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Abstract: Wetlands as an important ecosystem type have been damaged in recent years and restora-
tion of wetland ecosystem functions through ecological water replenishment is one of the important
ways. The present study involved the construction of a novel ecological water replenishment model
for Jilin Momoge National Nature Reserve (JMNNR) using the interval two-stage stochastic program-
ming (ITSP) method. Breaking down traditional economic models that often sacrifice environmental
benefits, the model aims to replenish the ecological water in JMNNR, allocate the ecological water
resources scientifically, restore the wetland function of the reserve, improve the functional area of the
reserve, enhance the net carbon sequestration capacity of the reserve, and complete the reconstruction
of the ecosystem, while considering the ecological service value (ESV) of the reserve to achieve a joint
increase in the ecological and economic benefits. The ITSP model constructed in the present study
overcame the limitation that the original project recommendation was a single recommended value,
and the results are presented in the form of intervals to improve flexibility in decision making to allow
the individuals responsible for under-taking decisions to bring focused adjustments according to the
actual decision-making conditions and increase the selectivity of the decision-making scheme. The
present report discusses the construction of an ITSP model for the ecological water replenishment of
JMNNR in an attempt to effectively improve both economic benefits and ecosystem restoration of the
reserve, achieve the reconstruction of the JMNNR ecosystem, and provide a selective decision space
for the key decision-makers to formulate and optimize the project operation and the management
plan. The use of the ITSP model as a pre-procedural basis for the implementation of the project and
the simulation of the effects of the implementation of the project can effectively avoid the decision
limitations that exist when carrying out the project directly. The ITSP model constructed in this paper
can also be used as a theoretical guide for water replenishment projects in different areas of the world,
and the model parameters can be reasonably adjusted to achieve better results when used according
to the actual local conditions.

Keywords: interval two-stage stochastic programming (ITSP) method; ecosystem function restoration;
ecological water replenishment; ecological service value; carbon sink

1. Introduction

A wetland is a transitional zone of biodiversity and productivity at the interface
of land and water. This zone is characterized by shallow water covering wet soil and
scattered vegetation, either submerged or emerging [1]. Wetlands are considered one
of the most productive and economically valuable ecosystems globally [2] as they offer
several important ecosystem services to humans, such as carbon storage, water purification,
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flood control, biodiversity conservation, and cultural entertainment [3–6]. However, rapid
population growth and economic growth, combined with long-term overdevelopment,
have resulted in the overwhelming of the world’s wetland ecosystems, pushing several
of them to the brink of collapse [7]. Currently, over 50% of the wetlands in the world
have already been lost. This phenomenon is even further critical in China, a country
with over 60% of its wetlands damaged to varying degrees [8]. When the hydrological
environment is damaged due to natural disturbance or anthropological factors, it leads to
diminished biological habitats and reduced water sources, which challenge the survival
of biological species and even impact the structure of different biological communities,
thereby destroying biological diversity. This ultimately changes the structure of the wetland
ecosystems and destroys their stability [9,10]. Therefore, it is imperative to focus on wetland
restoration and maintenance of the wetland ecosystem functions. Jilin Momoge National
Nature Reserve (JMNNR) is located in northeastern China and is a typical wetland type
reserve and internationally important wetland. In recent years, the wetland area of the
JMNNR has also gradually shrunk due to factors such as climatic drought, and the quality
has continued to decline, with the ecological environment deteriorating. It is imperative
that measures are taken to continuously restore wetlands.

The ecological restoration of wetlands mainly encounters two major issues: one is
the sustainable availability of regional water resources, which has been impacted by the
prevailing global water scarcity [11], and the other is the lack of efficient methods and
technologies for the utilization of regional water resources for wetland restoration [12].
Wetland ecological water replenishment is one of the most effective and direct methods
available for wetland area restoration and wetland ecosystem improvement [13,14]. Eco-
logical recharge has been used widely in wetland restoration with demonstrated good
results. Yang et al. [15] developed an integrated economic-hydrological model to exam-
ine the cost-effectiveness and restoration of a 75 km2 wetland restoration scenario in the
Southern Tobacco Creek watershed in the Canadian Prairies, and the simulations found
the importance of spatially directed wetland restoration based on the economic cost to
environmental benefit ratios to achieve cost effectiveness; Hua et al. [16] proposed an
ecohydrological method for determining the potential area of freshwater wetlands to be
restored, establishing a multi-objective habitat suitability index model modification area to
be restored, and restoring the balance between the hydrological network and the ecological
water demand and ecological water supply modification areas; Chen et al. [17] used long
time series remote sensing data to improve hydrological conditions in the Zhalong wetland
by ecological water replenishment project. These scholars have used hydrological models
to restore wetlands in the study area by means of ecological water replenishment and
have achieved some results. However, the values obtained from these simulations are
all single definite values and do not take into account the uncertainties associated with
the restoration of wetland ecosystems by means of ecological water replenishment. For
example, the amount of water replenishment is usually used to estimate the area of wetland
that can be restored, but the cross-section of the wetland is not a regular rectangle, which
leads to uncertainty in the area of restored wetland. At the same time, the restoration effect
in the form of a single fixed value is not sufficient to cope with the various uncertainties
during the implementation of the project, which brings limitations to the implementation
of the project. Therefore, it is necessary to take into account the uncertainties in the wetland
ecological water replenishment project to facilitate the development and implementation
of the project.

ITSP methods have been widely used to solve uncertainty problems in a variety of
research fields. Luo et al. [18] constructed an ITSP model based on simulation to control
non-point source agricultural pollution and determined an optimal land retirement scheme
to control this pollution by minimizing the long-term economic and environmental costs. Fu
et al. [19] combined the water rights trading model with the interval-two-stage parameter
stochastic programming model, and then applied the resulting model to multi-regional,
multi-source, and multi-use water users in Sanjiang Plain to simulate each user’s optimal
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committed water consumption in this region. Maqsood et al. [20] applied the ITSP method
to a solid waste management system under uncertain conditions and developed the waste
logistics operation mode with minimum system cost and maximum system feasibility.
Therefore, the application of the ITSP method to wetland ecological water replenishment
projects can effectively solve the uncertainty in the implementation of the project.

Two model approaches have been used to restore the suitable habitat area for rare
bird species by Liao et al. [21,22]. However, the constructed model was focused only on
the effect of recharge on the migration of water birds while not considering the economic
benefits of the reserve and the restoration of the ecological functions of this wetland region.

Therefore, to improve the water scarcity scenario in the lake wetlands of JMNNR, the
present study, in cooperation with the western Jilin water supply project, constructed a
novel ecological water replenishment model based on the ITSP method for JMNNR, to
maximize the economic benefits for the ecological replenishment of each lake. Breaking the
limitations of traditional economic models, completely considering the ecological functions
of the reserve, restoring the functional area of each lake wetland, and enhancing the ESV of
each ecological service index, such that both economic benefits and ecological function of
the wetland are optimized.

2. Study Area

The Jilin Momoge National Nature Reserve is known as “the kidney of western Jilin.”
JMNNR is situated at the confluence of two rivers, the Nenjiang and the Taoer, in Zhenlai
County, Baicheng City, Jilin Province. Wukeshu and Hatuqi in Zhenlai County border the
region to the northwest [23]. The geographical location of JMNNR is depicted in Figure 1.
JMNNR receives annual precipitation of less than 400 mm, which is concentrated mainly
between the months of June and August. Since the natural precipitation in this region is
inadequate and unevenly distributed across the year, and the annual evaporation reaches
up to 900–1000 mm, which is much higher than the annual precipitation, there is a serious
shortage of water resources in the Momoge Reserve [24]. Moreover, the wetland area
has reduced over time due to the action of anthropological factors, such as reclamation
of wetlands in the protected regions, which have resulted in the withering of vegetation,
migration of birds, environmental degradation, and loss of proper functioning of the
ecosystem [25,26]. In order to restore the wetland area and the ecosystem function of
JMNNR, it was decided that the Jilin Western Water Supply Project would be utilized
as a water supply source for the ecological replenishment of the wetland (the Etoupao,
Haernaopao, and Yuanbaotupao lakes in the reserve are classified as important from the
perspective of ecological protection by the Jilin Western Water Supply Project) and that the
water resources would be reasonably allocated for reducing the ecological deterioration of
the JMNNR and the surrounding regions. The design objective was to restore the wetlands
of the JMNNR to the levels of the 1950s and 1960s and recreate the natural scenery of the
wetlands with fertile grass, pleasant water, fragrant flowers, and songbirds.
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Figure 1. The geographical location of Jilin Momoge National Nature Reserve.

3. Model Construction
3.1. Overview of ITSP Methods

In this paper, the uncertainty of variables is expressed in the form of interval, and the
ITSP model is constructed as follows:

Max f± = C± · X± (1)

subject to:
A± · X± ≥ B± (2)

X± ≥ 0 (3)

where, A± = [A−, A+] ∈ {R±}m×n, B± = [B−, B+] ∈ {R±}m×1, C± = [C−, C+] ∈
{R±}1×n, X± = [X−, X+] ∈ {R±}n×1.

3.2. Construction of Optimised Ecological Water Supply Model Based on ITSP Method

The optimization objective was chosen to maximize the economic benefits of JMNNR,
while both ecological and environmental benefits were considered. The study used the
ITSP method to construct an ecological water replenishment model for JMNNR, taking into
account the disposable water volume, lake planning scope, ecological benefit, net carbon
sequestration, and other factors as constraints. The study area included 18 lakes located in
JMNNR, and the corresponding four water intake projects were used for optimizing the
initial scheme for ecological water replenishment under dry, flat, and abundant water years
to achieve the maximum economic benefit, restore the functional area of the wetland, and
reconstruct the Momoge wetland ecosystem.

The objective function of the ITSP model constructed in the present study was
as follows:

Max f± =
18

∑
i=1

4

∑
j=1

3

∑
h=1

19

∑
k=1

Y±ij · ESV±jk ·FA±ijh (4)
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where f± denotes the total economic benefits obtained from JMNNR, i indicates the 18 lakes
in the Momoge National Nature Reserve; j = 1, 2, 3, 4 indicates four different ecological
functional areas, namely, fish ponds, crab ponds, reed wetlands, and marsh wetlands,
respectively; h = 1, 2, 3 represents the flood flow scenarios, namely, dry, flat, and abun-
dant water years, respectively; Ph denotes the probability of different traffic scenarios;
k = 1, 2 . . . 19 indicates the ecosystem service function of Momoge Reserve; OTEB±kh de-
notes the ecological benefit of the ecological service function k of the water replenishment
optimization scheme under different flow scenarios (106 yuan); Y±ij represents the 0–1 vari-

ables; ESV±jk denotes the ecological benefits per unit area of ecological service function k for

different regions (106 yuan/103 hm2), and FA±ijh denotes the different ecological function

areas of each lake under different flow scenarios (103 hm2).

3.2.1. Minimum Water Constraint

The replenishment of each lake bubble needs to meet the minimum requirements of
each ecological function area [21]:

QT±i −QS±ih ≥
4

∑
j=1

A±ijmin ·QR±ij , ∀i, h (5)

where QT±i denotes the ecological replenishment in each lake (104 m3); QS±ih denotes the
amount of water deficit under different scenarios (104 m3); A±ijmin denotes the minimum

area requirement in the different ecological functions of the lake i (103 hm2), and QR±ij
denotes the ecological water demand per unit for different ecological function zones of
each lake (104 m3/103 hm2).

3.2.2. Water Supply Capacity Constraints

The water supply capacity of the four water supply outlets in the study area:

QT±i −QS±ih ≤ QID±ih + QND±ih + QFD±ih −QL±i , ∀i, h (6)

9

∑
i=1

QFD±ih ≤ QTF±nh, n = 1, ∀h (7)

12

∑
i=10

QFD±ih ≤ QTF±nh, n = 2, ∀h (8)

16

∑
i=13

QFD±ih ≤ QTF±nh, n = 3, ∀h (9)

18

∑
i=17

QFD±ih ≤ QTF±nh, n = 4, ∀h (10)

QT±i ≤ QAD±i , ∀i (11)

QID±ih ≤ QI±i , ∀i, h (12)

QND±ih ≤ QN±i , ∀i, h (13)

where QID±ih , QND±ih , and QFD±ih denote the local water supply, normal water supply,
and floodwater supply, respectively, under different flow scenarios in each lake (104 m3);
QL±i denotes the amount of water lost during transmission (104 m3); n = 1, 2, 3, 4 indicates
the four water intakes in the study area represented by Sanfengan of Baisha Irrigation
District, Zhushan pumping station, Shijianfang intake sluice, and Haernao pumping station,
respectively; QTF±nh denotes the total flood resource at the intake for different scenarios
(104 m3); QAD±i denotes the maximum amount of water replenished in each lake (104 m3);
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QI±i and QN±i denote the local water supply and normal water supply, respectively
(104 m3).

3.2.3. Water Replenishment Sequence Constraints

Fish and crab ponds are given priority over reed and marsh wetland recharge in the
recharge project, and reed wetlands are given priority over marsh wetland recharge.

4

∑
j=3

FA±ijh ·QR±ij =



QID±ih + QND±ih + QFD±ih −QL±i −
2
∑

j=1
FA±ijh ·QR±ij ,

i f
2
∑

j=1
FA±ijh ≥

2
∑

j=1
A±ijmin

0 , i f
2
∑

j=1
FA±ijh ≤

2
∑

j=1
A±ijmin

, ∀i, h (14)

FA±i4h ·QR±i4 =


4
∑

j=3
FA±ijh ·QR±ij − FA±i3h ·QR±i3, i f FA±i3h ≥ A±ijmin

0 , i f FA±i3h ≤ A±ijmin

, ∀i, h (15)

3.2.4. Functional Zone Area Constraints

The area of each functional area must not be higher than the maximum area of that
area [21]:

4

∑
j=1

FA±ijh ≤ TFA±i , ∀i, h (16)

FA±ijh ≤ A±ijmax, ∀i, j, h (17)

4

∑
j=1

FA±ijh ≥ C±i · (QT±i −QS±ih), ∀i, h (18)

4

∑
j=1

FA±ijh ·QR±ij = QT±i −QS±ih, ∀i, h (19)

where TFA±i is the upper limit of the area of each lake planning area (104 m3) and A±ijmax is

the upper limit of the area of the different ecological function zones of the lake i (104 m3).

3.2.5. Eco-Efficiency Constraints

The value of ecological services generated in different traffic contexts [21]:

OTEB±kh =
18

∑
i=1

4

∑
j=1

FA±ijh ·Y
±
ij · ESV±jk , ∀k, h (20)

OTEB±kh ≥ TEB±k , ∀k, h (21)

18
∑

i=1

4
∑

j=1
FA±ijh ·Y

±
ij ·

19
∑

k=1
ESV±kh −

18
∑

i=1
(QT±i −QS±ih −QFD±ih) · 0.18

−
18
∑

i=1
QFD±ih · 0.11 ≥ SEB±m , ∀h

(22)

where OTEB±kh denotes the ecological benefits of the recharge optimization scheme for
the ecological service function k under different flow scenarios (106 yuan); TEB±k denotes
the ecological benefit of the ecological service function k generated by the recommended
scheme of the project (106 yuan); and SEB±m denotes the total ecological benefit generated
by the original scheme (106 yuan).
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3.2.6. Net Carbon Sequestration Constraint

Carbon sink capacity of ecological functional areas [22]:

OTCS±ih =
4

∑
j=1

FA±ijh ·Y
±
ij · NCSA±ij , ∀i, h (23)

OTCS±ih ≥ TCS±i , ∀i, h (24)

where OTCS±ij denotes the NSC of the ecological function area j for different regions after

optimization (t); NCSA±ij denotes the NSC capacity of the ecological function area j of the

lake i (t/103 hm2); and TCS±ij denotes the NSC in the ecological function area j for different
regions (t).

3.2.7. Non-Negative Constraints

The optimized solution represents a non-negative replenishment of each lake.

QS±ih, QFD±ih , FA±ijh, QID±ih , QND±ih , QFD±ih ≥ 0, ∀i, j, h (25)

4. Results and Discussion

The current study entailed developing an ecological replenishment model for JMNNR
using the ITSP method via the ecological replenishment route in order to maximize eco-
nomic benefits and restore the functional area of the JMNNR through ecological replen-
ishment projects. The aim was to alleviate the water scarcity issue in the lake wetlands
of this reserve while increasing the NSC capacity and ensuring the ESV. The application
of the model achieved the restoration of the function of the lake-lake wetland and the
reconstruction of the ecosystem.

4.1. Economic Index Analysis of the Ecological Water Replenishment Project in JMNNR Using the
ITSP Method
4.1.1. Economic Benefit Analysis of the Ecological Water Replenishment Project in JMNNR
Using the ITSP Method

Economic benefits are an important manifestation of regional economic development.
Therefore, the ecological replenishment model constructed in the present study using the
ITSP approach, while aimed at restoring the wetland functions in JMNNR, also ensured
the maximization of the local economic benefits. According to the simulation results of
the ITSP model, the economic benefits of JMNNR were [8128.86, 13,222.55] × 104 Yuan.
The model simulation results are presented as interval values to facilitate setting practical
decision options according to the actual situation. The ESV generated varies with the
type of restoration area, which requires the decision-makers to plan and select the most
appropriate decision option.

4.1.2. Analysis of the ESV of the Ecological Water Replenishment Project in JMNNR Using
the ITSP Method

JMNNR’s ecological water replenishment project considers the project’s benefits while
reconstructing the wetland ecosystem and restoring wetland functions. The project benefits
are mainly reflected in the restoration of the wetland areas and functions and the value
of the ecosystem services, where the latter refers to the benefits gained by maintaining
the ecosystem functions of the Earth’s life support systems. The recommended project
solutions and the ITSP method optimization results for the ESV under different index
systems in JMNNR are presented in Table 1.
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Table 1. Estimated ESV of JMNNR under the ecological service function system (×106 yuan).

Ecological Service Function
System

Project
Recommendation

ITSP Model Optimization Results

h = 1 h = 2 h = 3

Fish 78.88 (63.10, 90.71) (63.10, 90.71) (63.10, 99.91)
Crab 234.96 (187.97, 270.20) (187.97, 270.20) (187.97, 286.65)

Reeds 22.32 (23.56, 41.73) (24.78, 41.73) (24.98, 39.32)
Scirpus triqueter 27.00 (21.60, 36.69) (24.78, 44.12) (29.77, 48.37)

Water supply 125.56 (100.45, 144.40) (100.45, 144.40) (100.45, 155.14)
Vegetation carbon sequestration 6.92 (6.85, 12.02) (7.34, 12.51) (7.71, 12.24)

Oxygen release 63.73 (63.11, 110.83) (67.62, 115.31) (71.06, 112.75)
Food storage 412.82 (338.88, 515.08) (349.78, 536.25) (364.31, 570.58)

Cooling and humidifying 307.77 (268.82, 459.72) (297.40, 515.23) (335.51, 538.93)
Plant adsorption 308.42 (270.77, 467.14) (301.15, 526.16) (341.67, 549.75)

Pollution absorption capacity 446.52 (392.00, 676.30) (435.99, 761.75) (494.65, 795.90)
Biological Habitat 76.51 (65.46, 107.89) (70.84, 118.33) (78.01, 124.38)

Conservation of rare waterfowl 307.07 (262.72, 433.00) (284.30, 474.92) (313.08, 499.20)
Soil conservation 265.15 (229.90, 388.13) (252.38, 431.80) (282.36, 452.41)

Nutrient circulation 20.75 (17.99, 30.40) (19.76, 33.84) (22.12, 35.45)
Research and education 15.92 (13.62, 22.45) (14.74, 24.62) (16.23, 25.88)

Leisure and tourism 114.51 (97.97, 161.47) (106.02, 177.10) (116.75, 186.16)
Cityscape 62.65 (53.60, 88.34) (58.00, 96.89) (63.87, 101.84)

Natural landscapes 25.16 (21.53, 35.48) (23.30, 38.91) (25.65, 40.90)

Nineteen types of ecological service functions were analyzed in the present study,
which mainly generated ESVs in the following order: pollution absorption capacity ((435.99,
761.75) × 106 yuan) > flood storage ((349.78, 536.25) × 106 yuan) > plant adsorption
((301.15, 526.16) × 106 yuan) > cooling and humidification ((297.40, 515.23) × 106 yuan) >
conservation of rare waterfowl ((284.30, 474.92) × 106 yuan) > soil conservation ((252.38,
431.80) × 106 yuan) > crab ((187.97, 270.20) × 106 yuan) > leisure and tourism ((106.02,
177.10)× 106 yuan) > water supply ((100.45, 144.40)× 106 yuan) > ecological habitat ((70.84,
118.33) × 106 yuan) > oxygen release ((67.62, 115.31) × 106 yuan) > fish ((63.10, 90.71) ×
106 yuan) > cityscape ((58.00, 96.89) × 106 yuan) > Scirpus triqueter ((24.78, 44.12) × 106

yuan) > reeds ((24.78, 41.73) × 106 yuan) > natural landscapes ((23.30, 38.91) × 106 yuan)
> nutrient circulation ((19.76, 33.84) × 106 yuan) > research and education ((14.74, 24.62)
× 106 yuan) > vegetation carbon sequestration ((7.34, 12.51) × 106 yuan) (in flat water
years). The indicators ranked first, third, fifth, and sixth were pollution absorption capacity,
plant sorption, conservation of rare waterfowl, and soil conservation, respectively. The
indicators ranking second and fourth were flood storage and cooling and humidification,
respectively, which are also regulatory services. The rankings demonstrate that the ITSP
model constructed in the present study focused on the support and regulation of the
ecological functions in JMNNR while not focusing on the pursuit of economic gains and
primarily considering only the reconstruction and maintenance of ecological functions
in the reserve. The ESV increased sequentially in the dry, flat, and high water years as
the water period progressed. This could be attributed to the low level of available water
resources and the lower ESV generated in dry years, whereas the high level of available
water resources and greater flexibility in water allocation in high water years increased the
ESV generated by the amount of water.

The changes in the ESVs compared to the project recommendations for JMNNR after
simulation and optimization using the ITSP model are presented in Figure 2. The ESV
compared to the project recommendation was the highest for reed, reaching a value of
up to (9.51%, 83.55%). This could mainly be attributed to the fact that reed emerges from
shallow water or low wetlands and exerts a better effect in restoring saline land, while the
reed root system exerts a stabilizing effect on water and soil, which would enable effective
maintenance of the functional area in JMNNR. Moreover, the reed wetland provides a
habitat for waterfowl to breed and feed, thereby restoring the ecological functions of the
wetland in the reserve. Furthermore, the upper and lower limits of the ESVs of vegetation
carbon sequestration and oxygen release were also observed to have increased, reaching
the values of (5.51%, 77.21%) and (5.54%, 77.25%), respectively. Both vegetation carbon
sequestration and oxygen release are indicators of regulatory services. This increase,
therefore, reflected that the ITSP model constructed in the present study could regulate



Int. J. Environ. Res. Public Health 2022, 19, 3263 9 of 14

the ecological and environmental functions and enhance the project benefits. The upper
limits of the remaining indicator were also observed to have increased compared to the
project recommendation ranging from 17.33% to 66.77%, while they had been reduced from
the project recommendation ranging from −20.00% to −1.26%. After the optimization of
the ITSP model simulation results, the ESV range was extended from a specific value to
an interval, thereby increasing the flexibility of decision making and rendering it further
convenient for the decision-makers to adapt to the actual project situation and thus develop
further effective and efficient project operation and management solutions.
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4.2. Analysis of the Changes in the Functional Area of the Ecological Water Replenishment Project
in JMNNR Using the ITSP Method

Ecological recharge is one of the most direct and effective approaches to reconstruct
wetland ecosystems and restore wetland functions [25,26], which is conducive to solv-
ing the problem of shrinking wetland areas and effectively restoring the wetland areas.
Table 2 shows the area value in the recommended project solution as well as the area
results obtained using the ITSP method for the functional area of each lake in the reserve.
Figure 3 depicts the changes in the functional area of each lake in JMNNR compared to
the recommended project solution values after optimization using the ITSP model. The
changes in the functional areas of the lakes in JMNNR compared to the recommended
project solutions are presented in Figure 3.

The result values are presented as intervals. Compared to the one value in the project
recommendation, the interval range facilitates the decision-makers in making better deci-
sions suited to the actual working conditions. As visible in Table 2, after the ITSP model
simulation, the functional area of the Zhushanpao continued to remain the largest, with the
values of (7.04, 9.92) × 104 hm2, (7.64, 12.37) × 104 hm2, and (8.79, 13.82) × 104 hm2 in dry,
flat, and abundant water years, respectively. This was followed by Haernaopao, with the
values of (6.39, 9.27) × 104 hm2, (7.54, 12.11) × 104 hm2, and (9.72, 13.23) × 104 hm2 in dry,
flat, and abundant water years, respectively. This was consistent with the project scheme
ranking. The remaining functional area of the lake remained unchanged largely, indicating
that after optimization using the ITSP method, the functional area considers the original
lake division area and does not pursue the area enhancement effect. As the water period
progressed, the area of the functional region increased in the order of dry, flat, and high
water years. This is because the lowest level of water available in the dry years rendered it
further difficult to restore the area of the functional region, while the high level of water



Int. J. Environ. Res. Public Health 2022, 19, 3263 10 of 14

available in the high water years rendered it convenient to restore the area of the functional
region due to the flexibility in water allocation.

Table 2. Changes in the functional area of each lake in the nature reserve prior to and after the ITSP
model optimization (×104 hm2).

Lake Project
Recommendation

ITSP Model OPTIMIZATION Results

h = 1 h = 2 h = 3

Yuanbaotupao 3.58 (4.28, 5.58) (3.93, 5.58) (4.93, 5.58)
Wulanzhaopao 1.74 (2.43, 2.65) (1.80, 2.54) (2.41, 2.69)

Momogepao 3.29 (3.38, 5.13) (3.81, 5.13) (3.81, 5.13)
Etoupao 3.80 (4.57, 5.79) (5.02, 5.86) (5.37, 5.93)

Taipingshanpao 1.26 (1.23, 1.56) (1.44, 1.96) (1.47, 1.96)
Datunpao 1.13 (1.42, 1.57) (1.33, 1.57) (1.41, 1.57)

Gaomianpao 3.79 (3.03, 5.89) (3.80, 5.91) (3.42, 5.91)
Huoshaopao 0.48 (0.69, 0.75) (0.69, 0.98) (0.90, 0.98)

Wobupao 0.92 (1.02, 1.44) (1.31, 1.44) (1.23, 1.44)
Zhushanpao 11.71 (7.04, 9.92) (7.64, 12.37) (8.79, 13.82)
Houbutaipao 3.79 (3.36, 4.64) (3.92, 4.64) (3.92, 4.79)

Shaolipao 2.09 (1.49, 1.86) (1.60, 1.84) (1.73, 1.87)
Haernaopao 10.28 (6.39, 9.27) (7.54, 12.11) (9.72, 13.23)

Wujiazi Reservoir 0.36 (0.51, 0.56) (0.51, 0.40) (0.45, 0.56)
Qunying Reservoir 1.20 (1.64, 1.81) (1.64, 1.81) (1.23, 1.81)

Yinghoutaipao 0.20 (0.27, 0.29) (0.25, 0.19) (0.13, 0.29)
Nashitupao 1.00 (0.82, 1.14) (0.82, 1.38) (0.89, 1.41)
Baoshanpao 0.73 (0.36, 0.47) (0.47, 0.47) (0.54, 0.61)
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When the above results are analyzed in combination with Figure 3, it is visible that
after optimization using the ITSP method, the area of each lake functional region had
changed compared to the project recommendation. Among all lakes, the fire-burning
lake presented the largest increase in both upper and lower limits of the optimized func-
tional area compared to the project recommendation ((58.36%, 87.77%)). This was fol-
lowed by Yuanbaotupao ((22.38%, 56.00%)), Ulanzhaopao ((27.19%, 50.86%)), Momogepao
((11.39%, 56.00%)), Etoupao ((31.22%, 54.24%)), Taipingshanpao ((9.68%, 44.91%)), Datun-
pao ((22.49%, 39.26%)), Wobupao ((28.82%, 56.00%)), Wujiazi Reservoir ((36.81%, 41.65%)),
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Qunying Reservoir ((25.40%, 50.55%)), and Yinghoutaipao ((9.06%, 28.80%)). The opti-
mized upper and lower limits of the functional area were increased compared to the project
recommendation, indicating that the optimized simulation of the ITSP model focused on
restoring the functional area of these lakes. The lower limit of the optimized functional
area of Gaomianpao ((−9.82%, 55.82%)), Zhushanpao ((−33.19%, 2.77%)), Houbutaipao
((−1.48%, 23.74%)), Haernaopao ((−23.31%, 12.23%)), and Nashitupao ((−15.46%, 30.94%))
was lower than that of the project recommendation. The lower and upper limits of the opti-
mized functional areas of the Momoge Nature Reserve ((−15.46%, 30.94%)) were lower and
higher, respectively, compared to the limits in the project recommendation, which indicated
that the restoration of the functional areas of these lakes was selective and could be adjusted
selectively by considering the functional areas in the ITSP as a whole. The upper and lower
limits of the optimized functional area of Shaolipao ((−23.06%, −11.29%)) and Baoshanpao
((−37.17%, −28.95%)) were lower than the recommended project solution in terms of the
increase in the functional area, which was because the model considered, in general, the
overall lake functional area of JMNNR and could be adjusted as required, thereby causing
increased overall lake functional area of JMNNR after the model simulation.

4.3. Analysis of the NSC of the Ecological Replenishment Project in JMNNR Using the
ITSP Method

As an important ecosystem type for carbon sinks [27], wetlands represent an important
component of the global carbon cycle system, because of which the wetland carbon sinks
are considered highly valuable for research [28,29]. In the present study, an ecological
replenishment model of JMNNR was constructed using the ITSP method to decipher the
carbon sink role of the wetlands and optimize it for the important constraint of NSC. The
simulation results for the NSC obtained using the ITSP model are presented in Table 3.

Table 3. NSC in each lake in JMNNR (104 t).

Lake Project
Recommendation

ITSP Model Optimization Results
Rate of Change

h = 1 h = 2 h = 3

Yuanbaotupao 3104.47 (2483.58, 6033.06) (3995.45, 6033.06) (3947.37, 6033.06) (11.95%, 94.33%)
Wulanzhaopao 1517.56 (2099.06, 3369.02) (1233.13, 3224.13) (2230.14, 3414.51) (22.18%, 119.82%)

Momogepao 2844.29 (2275.43, 5546.37) (2534.16, 5472.72) (2534.16, 5472.72) (−13.94%, 93.27%)
Etoupao 3301.04 (4836.73, 7331.59) (4625.40, 7427.34) (2673.37, 3827.86) (22.54%, 87.69%)

Taipingshanpao 1091.18 (872.94, 2056.01) (927.09, 2127.80) (1191.69, 2127.80) (−8.61%, 92.81%)
Datunpao 988.59 (820.70, 909.50) (820.70, 909.50) (831.73, 909.50) (−16.61%, −8.00%)

Gaomianpao 3273.54 (2618.83, 6298.56) (3411.57, 6298.56) (3592.81, 6298.56) (−2.01%, 92.41%)
Huoshaopao 426.38 (717.60, 1073.22) (717.60, 1073.22) (717.60, 1073.22) (68.30%, 151.70%)

Wobupao 794.89 (1023.02, 1529.44) (1019.34, 1529.44) (1022.46, 1529.44) (28.52%, 92.41%)
Zhushanpao 9249.17 (7399.34, 14,633.72) (7399.34, 15,742.08) (8470.54, 16,240.82) (−16.14%, 68.00%)
Houbutaipao 2073.14 (1658.51, 3542.77) (1804.90, 3542.77) (1971.04, 3731.65) (−12.62%, 73.93%)

Shaolipao 1145.5 (916.40, 1786.87) (943.91, 1759.76) (1069.05, 1795.04) (−14.76%, 55.44%)
Haernaopao 6461.45 (5291.13, 10,433.41) (5716.78, 11,409.77) (6280.53, 11,630.61) (−10.81%, 72.68%)

Wujiazi Reservoir 153.05 (122.44, 390.28) (122.44, 390.28) (200.14, 390.28) (−3.08%, 155.00%)
Qunying Reservoir 141.57 (113.26, 297.30) (187.30, 297.30) (187.30, 297.30) (14.87%, 110.00%)

Yinghoutaipao 11.48 (19.32, 29.27) (9.18, 29.27) (9.18, 29.27) (9.43%, 155.00%)
Nashitupao 580.37 (480.42, 1039.50) (564.12, 1044.67) (564.12, 1044.67) (−7.61%, 79.70%)
Baoshanpao 842.22 (673.78, 1012.51) (673.78, 1012.51) (673.78, 1309.48) (−20.00%, 31.97%)

As visible in Table 3, the top five NSCs after optimization using the ITSP model
were Zhushanpao ((7399.34, 15,742.08) × 104 t), Haernaopao ((5716.78, 11,409.77) × 104 t),
Etoupao ((4625.40, 7427.34) × 104 t), Gaomianpao ((3411.57, 6298.56) × 104 t), and Yuan-
baotupao ((3995.45, 6033.06) × 104 t) (in flat water years), which was consistent with the
ranking in the recommendation scheme. The ranking of the remaining lakes in terms of
NSC remained largely unchanged. This result indicated that the model was optimized on
the premise of completely considering the NCS capacity of the original lakes. The project
recommendation scheme provides a single recommendation value. In contrast, in the actual
project implementation process, the NSC has uncertainty and, therefore, in the present
study, the results were expressed in interval form to characterize the NSC, completely
considering its uncertainty and optimizing the decision scheme.
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After optimization using the ITSP model, the upper and lower limits of the NSC for
each lake had changed compared to the project recommendation. The upper and lower
limits of NSC for the fire lake were the largest compared to the project recommendation, by
up to (68.30%, 151.70%). This was because after the optimization using the ITSP model, the
planning area of the functional region of the fire-burning lake increased the most, and the
area with the wetland plants and having a carbon sink function, such as reeds, increased.
This increased the NSC capacity of this lake. The lower limits of the NCS of Yuanbaotupao,
Ulanzhaopao, Etoupao, Wobupao, Qunying Reservoir, and Yingtaihoupao were lower
while their upper limits were higher than the project recommendation values, indicating
that different types of functional areas could be selectively divided in these lakes to achieve
the effect of controlling the NCS capacity. Both upper and lower limits of the optimized
NSC in Datunpao were lower than the project recommendation, which indicated an overall
consideration of the NSC capacity of JMNNR, the overall increase in the reserve’s NSC
capacity. and a significant effect of the ecological function reconstruction.

4.4. Practical Assessment of the ITSP Model

The ITSP model constructed in this paper has wide application prospects, not only for
JMMNR but also for wetland replenishment projects in other regions. When applying the
model, the local characteristics should be considered and the influencing factors should
be adjusted. When applying the ITSP model, control units and planning areas should be
redefined according to the size of the planning area, a suitable planning cycle should be
determined, the types of ecological values and indicators to be considered should be set
according to the local industrial structure, and the ITSP model should be established in line
with the actual local situation to provide decision-makers with a decision solution.

5. Conclusions

On the premise of restoring the ecological environment of the reserve, in order to
maximize economic benefits, the current study involved the development of an eco-logical
water replenishment model for JMNNR using the ITSP method, which aimed at the wetland
water shortage, and took into account uncertainties in the ecological replenishment process
and characterized simulation results as interval values, thereby broadening the scope of
decision making. After optimization using the ITSP model, the ESV, functional area, and
the NSC of JMNNR improved significantly, indicating that the ITSP model constructed
in the present study could effectively restore the ecological functional area in the reserve
and improve the ecological function of the wetland while also ensuring the economic and
project benefits. Meanwhile, the ITSP model characterized the decision-making scheme
in the form of intervals, which eliminated the limitation of a single decision value in the
recommendation project scheme and increased flexibility in the decision-making process,
both of which are conducive to decision-makers when incorporating adjustments according
to the actual project profile and preparing a further practical decision-making scheme. As a
practical model, the ITSP model constructed in this paper is equally applicable to wetland
replenishment projects in other areas and should be used with reasonable delineation of
regional control units and planning periods, taking into account the scale of the planning
area and the actual regional profile, model parameters are established based on local
conditions to build a water refill model suitable for the region, so as to obtain a water refill
solution suitable for the region. In the process of replenishing wetlands, we should pay
attention to the common development of ecology and economy. The model constructed
in this paper focuses on economic development. Liao et al. (22] focused on restoring the
suitable habitat area of rare birds. This paper provides another scheme for decision-makers
from the perspective of economic development, which is beneficial for decision-makers to
comprehensively consider the actual situation of wetland water supply. The ITSP model
constructed in this paper is based on the actual situation of JMNNR, and the study scale
is small, and there are no social problems such as population migration, large-scale land
use change, climate change, etc. The model constraints have limitations, therefore, when
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decision-makers in other regions use this model for engineering decisions, they should
take into account the local regional profile, but also fully consider the local topographic
conditions, social factors, population migration, etc., and make relevant adjustments to the
model constraints. The ITSP model constructed in the present study could also be used
as a theoretical guide for conducting wetland ecological replenishment in other areas by
adjusting the model to suit the local conditions during the actual implementation of the
project, which would enable preparing a decision-making scheme closer to the ideal scheme.
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