 However, an interim

analysis demonstrated no significant differences for the age groups

represented in our sample, which we consider to be a reflection of the

somewhat homogeneous age range of our sample.40 The GAM's

advantage becomes even clearer when the MFV curves are visualized,

yielding a more realistic appreciation of brain hemodynamics. The

curve obtained using the GAM demonstrates a remarkable similarity

to the distribution of the raw MFV values. The modeling procedure,

statistical analysis, and interpretation of hemodynamic parameters are

a complex task.11 The use of mathematical and statistical modeling

identifies statistical differences between hemodynamic patterns; how-

ever, it is the visual inspection of such patterns, which facilitates the

inference of clinical relevance..2,7,11,18

The advantage of nonparametric, in comparison with parametric

or linear models, lies in their greater flexibility regarding assumptions

about data, minimizing the impact of measurement outliers,11,41,42

while remaining sensitive to small changes, which might occur in only

a fraction of the observation period or in a limited time frame.43,44

This certainly applies to brain blood flow velocity, where changes

occur gradually over time. This results in minimal differences between

near measurement neighbors (ie, in short time slots) but increasing dif-

ferences with more distant (ie, in larger time slots) measurement

points.12,43,44

Our study has some limitations, which must be taken into account

when interpreting our results. We conducted our analysis exclusively

with MFV measured using TCD in the MCA during a visuo-motor

task.3 While the MCA is undoubtedly the most important cerebral

artery from a neuroanatomical perspective, the remaining cerebral

arteries and the basilar artery also have waste irrigation territories,

with their own clinical implications/relevance.15,33,45,46 Although MFV

is the most commonly analyzed TCD index, there are others that are

considered important.15 TCD parameters such as peak systolic veloc-

ity, end-diastolic velocity, pulsatility index, and resistivity index all pro-

vide insight into brain hemodynamics from a different physiological

perspective.47 Taking into account the underlying data structures of

these indices, together with the robustness of nonparametric analysis,

our opinion is that the use of the GAM would also lead to better sta-

tistical modeling and visualization for these indices.

Nonparametric tests, such as the general additional model, have

several advantages over parametric tests. They have greater flexibility

regarding assumptions about data.11,41,42 Furthermore, they offer a

better representation of dynamic and interdependent results, such as

blood flow.41 Using the GAM we were able to present a realistic visu-

alization of cerebral flow velocity, thus facilitating the understanding

of its clinical implications.43,44 However, the mathematical and statis-

tical analysis and, consequently, comparison of the GAMs outcomes is

more demanding than for parametric methods. In our view, combining

these with parametric tests may help to overcome these difficul-

ties.11,12,26 Our results demonstrate the additional utility of per-

forming nonparametric tests for the analysis of dynamic and

interdependent measurements (such as cerebral flow velocity), thus

allowing for an improvement in visualization and interpretation of the

mathematical and statistical results, leading to a more intuitive under-

standing of complex physiological processes.
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