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INTRODUCTION 
 

Acute cardiac injury caused by septic shock is a common 

cardiovascular complication in critically ill patients [1]. In 

septic shock, the myocardium is injured due to a variety of 

causes, including severe infection, anoxia, ischemia, 

trauma, and surgery, resulting in high morbidity and 

mortality [2]. Unfortunately, no effective treatment exists 

for septic cardiomyopathy. Thus, studying the molecular 

pathogenesis of acute myocardial injury may provide an 

effective target for the early diagnosis and treatment of 

septic cardiomyopathy.  

 

Recently, studies of sepsis-induced myocardial injury 

have found that excessive reactive oxygen species 

(ROS) production caused by mitochondrial damage 

results in increased oxidative stress, leading to cell 

death and tissue damage [3]. Studies have also found 

that early treatment with ROS scavengers is an effective 

therapy for septic cardiomyopathy [4, 5]. At the 

molecular level, ROS-induced cardiomyocyte oxidative 

stress promotes protein oxidation and lipid peroxidation 

[6],  which  reduce cardiomyocyte contractility and thus  

 

decrease heart pump function, leading to low perfusion 

of distant organs or tissues [7]. More severely, oxidative 

stress triggers cardiomyocyte death through apoptosis, 

necroptosis, and necrosis [8]. Mitochondria are the main 

source of ROS and are vulnerable to oxidative stress 

[9]. Therefore, protection of mitochondria is vital to 

suppress oxidative stress.  

 

Mitochondrial biogenesis is the process of mito-

chondrial degradation and regeneration [10]. It is 

regulated by several nuclear genes that control 

mitochondrial DNA synthesis and protein expression, 

such as peroxisome proliferator-activated receptorγco-

activator-1α (PGC1α) [11]. PGC1α, a member of the 

transcriptional coactivator family PGC-1, primarily 

exists in high-energy-demand tissues and organs, 

including the heart, controlling both mitochondrial 

biogenesis and energy metabolism [12, 13]. PGC-1α 

expression is activated by a variety of stresses such as 

oxidative stress, exercise training, myocardial ischemia-

reperfusion injury, myocardial infarction, and cardiac 

fibrosis [14, 15]. Elevated PGC-1α expression is 

correlated with increased mitochondrial biogenesis, 
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which sustains mitochondrial quality and quantity [16]. 

Conversely, knockout of PGC-1α decreases cardiac 

function, possibly due to mitochondrial turnover arrest 

and cardiomyocyte mitochondrial death [17]. At the 

molecular level, PGC-1α transcription and activity are 

controlled by the AMPK pathway [18]. The protective 

function of AMPK on diabetic cardiomyopathy, cardiac 

ischemia-reperfusion injury, cardiac remodeling, and 

inflammation-related myocardial damage has been 

widely studied [19, 20]. Considering the beneficial 

effects exerted by AMPK and PGC-1α on mitochondrial 

homeostasis and cardioprotection, determining their 

effect on sepsis-related myocardial injury and mito-

chondrial damage is important. 

 

Sirtuin-3 (SirT3) is a nuclear NAD+-dependent histone 

deacetylase that regulates mitochondrial oxidative stress 

and bioenergetics [21]. SirT3 increases the expression of 

genes related to mitochondrial DNA repair through 

deacetylation, including NEIL1, NEIL2, OGG1, MUTYH, 

APE1, and LIG3 [22]. SirT3 also inhibits mitochondria-

mediated apoptosis in cardiomyocyte ischemia-

reperfusion injury, and this effect has been associated with 

activation of the AMPK pathway [23]. Anti-senescence 

[24], anti-fibrosis [25], and anti-inflammation [26] effects 

of SirT3 have also been demonstrated. Increased SirT3 

has been shown to prevent apoptosis [23], oxidative stress 

[27], mitochondrial fission [28], unfolded protein 

response [29], and metabolic reprogramming [30] in 

many cardiovascular disorders. However, there is a lack 

of evidence demonstrating the effect of SirT3 on septic 

cardiomyopathy. The aim of our study is to determine 

whether SirT3 protects cardiomyocytes against septic 

shock by sustaining mitochondrial biogenesis via the 

AMPK pathway.  

 

RESULTS 
 

SirT3 and AMPK are downregulated in LPS-

induced septic cardiomyopathy 

 

Lipopolysaccharide (LPS) was used to establish the 

septic cardiomyocyte model in vitro. Then, RNA was 

isolated to analyze the alterations of SirT3 and AMPK 

in cardiomyocytes. As shown in Figure 1A, 1B, 

compared to the control group, SirT3 was significantly 

downregulated. A decrease in AMPK transcription was 

also seen. These data indicate that LPS suppresses 

SirT3 and AMPK transcription. In addition, ELISA 

assay demonstrated that SirT3 and AMPK activity was 

significantly downregulated in cardiomyocytes after 

exposure to LPS (Figure 1C, 1D), suggesting that LPS 

may inhibit SirT3 and AMPK protein expression. 

Cardiomyocyte viability was also reduced in response 

to LPS treatment (Figure 1E). To determine whether 

SirT3 and AMPK inactivation contributes to LPS-

mediated cardiomyocyte death, lentivirus-loaded SirT3 

(SirT3-OE) and AMPK agonist (AICAR) were 

incubated with cardiomyocytes in the presence of LPS. 

Then, cardiomyocyte viability was measured using the 

TUNEL assay. As shown in Figure 1F, 1G, 

approximately 3% of cardiomyocytes were TUNEL 

positive under normal condition, whereas this rate 

increased to approximately 41% after exposure to LPS. 

Treatment with either Sirt3-OE or AICAR drastically 

suppressed the rate of TUNEL-positive cardiomyocytes. 

Together, our results indicate that SirT3 and AMPK are 

inhibited by LPS, leading to cardiomyocyte damage. 

 

Overexpression of SirT3 or activation of AMPK 

reduces LPS-induced cardiomyocyte dysfunction 

 

Cardiomyocyte contractile properties determine cardiac 

function [31]. Previous studies have reported that septic 

cardiomyopathy is characterized by depressed myocardial 

ejection function, which results in lower organ blood 

perfusion [32, 33]. In our study, a single cardiomyocyte 

was isolated, and cardiomyocyte mechanical features 

were observed. As shown in Figure 2A–2F, the resting 

cell length of the cardiomyocyte was similar in the 

presence or absence of LPS. In addition, SirT3-OE or 

AICAR treatment did not affect resting cell length. 

However, LPS treatment significantly reduced peak 

shortening in the cardiomyocyte, and this effect was 

improved by the addition of SirT3-OE or AICAR (Figure 

2A–2F). Similarly, the cardiomyocyte maximal velocity 

of shortening (+dL/dt) was also suppressed by LPS, 

whereas SirT3-OE or AICAR treatment restored the 

+dL/dt (Figure 2A–2F). In addition to the maximal 

velocity of shortening, the maximal velocity of 

relengthening (−dL/dt), which is used to evaluate 

cardiomyocyte relaxation, was also compromised by LPS 

treatment and reversed to near-normal levels with Sirt3-

OE or AICAR treatment (Figure 2A–2F). To quantify 

cardiomyocyte contractile and diastolic function, time to 

peak shortening (TPS) and time to 90% relengthening 

(TR90) were measured [34], as previously described. As 

shown in Figure 2A–2F, compared to the control group, 

both TPS and TR90 increased after LPS treatment, 

suggesting impaired cardiomyocyte contractile and 

diastolic capacities. However, SirT3-OE or AICAR treat-

ment improved TPS and TR90 in cardiomyocytes that had 

been treated with LPS (Figure 2A–2F). Our results 

indicate that SirT3 and AMPK are important in sustaining 

cardiomyocyte mechanical properties in the presence of 

LPS. 

 

SirT3 and AMPK sustain mitochondrial function  
 

At the subcellular level, SirT3 is primarily localized in 

mitochondria and sustains mitochondrial bioenergetics 

[35]. In addition, mitochondria-mediated ATP production 
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is vital for cardiomyocyte contraction and relaxation 

[36]. Thus, we wanted to determine whether 

mitochondrial function is sustained by SirT3 and 

AMPK in LPS-treated cardiomyocytes. First, mito-

chondrial metabolism was determine by analyzing 

mitochondrial respiration. Compared to the control 

group, the activity of mitochondrial electron transport 

chain complexes was significantly downregulated by 

LPS treatment (Figure 3A–3C); this effect was reversed 

by SirT3-OE or AICAR treatment. Subsequently, due to 

impaired mitochondrial respiration, mitochondrial ROS 

production was significantly elevated in LPS-treated 

cardiomyocytes, whereas SirT3-OE or AICAR 

decreased mitochondrial ROS accumulation (Figure 

3D–3E). The levels of cellular anti-oxidants, including 

GSH and SOD, were decreased by LPS, which may 

prevent mitochondrial ROS clearance (Figure 3F–3G). 

However, SirT3-OE or AICAR increased the levels of 

GSH and SOD and thus reduced intracellular mito-

chondrial ROS (Figure 3D–3G).  

 

Previous studies have proposed that damaged 

mitochondria may induce cardiomyocyte death by 

increasing the opening rate of mitochondrial per-

meability transition pore (mPTP) [37]. As shown in 

Figure 3H–3I, compared to the control group, LPS 

increased mPTP opening, which activated caspase-9. In 

contrast, SirT3-OE or AICAR treatment blocked mPTP 

opening (Figure 3H) and thus suppressed LPS-mediated 

caspase-9 activation (Figure 3I), suggesting that LPS 

may induce mitochondrial apoptosis in cardiomyocytes 

by inhibiting the SirT3-AMPK pathway.  

 

 
 

Figure 1. SirT3 and AMPK are downregulated in response to LPS-induced septic cardiomyopathy. (A, B) RNA was isolated, and 
the transcription of SirT3 and AMPK was remeasured. (C, D) ELISA was used to analyze the activities of SirT3 and AMPK in response to LPS 
treatment. (E) MTT assay was used to detect cardiomyocyte viability under LPS treatment. (F, G). TUNEL staining for apoptotic 
cardiomyocytes. Lentivirus-loaded SirT3 (SirT3-OE) and AMPK agonist (AICAR) were incubated with cardiomyocytes in the presence of LPS. 
Then, the number of TUNEL-positive cardiomyocytes was determined. *P < 0.05. 
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Mitochondrial biogenesis is increased by SirT3 via 

the AMPK pathway 

 

Recent studies have found a relationship between SirT3 

overexpression and mitochondrial biogenesis activation 

in kidney tumor cells [38] and osteoblasts [39]. 

Considering the beneficial effects exerted by 

mitochondrial biogenesis on mitochondrial turnover, we 

aimed to determine whether SirT3 induces mito-

chondrial biogenesis to preserve mitochondrial function 

under LPS stress. As shown in Figure 4A–4C, 

compared with the control group, genes associated with 

mitochondrial biogenesis, such as peroxisome 

proliferator-activated receptor-gamma coactivator 1 

alpha (PGC1α), transcription factor A mitochondrial 

(Tfam), and nuclear factor erythroid 2-related factor 2 

(Nrf2), were significantly downregulated at the 

transcriptional level in the LPS model. Interestingly, 

SirT3-OE or AICAR treatment increased mitochondrial 

biogenesis (Figure 4A–4C). To determine whether 

SirT3 modulates mitochondrial biogenesis via AMPK, 

compound C (CC), an inhibitor of the AMPK pathway, 

was added to SirT3-treated cardiomyocytes before LPS 

treatment. Compared to the control group, although 

SirT3 improved mitochondrial biogenesis (as 

demonstrated by increased PGC1α, Tfam, and Nrf2), 

this effect was negated with the addition of CC (Figure 

4A–4C), confirming that AMPK is required for SirT3-

activated mitochondrial biogenesis. Subsequently, 

immunofluorescence demonstrated that PGC1α and 

Nrf2 levels were significantly downregulated in LPS-

treated cardiomyocytes (Figure 4D–4F). Although 

SirT3-OE upregulated PGC1α and Nrf2 expression, this 

action was nullified by CC (Figure 4D–4F). Our results 

demonstrate that SirT3 activates mitochondrial bio-

genesis through AMPK. 

 

Inhibition of mitochondrial biogenesis decreases 

SirT3-induced mitochondrial protection and 

cardiomyocyte survival  
 

To verify whether mitochondrial biogenesis is required 

for SirT3/AMPK-mediated mitochondrial protection, 

azithromycin, an antagonist of mitochondrial bio-

genesis, was used. Administration of azithromycin 

inhibited mitochondrial electron transport chain 

complex activity (Figure 5A, 5B) and induced mito-

chondrial ROS overload (Figure 5C, 5D) in cardio- 

 

 
 

Figure 2. Overexpression of SirT3 or activation of AMPK attenuates LPS-mediated cardiomyocyte dysfunction. (A–F) 
Cardiomyocyte contractility in response to LPS treatment. Lentivirus-loaded SirT3 (SirT3-OE) and AMPK agonist (AICAR) were incubated with 
cardiomyocyte in the presence of LPS. +dL/dt is the maximal velocity of shortening. −dL/dt is the maximal velocity of relengthening. TPS, time 
to peak shortening; TR90, time to 90% relengthening. *P < 0.05. 
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myocytes treated with SirT3-OE or AICAR. 

Azithromycin was used to determine whether mito-

chondrial biogenesis activation is the underlying 

mechanism of SirT3/AMPK-induced cardioprotection, 

and TUNEL apoptosis staining and caspase-3 activity 

were measured. As shown in Figure 5E and 5F, 

compared to the control group, the number of TUNEL-

positive cardiomyocytes was significantly increased 

after exposure to LPS. SirT3-OE reduced the ratio of 

apoptotic cardiomyocytes, but this effect was not seen 

in azithromycin-treated cardiomyocytes (Figure 5E, 

5F). Similarly, caspase-3 activity was increased in 

cardiomyocytes when they were cultured with LPS 

(Figure 5G). Although SirT3-OE was shown to prevent 

caspase-3 activation, this effect was nullified by 

azithromycin (Figure 5G). Therefore, these results 

confirm that mitochondrial biogenesis, which is 

governed by the SirT3/AMPK pathway, protects against 

LPS-induced mitochondrial damage and cardiomyocyte 

death.  

 

DISCUSSION 
 

Septic cardiomyopathy is a common feature of severe 

sepsis syndromes and is characterized by global 

ventricular dysfunction with decreased ejection fraction, 

diffuse cardiomyocyte death, and interstitial edema. 

Diagnostic approaches include echocardiography,  

 

 
 

Figure 3. SirT3 and AMPK sustain mitochondrial function. (A–C) ELISA assay was used to analyze the activity of mitochondrial electron 
transport chain complexes in the presence of LPS. Lentivirus-loaded SirT3 (SirT3-OE) and AMPK agonist (AICAR) were incubated with 
cardiomyocytes before LPS treatment. (D–E) Immunofluorescence for mitochondrial ROS production. (F, G) GSH and SOD activity was 
measured using ELISA. (H) mPTP opening rate was measured in response to LPS treatment, SirT3-OE transfection, and AICAR 
supplementation. (I) ELISA was used to detect the activity of caspase-9. *P < 0.05. 
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detection of biomarkers such as troponin, and 

measurement of pro-inflammatory factors [40]. Several 

molecular mechanisms have been proposed to explain 

the pathogenesis underlying septic cardiomyopathy 

including cytokine-induced cardiomyocyte apoptosis, 

impaired microvascular reperfusion, histone-mediated 

angioedema, and mitochondrial dysfunction–related 

energy depletion [41]. In response to these possible 

pathological mechanisms, fluid resuscitation, vasoactive 

agents, negative chronotropic agents, and supportive 

care have been used to treat septic cardiomyopathy [42]. 

In the present study, we found that SirT3 down-

regulation and AMPK inactivation are the primary 

subcellular events in the progression of sepsis-induced 

myocardial damage. Decreased SirT3 was followed by 

AMPK inactivation, resulting in blunted mitochondrial 

biogenesis. Subsequently, defective biogenesis in 

mitochondria caused mitochondrial damage, as 

characterized by decreased mitochondrial metabolism, 

increased mitochondrial ROS production, and increased 

mitochondrial apoptosis. Mitochondrial dysfunction 

impaired cardiomyocyte contractility and even triggered 

cardiomyocyte death. Overexpression of SirT3 sustain-

ed mitochondrial function and cardiomyocyte viability 

 

 
 

Figure 4. Mitochondrial biogenesis is increased by SirT3 via the AMPK pathway. (A–C) RNA was isolated from cardiomyocytes, and 
then transcription of mitochondrial biogenesis parameters was determined. Lentivirus-loaded SirT3 (SirT3-OE) and AMPK agonist (AICAR) 
were incubated with cardiomyocyte before LPS treatment. Compound C (CC), an antagonist of AMPK, was used to inhibit the activation of 
AMPK in SirT3-OE–transfected cardiomyocytes. (D–F)  Immunofluorescence assay for Nrf2 and PGC1α in the presence of LPS. *P < 0.05. 
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through AMPK-controlled mitochondrial biogenesis. 

These findings provide new insight into the subcellular 

molecular mechanisms underlying septic cardiomyo-

pathy. Based on our results, drugs targeting the SirT3-

AMPK-mitochondrial biogenesis axis may benefit 

patients suffering from sepsis-related myocardial 

injury. 

 

Recently, studies have examined the role of SirT3 in 

cardioprotection. For example, cardiomyocyte hyper-

trophy is improved by SirT3 activation via reduction of 

cytoskeletal protein expression [43]. Cardiomyocyte-

specific overexpression of SirT3 reduces myocardial 

infarct size by inhibiting cardiomyocyte death and 

preventing infarct zone extension [44, 45]. With respect 

to arrhythmia, SirT3 upregulation stimulates Na+/K+-

ATPase and thus moderately increases intracellular K+, 

augmenting the stability of cardiomyocyte membrane 

potential [46]. In addition, activation of SirT3 

accelerates glucose metabolism via upregulation of 

PPARα [47], and SirT3-induced metabolic reprogram-

ming has been shown to sustain cardiomyocyte 

 

 
 

Figure 5. Inhibition of mitochondrial biogenesis decreases SirT3-mediated mitochondrial protection and cardiomyocyte 
survival. (A, B) ELISA assay was used to analyze mitochondrial electron transport chain complex activity in the presence of LPS. Lentivirus-
loaded SirT3 (SirT3-OE) was incubated with cardiomyocytes in the presence of LPS. Compound C (CC), an antagonist of AMPK, was used to 
inhibit the activation of AMPK in SirT3-OE–treated cardiomyocytes. (C, D) Immunofluorescence of mitochondrial ROS production. (E, F) 
TUNEL staining of apoptotic cardiomyocytes. SirT3-OE was incubated with cardiomyocytes in the presence of LPS. CC was used to inhibit the 
activation of AMPK in SirT3-OE–treated cardiomyocytes. Then, the number of TUNEL-positive cardiomyocytes was determined. (G) ELISA was 
used to detect the activity of caspase-3. *P < 0.05. 
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function in a mouse model of heart failure [48]. Due to 

the critically important role played by SirT3 in 

cardiomyocyte contractility, metabolism, and survival, 

drugs targeting SirT3 have been developed and studied. 

For example, exendin-4, an anti-diabetes drug that has 

been used to control fasting blood glucose, upregulated 

SirT3 activity in a mouse model of myocardial 

ischemia-reperfusion injury [23]. Pyridostigmine, a 

vasoactive agent modulating blood pressure, has been 

reported to affect SirT3 expression and enhances 

glucose metabolism in diabetic mice [49]. Exogenous 

H2S, an anti-oxidative gas, interacts with SirT3 and 

promotes transcription of mitochondrial respiratory 

enzymes [50]. Unfortunately, no drugs targeting SirT3 

have been investigated in the setting of septic 

cardiomyopathy. Thus, cellular and animal studies are 

needed to determine how to restore SirT3 in LPS-

treated cardiomyocytes.  

 

Mitochondrial biogenesis is significant in neonatal 

cardiomyocytes in order to meet the metabolic 

requirements of cardiomyocyte contractility [13, 51]. 

With increasing age, the extent and activity of 

mitochondrial biogenesis are slowly reduced [12, 52]. 

Therefore, mitochondrial biogenesis has been identified 

as a factor that may delay aging [53]. The goal of 

mitochondrial biogenesis is to produce new mito-

chondria through mitochondrial division, in order to 

sustain the mitochondrial cycle in cooperation with 

mitochondrial autophagy [54, 55]. Damaged or 

defective mitochondrial biogenesis is associated with an 

accumulation of old or dysfunctional mitochondria with 

reduced mitochondrial potential or increased ROS [56]. 

Subsequently, these damaged mitochondria disrupt 

cardiomyocyte metabolism and induce mitochondrial 

apoptosis or necrosis through mPTP opening [57, 58]. 

Therefore, activation of mitochondrial biogenesis is a 

protective tool to reduce cardiomyocyte vulnerability to 

stress. For example, increased mitochondrial biogenesis 

protects cardiomyocytes against ischemia-reperfusion 

injury by reducing mitochondrial oxidative stress and 

improving mitochondrial metabolism [59]. In addition, 

mitochondrial response sensitivity and mitochondrial 

senescence were shown to be normalized by mito-

chondrial biogenesis activation in a mouse model of 

myocardial hypertrophy [60, 61]. In this study, we 

observed the pathological alterations and protective 

mechanisms underlying mitochondrial biogenesis in 

septic cardiomyopathy. Our findings provide further 

evidence of the cardioprotective properties of mitochon-

drial biogenesis in cardiovascular disorders.  

 

A limitation of our study is the lack of in vivo studies to 

support our findings. In addition, we did not evaluate 

the impact of the SirT3/AMPK axis on cardiomyocyte 

metabolism and the myocardial inflammatory response. 

In conclusion, SirT3 downregulation, AMPK 

inactivation, and mitochondrial biogenesis inhibition are 

present in septic cardiomyocytes. Overexpression of 

SirT3 increases AMPK activity and improves mito-

chondrial biogenesis, which sustains mitochondrial 

function and reduces sepsis-related cardiomyocyte injury.  

 

MATERIALS AND METHODS 
 

Cell culture 
 

Neonatal mice cardiomyocytes were isolated from 1- to 2-

day-old mice. In brief, hearts were removed, ventricles 

were pooled, and cells were dispersed by successive 

enzymatic digestion with collagenase A (0.4 mg/mL, 

Roche) and pancreatin (0.5 mg/mL, Sigma-Aldrich) [62]. 

Cell suspension was thereafter purified by centrifugation 

through a discontinuous Percoll gradient to obtain 

myocardial cell cultures with 99% myocytes. After 

seeding on either plastic dishes coated with gelatin (0.2% 

in PBS, Sigma-Aldrich) or, for confocal microscopy, glass 

coverslips coated with poly-D-lysine (0.1 mg/mL, Sigma-

Aldrich) in 30-mm plastic wells, cardiomyocytes were 

cultured in Dulbecco’s Modified Eagle Medium 

(DMEM)/medium 199 (4:1) supplemented with 10% 

horse serum, 5% calf serum, 1% glutamine, and 

antibiotics and placed in 37°C-5% CO2 atmosphere for 20 

hours [63]. Approximately 95% of the cells displayed 

spontaneous contractile activity in culture. Then, cells, 

transiently transfected if necessary, were cultured in 

serum-free media for 24 hours before treatment. LPS was 

added into the medium to induce a septic cardiomyopathy 

model in vitro, as previously described [64].  
 

Lentiviral overexpression cell lines 
 

SirT3 cDNA was synthesized as gene string from 

ThermoFisher Scientific and cloned in pLV lentiviral 

backbone. Lentiviral overexpression of SirT3 in 

cardiomyocytes was mediated by transduction of 

lentivirus from pLV plasmid carrying cDNA sequence 

of SirT3 and empty control [65]. For lentiviral 

production, HEK293T was transfected with pLV 

plasmid together with helper plasmids (vsvg, gagpol, 

rev, and NovB2) using CaCl2. Medium was changed 

after 8 hours of transfection. Viral supernatant was 

collected 48 to 72 hours later [66]. Cardiomyocytes 

were transduced with lentivirus, and after 3 days, 

puromycin selection was initiated to remove 

nontransduced cells. After puromycin selection, over-

expression was confirmed by western blot [67]. 

 

RNA isolation and PCR 
 

RNA isolation from cell culture was done using Trifast 

(Peqlab) as per the manufacturer’s instructions. Isolated 
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RNA (500-1000 ng) was reversed transcribed with 

random primer using iScript Select cDNA synthesis kit 

(Biorad). Real-time quantitative polymerase chain 

reaction (PCR) was done with iQ SYBR Green mix 

(Biorad) on C1000 Touch Thermocycler (Biorad) using 

specific primer pairs [68]. For amplification of circular 

RNAs, divergent primers were used, whereas normal 

linear transcripts were amplified by convergent primers 

as usual [69]. For RNase R resistant assay, RNA was 

incubated with RNase R (Biozym Scientific) at 37°C for 

10 minutes and heat activated at 95°C for 3 minutes. 

RNA was then reverse transcribed and amplified by 

specific PCR primers as mentioned previously. 

Validation was performed as three individual experi-

ments with three replicates each time [70]. 

 

Mitochondrial function assay 

 

Mitochondrial oxygen consumption and ATP synthesis 

rates were measured in saponin-permeabilized fibers 

using palmitoyl-carnitine/malate, pyruvate/malate, or 

glutamate/malate as substrate combinations, as 

described previously [71]. Mitochondria were isolated 

by differential centrifugation, and oxygen consumption 

and ATP synthesis were measured using palmitoyl-

carnitine/malate, pyruvate/malate, or glutamate/malate 

as substrate combinations, as described previously [72]. 

Mitochondrial respiration complexes of isolated 

mitochondrial membranes were separated by blue native 

gel electrophoresis, and complex activities were 

determined by in-gel staining assays, as described 

previously [73]. Mitochondrial respiration rate in 

cardiomyocytes was assessed using a Seahorse XFp 

Extracellular Flux Analyzer with the XFp Cell Mito 

Stress Test Kit (Agilent, Santa Clara, CA) [74]. 

 

MTT assay 

 

MTT assay was performed using Cell Proliferation Kit 

I (Roche) as per the manufacturer’s instruction [75]. 

Briefly, cells were seeded in a 96-well plate and the 

next day treated with LPS in normal medium for 48 

hours [36]. Next, 10 μL of MTT reagent were added, 

and cells were incubated for 4 hours followed by 

addition of dissolving reagent and incubation overnight. 

The next day, absorbance was measured at 580 and 690 

nm by an HT Synergy (Biotek) plate reader. 

 

TUNEL staining 
 

Cells were fixed with 4% paraformaldehyde for 20 

minutes at room temperature and then permeabilized 

with ice-cold 0.1% Triton-X-100 in PBS for 2 minutes 

at room temperature. Next, cells were incubated with 

enzyme labeling solution provided with In Situ Cell 

Death Detection Kit (Roche) for 1 hour at 37°C. For 

negative staining, enzyme was not added to the labeling 

solution [76]. Cells were then washed and incubated 

with DAPI for 15 minutes. Images were taken with a 

Nikon Eclipse Ti microscope, and images were 

analyzed with Nikon NIS-Elements [33]. For analysis in 

each case, 10 different images were analyzed from 

different regions, and the average value was taken. 

Three data points representing three individual experi-

ments are shown. 

 

Immunoblot analysis 
 

Mitochondrial and cytosolic fractions were generated by 

homogenizing freshly excised hearts in homogenization 

buffer (20 mM HEPES, 140 mM KCl, 10 mM EDTA, 5 

mM MgCl2, pH 7.4) with a Dounce tissue homogenizer, 

centrifuging the homogenate at 800 × g for 10 minutes 

and centrifuging the resulting supernatant at 8,000 × g 

for 10 minutes [77]. The supernatant is the cytosolic 

fraction. The pellet was washed by centrifugation at 

10,000 × g and represents the mitochondrial fraction. 

Whole-cell extracts and mitochondrial membranes were 

prepared as described previously. Samples were loaded 

on SDS-PAGE, transferred to nitrocellulose or PVDF 

membranes, and incubated with specific antibodies [78]. 

Bands were visualized using horseradish peroxidase–

conjugated secondary antibodies and the ECL detection 

system (GE Healthcare, Piscataway, NJ) or fluorophore-

conjugated secondary antibodies and the Odyssey 

fluorescence detection system (Li-Cor Biosciences, 

Alpharetta, GA). 

 

Statistical analysis  
 

Quantitative data are presented as mean ± standard 

error. Student’s t-test (two-tailed, unpaired) was used 

for comparisons between two groups; one-way and two-

way ANOVA with Student-Newman-Keuls post hoc 

tests were used as appropriate to evaluate statistically 

significant differences in multiple group comparisons. P 

< 0.05 was considered statistically significant. 
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