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The primary goal of this work was to apply data-driven machine learning regression

to assess if resting state functional connectivity (rs-FC) could estimate measures of

behavioral domains in stroke subjects who completed brain-computer interface (BCI)

intervention for motor rehabilitation. The study cohort consisted of 20 chronic-stage

stroke subjects exhibiting persistent upper-extremity motor deficits who received the

intervention using a closed-loop neurofeedback BCI device. Over the course of this

intervention, resting state functional MRI scans were collected at four distinct time

points: namely, pre-intervention, mid-intervention, post-intervention and 1-month after

completion of intervention. Behavioral assessments were administered outside the

scanner at each time-point to collect objective measures such as the Action Research

Arm Test, Nine-Hole Peg Test, and Barthel Index as well as subjective measures

including the Stroke Impact Scale. The present analysis focused on neuroplasticity

and behavioral outcomes measured across pre-intervention, post-intervention and

1-month post-intervention to study immediate and carry-over effects. Rs-FC, changes

in rs-FC within the motor network and the behavioral measures at preceding stages

were used as input features and behavioral measures and associated changes at

succeeding stages were used as outcomes for machine-learning-based support vector

regression (SVR) models. Potential clinical confounding factors such as age, gender,

lesion hemisphere, and stroke severity were included as additional features in each of the

regression models. Sequential forward feature selection procedure narrowed the search

for important correlates. Behavioral outcomes at preceding time-points outperformed

rs-FC-based correlates. Rs-FC and changes associated with bilateral primary motor
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areas were found to be important correlates of across several behavioral outcomes and

were stable upon inclusion of clinical variables as well. NIH Stroke Scale and motor

impairment severity were the most influential clinical variables. Comparatively, linear SVR

models aided in evaluation of contribution of individual correlates and seed regions

while non-linear SVR models achieved higher performance in prediction of behavioral

outcomes.

Keywords: brain-computer interface, stroke recovery, functional connectivity, motor impairment, machine

learning, support vector regression

INTRODUCTION

Brain Computer Interface
Electroencephalogram (EEG)-based brain-computer interface
(BCI) technology has emerged as a therapeutic modality for
stroke rehabilitation that has been demonstrated to facilitate
additional recovery that conventional therapies have not been
able to accomplish thus far (Silvoni et al., 2011). EEG-based BCI
detects and uses a patient’s neural signals as inputs to provide
real-time feedback, effectively enabling users to modulate their
brain activity. This is a promising intervention for patients with
motor impairment, as they can control external devices such as
computers and robots during rehabilitative tasks without relying
on residual muscle control (Felton et al., 2009) which could
be tailored to individuals potentially yielding greater benefits
from the system (Bhagat et al., 2016). Specifically, EEG-based
BCI intervention using attempted movement with functional
electrical stimulation (FES) (Biasiucci et al., 2018) and tongue
stimulation (TS) enables us to detect intent-to-move brain
signals and provide users with both visual and tactile sensory
feedback as a form of reward for producing certain brain
activity patterns while performing specific tasks. Thus far, several
neuroimaging studies in the realm of stroke rehabilitation have
shown potential functional benefits associated with the use of BCI
technology including, but not limited to, modulating changes in
neuroplasticity and restoringmotor function (Várkuti et al., 2013;
Young et al., 2014c; Nair et al., 2015; Soekadar et al., 2015).

Functional Magnetic Resonance Imaging
In recent years, neuroimaging has become integral in studying
the progression in neurodegenerative processes and efficacy
of rehabilitation procedures (Caria et al., 2011; Song et al.,
2014; Young et al., 2014c; Nair et al., 2015). Task-free methods
such as resting state functional magnetic resonance imaging

Abbreviations: 9HPT, Nine Hole Peg Test; ARAT, Action Research Arm Test;

BCI, brain-computer interface; BI, Barthel Index; BOLD, blood-oxygen-level

dependent; EEG, Electroencephalogram; FES, functional electrical stimulation;

fMRI, functional magnetic resonance imaging; LOOCV, leave-one-out cross

validation; M1, primary motor area; MCA, middle cerebral artery; MNI, Montreal

Neurological Institute; MSE, mean squared error; NIHSS, National Institute of

Health Stroke Scale; PMC, premotor cortex; RMSE, root mean squared error;

rs-FC, resting state functional connectivity; 1rs-FC, change in resting-state

functional connectivity; SIS, Stroke Impact Scale; SMA, supplementarymotor area;

SVM, support vector regression; SVR, support vector regression; T1-T3, control

period (no intervention); T4, pre-intervention; T6, post-intervention; T7, one-

month post-intervention; TS, tongue stimulation; SF, Supplementary Figure; ST,

Supplementary Table.

(rs-fMRI) allow us to measure the temporal correlation of
the spontaneous, low-frequency (<0.1Hz) blood-oxygen-level-
dependent (BOLD) signals across distinct brain regions at
rest. Oscillations in these BOLD fMRI signals are believed
to reflect cortical dynamic self-organization and have been
associated with the neural reorganization underlying cognitive
and motor function during stroke recovery (Lee et al., 2013;
Bajaj et al., 2015). Additionally, recent neuroimaging studies
have demonstrated overlap among networks identified during
rs-fMRI, motor imagery fMRI tasks, and motor execution fMRI
tasks (Grefkes et al., 2008; Nair et al., 2015). The motor network
is a complex and highly dynamic system with a unique balance of
excitatory and inhibitory mechanisms which has been postulated
to be significantly disturbed after the event of stroke (Grefkes and
Fink, 2011). This specific neuronal network commonly includes
the primary motor area (M1), premotor cortex (PMC) and
supplementary motor area (SMA), as it is established that activity
in these cortical regions maintains a dynamic equilibrium at
resting-state and is modulated during task performance (Debaere
et al., 2001). Recently, we have demonstrated that changes in
task-related brain connectivity can be used as a diagnostic tool
to track cortical changes and behavioral outcomes following
BCI intervention in patients with stroke (Young et al., 2014c).
However, while there is evidence of overlap among resting-
state and motor-related fMRI task (Grefkes et al., 2008), these
resting state networks have yet to be completely characterized
in the context of motor recovery facilitated by the use of a BCI
device. Therefore, further investigation into changes in resting-
state connectivity in relation to changes in associated behavioral
function following BCI intervention is necessary.

Multivariate Data Analysis
The ability of data-driven machine learning techniques to model
multivariate relationships can be attributed to their application
in neuroimaging analysis. Several studies have shed light on
the utility of machine learning to perform classification tasks
(Dai et al., 2012; Meier et al., 2012; Rehme et al., 2014;
Fergus et al., 2016; Khazaee et al., 2016; Ding et al., 2017;
Mohanty et al., 2018). These advance our understanding of brain
function by identifying brain patterns associated with specific
neurological diseases and differentiating among patient groups.
However, performing simple binary classification might not
suffice to answer clinically relevant questions such as prediction
of recovery associated with neuropathological disease and time
until onset of specific disease-related symptoms. In comparison
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to classification-based studies, relatively fewer studies have
examined neuroimaging data from the perspective of prediction
of outcomes (Dosenbach et al., 2010; Vergun et al., 2013) using
machine learning approaches. This underscores the need to
use data modeling techniques that can predict outcomes on a
more continuous scale while handling the high dimensionality
of input data. Within machine learning, there exist a variety of
algorithms to perform real-valued outcome prediction such as
naïve Bayesian (Frank et al., 2000), k-nearest neighbors (Hastie
and Tibshirani, 1996), Gaussian process (Marquand et al., 2010)
regression models. Rapid developments in the field are utilizing
neural networks (Pereira et al., 2016) in large datasets. However,
in this work we focus on using the a support vector machine-
based regression model which is proficient in modeling linear as
well as non-linear relationships between variables with a modest
sample size and present an extension of the work previously
presented (Mohanty et al., 2017). In place of relying solely
on non-linear models, we compared their performance to the
linear case, which enabled us to pinpoint specific correlates
of behavioral outcomes and improve interpretability for future
clinical applications. Additionally, the relative contribution of
individual seed regions was analyzed, and comparative analysis
helped establish the trade-off involved in choosing one model
over the other.

Overview of This Study
In the realm of stroke rehabilitation research, there have been
concerted efforts focusing on evaluating the neurophysiological
changes post-stroke (Rossini et al., 2003; Teasell et al., 2005;
Kwakkel et al., 2008; Wang et al., 2010) and investigating
novel therapeutic interventions to promote motor recovery and
ultimately improve overall quality of life for patients (Levy et al.,
2001; Kwakkel et al., 2008; Young et al., 2014d). While EEG-
based BCI intervention has shown early promise as a form
of rehabilitation post-stroke, neuroplastic changes in the form
of functional connectivity and resulting therapeutic effects on
behavioral outcomes following this intervention coupled with
FES and TS remain to be elucidated. In this study, correlates of
behavioral measures and associated changes following this EEG-
based BCI intervention are investigated using brain connectivity
as well as behavioral measures at preceding stages. Resting-
state functional connectivity (rs-FC) was examined in previously
identified (Grefkes et al., 2008) motor network comprised of
eight seed regions that play a dominant role in motor initiation,
specification, and execution. Immediate as well as carry-over
effects were investigated by examining fMRI and behavioral
measures at three stages: prior to the start of intervention, upon
completion of intervention and 1-month post completion of
intervention. To this end, amultivariate regression scheme, based
on support vector machines, was employed to handle the multi-
dimensional data and examine utility in estimating individual
behavioral outcomes and associated changes. The purpose of this
study was four-fold: (i) to identify neural correlates based on rs-
FC within the motor network to estimate behavioral outcomes
following BCI intervention; (ii) to identify neural correlates based
on changes in rs-FC within the motor network to estimate
changes in behavioral measures following the BCI intervention;

(iii) to identify behavioral correlates at a preceding time-point
to estimate behavioral measures at a succeeding time-point; and
(iv) to study the impact of potential confounds relative to rs-FC
and behavior as correlates of behavioral outcomes following the
intervention.

MATERIALS AND METHODS

Study Design
This study followed a permuted-block design that accounted
for gender, stroke chronicity, and severity of motor impairment
in stroke subjects to randomly assign subjects to one of two
groups: crossover control group or BCI therapy (intervention)
group. The study paradigm is schematized in Figure 1. Subjects
in the BCI therapy group received this intervention and were
administered a battery of behavioral assessments and MRI
scans at four time-points throughout the intervention: pre-
intervention (T4), mid-intervention (T5), immediately post-
intervention (T6), and 1-month after completing the last BCI
intervention session (T7). Subjects in the crossover control
group first received three functional assessments and MRI scans
during the control phase in which no BCI intervention was
administered (T1 through T3), and their assessments were spaced
at intervals similar to those given during the BCI intervention
phase. Upon completion of the control phase of the study, the
crossover control group “crossed over” into the BCI therapy
phase of the study. In this study, neuroimaging and behavioral
data corresponding to pre-intervention, post-intervention and
1-month post-intervention time-points across the crossover
control and the BCI intervention groups were combined and
treated as a single sample group to provide additional power to
the analysis.

Participants
Subjects for this analysis were recruited as part of an ongoing
multi-arm stroke rehabilitation study intended to evaluate the
effects of intervention using an EEG-based BCI device on
the recovery of upper-extremity motor function. The inclusion
criteria for participation in the study were: (1) at least 18
years of age; (2) persistent upper-extremity motor impairment
resulting from an ischemic or hemorrhagic stroke; (3) ability
to provide written informed consent. Exclusion criteria for the
study consisted of: (1) concomitant neurodegenerative or other
neurological disorders; (2) psychiatric disorders or cognitive
deficits that would preclude a subject’s ability to provide informed
consent; (3) pregnant or likely to become pregnant during
the study; (4) allergies to electrode gel, metal and/or surgical
tape, contraindications to MRI; (5) concurrent treatment for
infectious disease. The study was approved by the Health
Sciences Institutional Review Board of University of Wisconsin-
Madison. Written informed consent was obtained from all
subjects prior to the start of their participation in the study.
Twenty chronic stroke subjects (10 from crossover control group
and 10 from BCI intervention group), who completed the BCI
intervention, were included in this analysis. We limited the
cohort for this study to chronic-stage (time since stroke onset
> 6 months) stroke subjects only. Excluding stroke subjects in
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FIGURE 1 | Study paradigm. The time-points at which neuroimaging and behavioral data were collected are represented by - T1: Control baseline 1, T2: Control

baseline 2, T3: Control baseline 3, T4: Intervention baseline T5: Mid-intervention, T6: Post-intervention, and T7: 1-month post-intervention.

TABLE 1 | Demographic and clinical characteristics of the study cohort.

Number of stroke subjects 20

Chronicity Chronic (>6 months since stroke

onset)

Age (mean ± std. dev in years) 62.4 ± 14.27

Gender 8 Females, 12 Males

Lesion hemisphere 8 Left, 12 Right

Stroke severity (mean NIHSS ±

std. dev)

3.75 ± 3.5

Motor impairment severity 11 Severe, 9 Moderate

Time since stroke (mean ± std.

dev in months)

37.65 ± 40.84

Post-stroke handedness 16 Right, 2 Left, 2 Ambidextrous

the acute (time since stroke onset < 14 days) and sub-acute
(time since stroke onset < 6 months) stages was critical for
this analysis to ensure that spontaneous recovery in these stages
does not confound the effects of the BCI intervention. In other
words, changes observed in both rs-FC and motor behavioral
performance during the acute and sub-acute phases might result
from spontaneous neuroplasticity processes rather than from the
BCI intervention. Time since stroke was defined to be the period
between stroke onset and baseline visit. In addition, subjects
were excluded from this analysis if they exhibited bilateral brain
lesions for the potential reason that they could be outliers and
confound the results. All neuroimaging scans were inspected
by a neuroradiologist for the purposes of lesion localization.
The distribution of lesion site in the cohort was as follows:
middle cerebral artery territory (MCA; N = 10), frontal lobe
(N = 3), cerebellum (N = 2), putamen (N = 2), occipital lobe
(N = 1), basal ganglia (N = 1), and internal carotid artery
occlusion (N = 1). Stroke severity was determined by NIH Stroke
Scale (NIHSS) (Brott et al., 1989) scores at baseline. Severity of
motor impairment was assessed based on performance on Action
Research Arm Test (Carroll, 1965; Lang et al., 2006) and visual
inspection at the preliminary visit. Participants’ handedness post-
stroke was established before the start of intervention based on
Edinburgh Handedness Inventory (Oldfield, 1971). Participant
characteristics are summarized in Table 1.

BCI Intervention
All participants received at least 9 and up to 15 two-hour EEG-
based BCI interventional sessions, with up to three sessions per

week; the complete intervention lasted up to 6 weeks The BCI
intervention was administered using BCI2000 software (Schalk
et al., 2004) with modifications for administering TS (TDU 01.30,
Wicab Inc.) and FES (LG-7500, LGMedSupply; Arduino 1.0.4).
EEG signals, which served as the input for the BCI device, were
detected and recorded from a 16-channel EEG cap and amplifier
(Guger Technologies) during intervention.

A brief account of the three-step intervention is provided as
follows. (i) Each intervention session began with an open-loop
calibration screening task in which subjects were instructed to
attempt movement of either their left or right hand with resting
periods in-between by following randomly ordered visual cues
on the screen, such as “Right,” “Left,” or “Rest,” in 4-s blocks.
During the initial screening session, participants did not receive
any form of feedback. The EEG activity, recorded in the open-
loop screening task, was used by the classifier for identifying
activation patterns corresponding to volitional movement of the
respective left and right hands in the closed-loop task. Both in the
initial screening and closed-loop feedback conditions, attempted
movement was utilized to simulate the training conditions of the
neurofeedback task similar to the cognitive processes involved
in real-world movement. (ii) Following the initial screening,
subjects performed a closed-loop task, in which they received
real-time visual feedback in the context of a cursor task game.
The goal of the cursor task game was to move a cursor (ball)
onto a target area, with target areas positioned on either the left
or right side of the computer screen. Subjects were instructed
to move their left or right hand to control the corresponding
movement of the cursor in the direction of the target on the
screen. A 70% accuracy was set as the criteria to establish control
of a BCI system in this phase (Kübler et al., 2001, 2005). Real-
time EEG signals were used to calculate and control lateral
cursor movement, which served as the visual feedback for the
remainder of the session. During each BCI intervention session,
subjects completed 10 runs of this game, which included 8–12
trials per run, while receiving continuous visual feedback. (iii)
After successful completion of 10 runs of the game with visual
feedback, both TS and FES were simultaneously incorporated
into the intervention session for the remaining trials (as many
trials as possible within a 2-h session). FES, with a pulse rate
of stimulation 60Hz and varied up to 5mA in increments of
0.5mA as per the participant’s comfort level, was administered
to muscles of the subject’s impaired forearm when their neural
activity signals corresponding to impaired arm movement intent
were detected during a trial in which subjects attempted to
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move the cursor to a target on the screen corresponding to the
side of the impaired arm. The stimulation thresholds for FES
and TS were determined during the first intervention session
and maintained at the same level in all the subsequent sessions
for consistency. This EEG-based BCI system with FES and TS
provides subjects with both visual and tactile sensory feedback.
To keep subjects engaged throughout the task, the size of the
target on the screen and speed of the cursor could be changed to
modulate the difficulty of the task depending on their accuracy.
Additional details of the procedure of the intervention can be
found in prior studies such as those described by Wilson et al.
(2009), and Young et al. (2014a,c).

Neuroimaging Data Acquisition
Neuroimaging data were acquired at the four aforementioned
time points (T4 through T7). For the purposes of this work,
we chose to use the data from three of these points, i.e.,
prior to starting the intervention or pre-intervention assessment
(T4), immediately upon completion of intervention or post-
intervention assessment (T6) and a month after completion of
full intervention (T7) to study the potential peak and carry-
over effects of the EEG-based BCI intervention. Rs-fMRI scans
were acquired on GE 750 3T MRI scanners (GE Healthcare,
Waukesha,WI) using an 8-channel head coil. Ten-minute resting
state scans were acquired while participants’ eyes were closed
using single-shot echo-planar T2∗-weighted imaging: TR =

2600ms, 231 time-points, TE = 22ms, FOV = 224mm, 64 × 64
matrix size, flip angle= 60◦, and 40 slices with voxel dimensions
of 3.5 × 3.5 × 3.5 mm3. Five-minute T1-weighted anatomical
images were obtained at the start of each scan using a BRAVO
FSPGR sequence with the following parameters: TR = 8.16ms,
TE = 3.18ms and TI = 450, matrix size = 256 × 256, 156 slices,
flip angle= 12◦, FOV= 256mm with slice thickness= 1mm.

Behavioral Assessments
To assess the behavioral impact of the BCI intervention, a
battery of objective and subjective measures was administered
to participants at each time-point. Corresponding to the
neuroimaging, we focused on behavioral measures at pre-
intervention (T4), post-intervention (T6) and 1-month post-
intervention (T7) in this study. To systematically quantify motor
functional outcomes, the following standard behavioral measures
were evaluated as summarized in Table 2: the Action Research
Arm Test (ARAT) (Carroll, 1965; Lang et al., 2006), 9-Hole Peg
Test (9HPT) (Chen et al., 2009), Barthel Index (BI) (Mahoney,
1965), and Stroke Impact Scale (SIS) (Duncan et al., 1999; Carod-
Artal et al., 2008). The ARAT serves as a standardized and reliable
functional measure for stroke rehabilitation that measures
changes in specific upper limb function among individuals who
sustained cortical damage resulting in hemiplegia. The 9HPT
measure is used for quantifying hand dexterity. ARAT and 9HPT
were observed for the affected [ARAT(A), 9HPT(A)] as well as
unaffected [ARAT(U), 9HPT(U)] upper extremity. In this study,
BI was administered in questionnaire form and not observed
from functional performance as it was originally designed and
validated. The BI score quantifies the ability of an individual
to care for her/himself in their daily life. The SIS scores are

TABLE 2 | Summary of all the behavioral assessments used as outcomes.

Behavioral assessment Category

ARAT(U): Action Research Arm Test for the upper extremity

unaffected by stroke

Objective

ARAT(A): Action Research Arm Test for the upper extremity

affected by stroke

Objective

9HPT(U): 9-Hole Peg Test for the upper extremity unaffected

by stroke

Objective

9HPT(A): 9-Hole Peg Test for the upper extremity affected by

stroke

Objective

BI: Barthel Index Objective

SIS(ADL): Activities of daily life domain of Stroke Impact Scale Subjective

SIS (HF): Hand function domain of Stroke Impact Scale Subjective

SIS(Mob): Mobility domain of Stroke Impact Scale Subjective

SIS(PS): Physical strength domain of Stroke Impact Scale Subjective

self-reported outcomes that measure the health status of stroke
subjects. SIS includes the following standard domains: Activities
of Daily Living (ADL) for difficulty carrying out activities in a
typical day, Hand Function (HF) for difficulty in using the hand
most affected by stroke, Mobility (Mob) for difficulty in ability to
be mobile at home and in community, and Physical Strength (PS)
for overall strength in the upper and lower limbs of the affected
side.

Individual Level Analysis
The main steps involved in the processing of data on a single-
subject level are outlined in Figure 2 and described in detail in
the following subsections.

Neuroimaging Preprocessing
Rs-fMRI scans of 20 subjects were visually inspected for artifacts
and preprocessed in the following sequential manner: the
first three volumes of each scan were removed, images were
despiked, slice time corrected, aligned with the corresponding
anatomical T1 scan, spatially smoothed with a 4-mm FWHM
(full width at half maximum) Gaussian kernel, transformed into
the standard MNI space (3.5mm isotropic), motion censored
(per TR motion > 1mm or 1◦), regressed for nuisance variables
(regressed out the signal from locally averaged white matter and
cerebrospinal fluid) and bandpass filtered (0.009–0.08Hz). Given
the controversial nature of global signal regression (Murphy and
Fox, 2016), this processing step was not included in the analysis
pipeline. All rs-fMRI data were preprocessed using Analysis of
Functional NeuroImages (AFNI) (http://afni.nimh.nih.gov/afni)
(Cox, 1996).

Rs-FC
A seed-based analysis was adopted based on prior work that
investigated rs-FCwithin themotor network in stroke population
(Grefkes et al., 2008; Nair et al., 2015). The seed regions
were identified on the basis of a network of cortical and
subcortical areas that exhibited activation during visually paced
hand movements. The seed regions for this study included the
primary motor cortex (M1), supplementary motor area (SMA),
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FIGURE 2 | Steps for individual subject analysis are shown below. (A) rs-FC correlates of behavior: (a) raw rs-fMRI (top) from pre-, post- and 1-month

post-interventions were preprocessed (bottom); (b) 8 seed regions were chosen from the motor network to compute rs-FC at each time-point; (c) 8 × 8 rs-FC matrix

was computed and corresponding behavioral scores were transformed as needed for each time-point; (d) rs-FC reflected in the lower triangle of 8 × 8 matrix was

vectorized into 28 unique correlation coefficients per subject and 8 distinct behavioral measures were aggregated for group-level analysis. (B) 1rs-FC correlates of

1behavior: (a) raw rs-fMRI (top) from pre-, post- and 1-month post-interventions were preprocessed (bottom); (b) 8 seed regions were chosen from the motor

network to compute rs-FC at each time-point; (c) 8 × 8 rs-FC matrix was computed and corresponding behavioral scores were transformed as needed for a

preceding time-point; (d) 8 × 8 rs-FC matrix was computed and corresponding behavioral scores were transformed as needed for a succeeding time-point; (e)

change in rs-FC and behavioral scores were calculated between the two time-points; (f) change in rs-FC reflected in the lower triangle of 8 × 8 matrix was vectorized

into 28 unique correlation coefficients per subject and change in 8 distinct behavioral measures were aggregated for group-level analysis. (C) behavioral correlates

at preceding time-point of behavior at succeeding time-point: transformed scores for 8 behavioral measures at pre-, post- and 1-month post-interventions

were aggregated for group-level analysis.

FIGURE 3 | Regions of interest in the motor network included four bilateral seeds: M1 (yellow), PMC (blue), SMA (green), and Thalamus (red).

thalamus, and lateral premotor cortex (PMC) in the right and
left hemispheres, as illustrated in Figure 3 using BrainNet Viewer
(Xia et al., 2013) and abbreviated as per Table 3. The MNI
coordinates, also specified in Table 3, for the eight regions were
used to create 8-mm spherical seeds. For each subject, BOLD

time series signal from each region was extracted from the
spatially standardized residuals obtained in the preprocessing
stage. The extracted time series for each region was used to
compute an 8× 8 ROI correlation matrix for each subject. From
this symmetric matrix, 28 unique correlation coefficients were
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TABLE 3 | Shorthand representation of the eight ROIs in the motor network used

for the analysis is presented below.

ROI Shorthand X (MNI) Y (MNI) Z (MNI)

Left primary motor cortex L.M1 −39 −22 57

Right primary motor cortex R.M1 40 −23 55

Left premotor cortex L.PMC −48 1 36

Right premotor cortex R.PMC 58 1 35

Left supplementary motor area L.SMA −6 −14 53

Right supplementary motor area R.SMA 8 −14 52

Left thalamus L.Thal −8 −26 12

Right thalamus R.Thal 8 −26 12

extracted to represent pairwise rs-FC within the motor network
at each of the three stages of interest.

Potential Clinical Confounds
The study cohort was heterogeneous with respect to multiple
clinical factors which could confound the contribution of rs-
FC alone. Based on prior studies, we identified the following
factors as potential confounds: age and stroke severity (Ferraro
et al., 2003), severity of motor impairment, and time since stroke
(Rehme et al., 2012), lesion hemisphere (Crinion et al., 2007),
and gender (Kelly-Hayes et al., 2003). We included these clinical
variables as features, built the regressionmodel for each outcome,
and compared the performances of models with and without the
confounding variables. This strategy would help understand the
impact of potential confounds on the performance of regression
model as well as the contribution of confounds as correlates
relative to rs-FC or behavioral features.

Group-Level Analysis
Applications of machine learning regression models such as
SVR on rs-fMRI have been demonstrated in neuroimaging-based
studies (Dosenbach et al., 2010; Vergun et al., 2013) as SVR-
based methods can efficiently handle multi-dimensional data and
model the linearity as well as non-linearity in a given dataset. For
the purposes of this study, we adopt a strategy, similar to these
studies. To understand the correlates of behavioral outcomes
and changes, the following analyses were undertaken by applying
SVR to correlate:

ANALYSIS I: rs-FC at preceding time-points with behavioral
outcomes at succeeding time-points (T4 with
T6; T4 with T7; T6 with T7).

ANALYSIS II: change (1) in rs-FC between pairs of time-
points with corresponding change (1) in
behavioral outcomes (T4 and T6; T4 and T7; T6,
and T7).

ANALYSIS III: behavioral measures at preceding time-points
with behavioral measures at succeeding time-
points (T4 with T6; T4 with T7; T6 with T7).

In case of behavioral measures, total scores across comprising
domains for BI and ARAT, average scores across two trials for
9HPT, and transformed scores to yield a percentage of possible

points for the SIS domains of PS, Mob, HF, and ADL were
considered.

To characterize changes among the three stages of interest (T4,
T6 and T7), the following definitions were employed:

1rs− FC =
rs− FCsucceeding stage − rs− FCpreceding stage

rs− FCpreceding stage
(1)

where rs − FCsucceeding stage and rs − FCpreceding stage denote the
values of rs−FC correlation at succeeding (T6, T7) and preceding
(T4, T6) stages respectively.

Unlike in case of 1rs − FC, the definition for changes in
behavioral measures differed by case. For 9HPT(A), 9HPT(U),
ARAT(U), BI, SIS (PS, Mob, and ADL) scales, the normalized
change was gauged by:

1behavior =
behaviorsucceeding stage − behaviorpreceding stage

behaviorpreceding stage

(2)
However, in case of ARAT(A) and SIS(HF), the possibility of

behaviorpreceding stage being 0 invalidates the above normalization.
Thus, for these two outcomes, a simple deviation was computed
as follows:

1behavior = behaviorsucceeding stage − behaviorpreceding stage

(3)
where behaviorsucceeding stage and behaviorpreceding stage correspond
to the scores achieved by a participant in each behavioral task at
succeeding (T6, T7) and preceding (T4, T6) stages respectively.
Due to lack of variability across most time-points, the ARAT(U)
was discarded as a behavioral outcome for all analyses.

Each of the three aforementioned analyses was examined by
including the identified potential confounding variables as well.
In each case, the input features for all subjects were aggregated
and the steps described as follows were implemented.

Feature Selection
Each regression model was built using a subset of input features
(28 rs-FC features, 281 rs-FC features and 8 behavioral measures
as described by ANALYSES I, II and III) through a feature
selection procedure. A forward sequential feature selection (SFS)
was helpful in reducing the dimensions of the original data for
better interpretation of features involved (He et al., 2013; Lu
et al., 2015). This method searches for a subset of features that
optimally models a given outcome. The algorithm adds each
candidate feature and checks the specified criteria by building a
regressionmodel based on selected features. The criteria specified
for selection of a feature involved minimization of the mean
squared error (MSE) arising from estimation error for SVR
model. The SVR model is described in the following section.
A nested leave-one out cross-validation approach allowed for
testing of estimation error on the left-out sample, where the
inner loop was used to choose the features during a training-
validation phase. One advantage of methods such as SFS is that
since it works in the raw feature space, it can be applied to both
continuous and categorical features. During cross-validation, the
features that were common across all the folds were reported as
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the contributing features for each model. The weights assigned
to these features were averaged across all folds and sorted to
determine the rank or importance of individual features in the
regression model.

Support Vector Regression (SVR)
Once a subset of features was selected by SFS, the SVRmodel was
trained using the selected features for each behavioral outcome.
SVR was chosen due to its ability to predict real valued behavioral
outcomes based on multi-dimensional input features using the
principle of supervised learning support vector machines (SVM)
(Scholkopf and Smola, 2001). Typically used as a classifier,
SVM can also be used for regression analysis (Vapnik, 2013).
SVR forms a non-parametric method via the kernel trick. This
method not only provides resilience to overfitting and good
generalization performance, but also helps in interpreting the
contribution of individual features in high-dimensional data with
a linear kernel. The principle behind using the SVR analysis
is described in Supplementary Section 1. In the case of linear
regression, the mapping function lies in the input space, so it
is possible to derive the weights corresponding to each input
feature. However, in the case of non-linear regression, similar
weights cannot be derived explicitly since the mapping function
is no longer found in the input space but in the feature space in
the kernel space. Both linear and non-linear kernel SVR models
were employed for our analyses.

Cross-Validation
A leave-one-out cross-validation (LOOCV) approach (Hastie
et al., 2001) was adopted to estimate the performance of the
regression model in the outer loop of the nested cross-validation
as it provides an approximation of the test error with a lower
bias and is more suitable for a dataset with a limited number
of samples such as that used in this analysis. We performed a
LOOCV by subject in this validation-testing phase. This means
that the data consisting of 20 observations were subdivided into
20 folds such that each fold comprised of data from a single
subject. The regression model was trained using selected features
from 19 folds and tested upon the left-out fold. This was repeated
20 times such that data from each subject was left out once while
a model was trained using the rest of the data. The performance
of the model was quantified in terms of the average root-mean-
squared error (RMSE) for linear and non-linear SVR over all
iterations of LOOCV given by:

RMSE =

√

√

√

√

1

l

l
∑

i= 1

(yesti − yi)
2 (4)

where the yesti − yi term is the measure of error between
the estimated outcome and the true outcome. Reasonable
performance of SVR is characterized by values of RMSE closer
to 0. In addition to RMSE, the linear SVR can also be assessed
in terms of goodness of fit in terms of the coefficient of
determination (R2). However, it is not an appropriate measure
for non-linear models as illustrated by simulations performed by
Spiess and Neumeyer (2010). Thus, we quantified performance

of linear SVR models by R2 and RMSE but compared linear and
non-linear models in terms of RMSE.

Model Parameter Optimization
The generalization performance is dependent upon both the
selected features andmodel parameters C, ε (Burges, 1998; Smola
and Schölkopf, 2004), and the kernel parameters. The parameter
C is used to trade-off between the complexity of the model
and the extent to which estimated deviations larger than ε

are tolerated in formulation of the optimization. Parameter ε

controls the width of the ε -insensitive zone, used to fit the
training data. Both C, ε values have an impact on complexity
of the model. The data points are scaled by the parameter
depending upon the kernel used for regression. A randomized
search method based on Bayesian optimization process attempts
to minimize the MSE in the separate LOOCV by varying the
parameters for 30 evaluations (Bull, 2011; Snoek et al., 2012;
Gelbart et al., 2014) which corresponded to the inner loop of the
training-validation phase, training on all samples but one with
the best chosen parameters and testing on the left out sample.

Evaluation of Regression Model
In order to validate the results against chance levels, non-
parametric permutation tests were performed. For each
regression model, the outcome labels were randomly permuted
1,000 times and feature selection and LOOCV were repeated
for each permuted dataset to create a null distribution. The
performance of the regression model corresponding to the
non-permuted data was considered significantly better than
chance if the RMSE of the model was lower than at least 95% of
those obtained from the null-hypothesis.

Overview of Methodology
Overall, we trained SVR models using selected rs-FC, 1rs-FC,
or behavioral measures, optimized the model and identified the
contributing input features that provided the minimum RMSE
upon LOOCV. All computations were carried out using the
Statistics and Machine Learning Toolbox in MATLAB R2017a
(The MathWorks, Inc., Natick, Massachusetts, United States).
The group-level pipeline of analysis is visualized in Figure 4.

RESULTS

We present the findings from the linear-kernel SVR here (results
corresponding to the non-linear kernel models can be found in
Supplementary Materials ST1–3).

Choice of Time-Points of Interest
The analyses, undertaken here, revolved around three time-
points, namely T4, T6, and T7, i.e., pre-intervention, post-
intervention and 1-month post-intervention. The objective was
to study the immediate as well as potential residual impact of
the intervention after a month. A comparison of group medians
of behavioral outcomes at these three time-points, evident from
SF 1, showed increased values at T7 relative to T4 or T6 for
SIS(Mob), SIS(HF), ARAT(A) although not significant (based
on a Mann Whitney U-test). The time-points from the control
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FIGURE 4 | The overview of group-level analysis is provided here. (A) rs-FC correlates of behavior: (a) aggregated data from single-subject analysis gave 28 rs-FC

features for each of the 20 subjects; (b) SFS was used to select specific correlates corresponding to each behavioral outcome; (c) aggregated behavioral scores for 20

subjects served as outcomes in separate models; (d) data from (b) and (c) were fed into the SVR model; (e) linear (top) and non-linear (bottom) kernels were specified

to perform regression. Steps (a through e) were repeated by adding identified clinical variables to rs-FC data as input features. (B) 1rs-FC correlates of 1behavior:

(a) aggregated data from single-subject analysis gave 28 change in rs-FC features for each of the 20 subjects between pairs of time-points; (b) SFS was used to select

specific correlates corresponding to each behavioral outcome; (c) aggregated change in behavioral scores between corresponding pair of time-points for 20 subjects

served as outcomes in separate models; (d) data from (b) and (c) were fed into the SVR model; (e) linear (top) and non-linear (bottom) kernels were specified to

perform regression. Steps (a–e) were repeated by adding identified clinical variables to change in rs-FC data as input features. (C) behavioral correlates at

preceding time-point of behavior at succeeding time-point: (a) aggregated behavioral scores from a preceding time point gave 8 distinct measures;

(b) aggregated behavioral scores from a succeeding time-point gave the corresponding 8 measures; (c) data from steps (a) and (b) were fed to the SVR model;

(d) linear (top) and non-linear (bottom) kernels were specified to perform regression.

period, i.e., T1 through T3 were not included in the regression
analyses due to limited samples (N = 10). However, we did not
find significant differences (using Mann Whitney U-test on each
pair of time-points) when the group medians of the behavioral
outcomes during the control period were compared with T4
as illustrated in SF 2. Thus, presumably, we could consider
measures at T4 to serve as representative scores for the control
period.

Performance of Correlates
Behavioral outcomes were estimated using rs-FC, 1rs-FC
as well as behavioral measures at preceding time-points. In
terms of R2, better estimation of outcomes was observed
using behavioral correlates, followed by rs-FC and 1rs-FC in

order. This held true with and without the impact of clinical
variables.

Rs-FC as Correlates of Behavioral Outcomes
The performances of SVR using rs-FC as correlates of behavioral
outcomes are presented in Table 4 (and ST 1). All the SVR
models, developed here, performed better than chance-level
based on permutation test (p < 0.05) as depicted in SF3

of Supplementary Section 2. Individual predictors involved in
estimating the different outcomes are listed in Table 5 (and
ST 4). Overall, rs-FC associated with L.M1, R.M1, and R.PMC
were the main contributors toward estimation, both with and
without clinical variables. Among the three time-points, better
performances were found in cases of correlating rs-FC at T6 and
behavioral measures at T7.
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TABLE 4 | Linear-kernel SVR performances based on leave-one out cross-validation to correlate rs-FC at preceding time-point with behavioral measures at succeeding

time-point are presented.

Outcome T4 rs-FC∼T6 behavior T4 rs-FC∼T7 behavior T6 rs-FC∼T7 behavior

Features RMSE R2 Features RMSE R2 Features RMSE R2

(A) WITHOUT CLINICAL VARIABLES

9HPT(A) 9 110.93* 0.21 14 116.69* 0.14 6 109.25* 0.25

9HPT(U) 5 4.2* 0.27 3 4.05* 0.26 6 2.86* 0.63

ARAT(A) 2 20.58* 0.33 6 17.87* 0.49 4 15.48* 0.61

BI 3 8.01* 0.24 5 6.31* 0.31 11 6.39* 0.3

SIS(ADL) 4 10.93* 0.14 4 10.62* 0.51 5 109.25* 0.25

SIS(HF) 4 31.81* 0.37 6 26.84* 0.36 5 33.47* 0.64

SIS(Mob) 6 7.88* 0.19 8 13.17* 0.10 4 11.34* 0.34

SIS(PS) 10 18.44* 0.18 5 11.93* 0.47 4 11.7* 0.49

(B) WITH CLINICAL VARIABLES

9HPT(A) 10 69.627* 0.69 14 71.349* 0.68 7 61.391* 0.76

9HPT(U) 4 4.187* 0.28 4 3.822* 0.34 9 1.508* 0.9

ARAT(A) 2 5.143* 0.96 4 5.723* 0.95 2 7.009* 0.92

BI 7 9.452* 0.43 7 13.378* 0.22 12 14.099* 0.13

SIS(ADL) 7 16.146* 0.78 2 23.484* 0.51 11 15.1018 0.8

SIS(HF) 5 9.766* 0.03 8 9.4* 0.54 5 10.514* 0.43

SIS(Mob) 1 16.361* 0.37 4 13.523* 0.32 6 12.528* 0.41

SIS(PS) 4 6.796* 0.41 7 4.591* 0.64 10 3.817* 0.75

Specific correlates are listed in Table 5.
(*) = significant against chance-level based on permutation-test (p < 0.05); T4 = pre-therapy; T6 = post-therapy; T7 = 1-month post-therapy.

1rs-FC as Correlates of 1Behavioral Outcomes
The performance of SVR using 1rs-FC as correlates of
1behavioral outcomes are presented in Table 6 (and ST 2).
SVR models corresponding to ARAT(A) and SIS(HF) performed
better than chance-level based on permutation test (p < 0.05)
as depicted in SF 4. Individual predictors involved in estimating
the different outcomes are listed in Table 7 (and ST 5). Overall,
rs-FC associated with L.M1, R.M1, L.Thal and L.M1, R.M1,
R.Thal were the main contributors toward estimation without
and with clinical variables respectively. Among the three time-
points, better performances were found in cases of correlating
1rs-FC between T6 and T7 and 1behavioral measures between
the same time-period.

Behavioral Correlates at Preceding Stages of

Behavioral Outcomes at Succeeding Stages
The performance of SVR using behavioral measures at preceding
time-points as correlates of behavioral outcomes at succeeding
time-points are presented in Table 8 (and ST 3). All the SVR
models performed better than chance-level based on permutation
test (p < 0.05) as depicted in SF 5. Individual predictors involved
in estimating the different outcomes are listed in Table 9 (and
ST 6). Overall, the behavioral measures from the preceding time-
point were almost always the highest-ranked correlates, relative
to the clinical variables. Among the three time-points, better
overall performances were found in cases of correlating behavior
at T4 with those at T6.

Impact of Clinical Variables
We tested each SVR model with and without the impact
of the identified clinical variables to account for potential
confounding effects they might have. In general, the SVR
performance improved upon addition of clinical variables as
input features. Contribution of individual clinical variables,
relative to rs-FC, 1rs-FC and behavioral input features
can be found in ST 4-6 respectively. The most involved
clinical features were: NIHSS, motor impairment severity
for ANALYSIS I and III and NIHSS, motor impairment
severity and lesion hemisphere for ANALYSIS II. In terms
of ROI contribution, rs-FC associated with L.M1, R.M1 and
R.PMC were the important contributors for ANALYSIS I even
after adjusting for clinical confounds. For ANALYSIS II, the
important contributors included L.M1, R.M1 and L.Thal without
clinical variables and L.M1, R.M1, and R.Thal with clinical
variables.

Linear vs. Non-linear Regression
The overall performances of the linear and non-linear SVR
models were compared in terms of their RMSE values
computed via LOOCV (SF 6–8). Comparing the RMSE values
revealed that the linear and non-linear SVR models performed
approximately similarly with the non-linear model being slightly
more generalizable with lower error when rs-FC and 1rs-
FC were used as input variables. When behavioral measures
were used as input variables, linear SVR appeared to perform
better.
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TABLE 5 | List of rs-FC correlates of behavior between all pairs of time-points identified by using linear-kernel SVR are presented below.

Rank 9HPT(A) 9HPT(U) ARAT(A) SIS(ADL) SIS(HF) SIS(Mob) SIS(PS) BI

(A) WITHOUT CLINICAL VARIABLES

Outcomes at T6 and Input rs-FC Features at T4

1 L.SMA-R.M1 L.SMA-R.PMC R.PMC-L.PMC R.PMC-R.M1 L.SMA-L.PMC R.PMC-R.M1 R.SMA-R.M1 L.SMA-R.M1

2 R.SMA-R.M1 R.PMC-R.M1 L.SMA-R.M1 L.Thal-L.M1 R.SMA-R.M1 R.SMA-L.SMA L.Thal-R.SMA R.PMC-L.PMC

3 R.M1-L.M1 R.SMA-R.PMC R.SMA-L.M1 L.SMA-L.M1 L.Thal-R.PMC R.SMA-L.M1 R.Thal-L.SMA

4 R.PMC-R.M1 L.PMC-R.M1 R.M1-L.M1 R.M1-L.M1 L.Thal-R.M1 L.SMA-L.PMC

5 R.Thal-L.Thal L.Thal-L.M1 R.Thal-R.PMC L.Thal-L.M1

6 R.Thal-L.M1 R.SMA-R.M1 L.PMC-L.M1

7 R.SMA-R.PMC R.M1-L.M1

8 R.PMC-L.PMC L.Thal-R.M1

9 L.Thal-L.M1 R.PMC-L.PMC

10 R.Thal-L.M1

Outcomes at T7 and Input rs-FC Features at T4

1 L.SMA-R.M1 L.Thal-L.SMA R.SMA-R.PMC R.Thal-L.M1 R.SMA-R.M1 R.PMC-R.M1 R.Thal-R.PMC L.PMC-L.M1

2 R.SMA-R.M1 R.SMA-L.SMA L.SMA-R.M1 R.PMC-R.M1 L.PMC-L.M1 L.SMA-L.M1 R.SMA-R.M1 R.SMA-R.M1

3 R.PMC-R.M1 R.Thal-L.PMC R.SMA-R.M1 L.Thal-R.M1 R.M1-L.M1 R.SMA-L.SMA R.Thal-L.Thal R.Thal-L.SMA

4 R.Thal-L.SMA R.PMC-R.M1 R.SMA-L.M1 L.SMA-L.M1 R.SMA-L.M1 L.Thal-R.M1 L.Thal-L.M1

5 R.M1-L.M1 R.PMC-L.PMC L.Thal-R.PMC L.Thal-R.PMC R.M1-L.M1 R.Thal-L.M1

6 R.SMA-R.PMC L.PMC-L.M1 R.SMA-L.SMA L.SMA-L.PMC

7 L.Thal-R.M1 R.Thal-L.SMA

8 R.Thal-L.Thal R.Thal-R.PMC

9 R.Thal-R.SMA

10 R.Thal-R.M1

11 R.PMC-L.PMC

12 R.Thal-L.M1

13 L.SMA-R.PMC

14 L.Thal-L.M1

Outcomes at T7 and Input rs-FC Features at T6

1 R.PMC-R.M1 L.Thal-R.PMC R.PMC-R.M1 L.SMA-R.M1 R.PMC-L.M1 R.PMC-R.M1 R.Thal-L.SMA L.Thal-R.M1

2 R.PMC-L.PMC L.SMA-R.PMC R.Thal-R.PMC R.PMC-L.M1 R.Thal-L.PMC R.Thal-L.PMC R.Thal-L.PMC L.Thal-L.SMA

3 R.Thal-R.PMC R.SMA-L.M1 L.SMA-R.PMC R.SMA-R.PMC L.SMA-R.M1 R.SMA-L.PMC R.Thal-L.M1 L.SMA-R.PMC

4 R.M1-L.M1 R.Thal-L.M1 R.M1-L.M1 L.SMA-R.PMC R.Thal-R.M1 R.SMA-L.SMA R.PMC-L.M1 R.SMA-R.M1

5 L.SMA-R.PMC R.Thal-R.M1 R.Thal-R.PMC L.Thal-L.SMA R.Thal-R.PMC

6 R.SMA-L.PMC R.PMC-L.M1 L.PMC-L.M1

7 R.SMA-R.PMC

8 R.PMC-R.M1

9 R.M1-L.M1

10 L.Thal-L.M1

11 R.Thal-L.PMC

(B) WITH CLINICAL VARIABLES

Outcomes at T6 and Input rs-FC and Clinical Features at T4

1 Motor Imp. L.PMC-R.M1 Motor Imp. TSS Motor Imp. L.Thal-R.PMC NIHSS Motor Imp.

2 NIHSS Age NIHSS R.SMA-R.PMC L.SMA-R.PMC Lesion Hemi R.Thal-L.SMA

3 Lesion Hemi L.SMA-L.M1 R.Thal-R.PMC R.M1-L.M1 R.SMA-R.M1 NIHSS

4 R.M1-L.M1 NIHSS Motor Imp. R.PMC-R.M1 L.Thal-R.PMC Age

5 R.SMA-R.PMC Lesion Hemi R.Thal-R.M1 L.SMA-R.M1

6 L.SMA-R.M1 R.Thal-L.M1 R.Thal-L.PMC

7 TSS R.PMC-R.M1 L.PMC-L.M1

8 R.Thal-L.Thal

9 R.SMA-R.M1

10 R.PMC-R.M1

(Continued)
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TABLE 5 | Continued

Rank 9HPT(A) 9HPT(U) ARAT(A) SIS(ADL) SIS(HF) SIS(Mob) SIS(PS) BI

Outcomes at T7 and Input rs-FC and Clinical Features at T4

1 Motor Imp. R.SMA-L.SMA Motor Imp. R.SMA-L.M1 R.PMC-L.M1 R.PMC-R.M1 Motor Imp. TSS

2 NIHSS R.SMA-L.M1 NIHSS R.Thal-L.M1 Motor Imp. L.SMA-L.M1 R.Thal-L.Thal Motor Imp.

3 Lesion Hemi R.PMC-R.M1 L.Thal-R.PMC R.SMA-R.M1 R.SMA-L.M1 L.Thal-R.SMA Age

4 TSS NIHSS R.Thal-R.PMC R.PMC-L.PMC L.SMA-L.PMC L.Thal-R.PMC R.PMC-R.M1

5 R.SMA-R.M1 R.SMA-L.M1 L.Thal-R.M1 R.PMC-L.PMC

6 R.M1-L.M1 L.PMC-L.M1 R.Thal-L.PMC R.M1-L.M1

7 L.PMC-L.M1 TSS NIHSS R.SMA-R.M1

8 L.SMA-R.M1 NIHSS

9 L.Thal-L.M1

10 R.Thal-L.SMA

11 R.Thal-L.PMC

12 R.Thal-R.SMA

13 R.SMA-L.M1

14 R.PMC-R.M1

Outcomes at T7 and Input rs-FC and Clinical Features at T6

1 Motor Imp. L.Thal-L.M1 Motor Imp. R.PMC-L.M1 Motor Imp. R.Thal-L.PMC L.SMA-L.PMC Motor Imp.

2 NIHSS L.Thal-R.SMA NIHSS R.SMA-R.PMC L.SMA-L.PMC R.Thal-L.SMA R.SMA-L.SMA R.Thal-L.PMC

3 Lesion Hemi L.Thal-R.PMC TSS TSS R.Thal-L.M1 Motor Imp. R.PMC-L.PMC

4 R.SMA-L.PMC R.Thal-L.M1 L.SMA-R.M1 R.Thal-L.PMC R.PMC-L.PMC L.Thal-R.M1 R.Thal-R.M1

5 R.PMC-L.PMC R.SMA-L.M1 NIHSS NIHSS L.Thal-L.M1 R.SMA-R.M1 R.Thal-R.PMC

6 L.SMA-R.PMC NIHSS L.SMA-L.PMC R.PMC-L.M1 R.PMC-L.M1 R.Thal-R.SMA

7 R.PMC-R.M1 Gender R.Thal-R.M1 R.PMC-L.PMC Age

8 L.Thal-L.SMA L.PMC-L.M1 NIHSS TSS

9 R.SMA-R.PMC R.PMC-R.M1 L.Thal-R.SMA R.PMC-R.M1

10 R.SMA-L.M1 R.Thal-R.PMC R.M1-L.M1

11 R.Thal-L.PMC NIHSS

12 R.SMA-R.M1

T4 = pre-therapy; T6 = post-therapy; T7 = 1-month post-therapy.

DISCUSSION

Impact of BCI Intervention Based on
Identified Correlates
The objective of this study was to assess behavioral outcomes
following the described BCI intervention. To do so, rs-FC,
1rs-FC, and behavioral measures were utilized. Evaluation of
outcomes at the third time-point, namely the 1-month post-
intervention, would be particularly important to understand
the potential long-term impact of the intervention. As would
be expected, behavioral measures at preceding time-points
estimated the behavioral measures at succeeding time-points
better than rs-FC or 1rs-FC. However, using behavioral
measures alone does not provide the knowledge of possible
neural reorganization in the brain. Neuroimaging-based rs-FC
features can offer this complementary information and serve
as an alternative means to assess outcomes. In comparison to
pre-intervention measures, the post-intervention input (rs-FC,
1rs-FC, behavioral) measures were more indicative of outcomes
at 1-month post-intervention. That could suggest neural
reorganization occurring between pre- and post-intervention
that is at least partially retained at 1-month post-therapy.

Rs-FC as a Tool for Predicting Behavioral
Changes
FMRI has been shown as a useful biomarker in predicting the
impact of several forms of rehabilitation on the recovery of
function in the stroke population (Johansen-Berg et al., 2002;
Ward et al., 2003a; Sharma et al., 2009; Várkuti et al., 2013; Young
et al., 2014b). Rs-fMRI, in particular, is a useful non-invasive
method used to study impaired subjects such as stroke survivors,
as it is time-efficient and task-free, reducing the burden on study
participants. In our study, the impact of BCI intervention was
examined using rs-FC and associated changes corresponding
to several objective and subjective behavioral outcomes. Rs-FC
as correlates formed reliable SVR models across all outcomes.
However, with 1rs-FC, models corresponding to ARAT(A) and
SIS(HF) were only significant above chance-level. ARAT(A) and
SIS(HF) are objective and subjective measures of impairment
due to stroke and ability to use the impaired hand respectively.
Improvement in these outcomes following the intervention
demonstrates the impact of BCI-aided therapy. The models that
were not significant against chance level could potentially be
due to low variability in the normalized outcomes as well as
limited sample size. Additionally, the main contributing regions
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TABLE 6 | Linear-kernel SVR performances based on leave-one out cross-validation to correlate 1rs-FC between two time-points with 1 behavioral measures between

corresponding time-points are presented.

Outcome 1rs-FCT6−T4∼1behaviorT6−T4 1rs-FCT7−T4∼1behaviorT7−T4 1rs-FCT7−T6∼1behavior T7−T6

Features RMSE R2 Features RMSE R2 Features RMSE R2

(A) WITHOUT CLINICAL VARIABLES

19HPT(A) 3 110.93 0.22 1 116.69 0.14 4 109.25 0.25

19HPT(U) 1 4.2 0.28 1 4.05 0.26 6 2.86 0.63

1ARAT(A) 7 20.58* 0.33 4 17.87* 0.49 6 15.48* 0.61

1BI 5 8.01 0.18 5 0.05 0.53 6 6.39 0.3

1SIS(ADL) 2 10.93 0.24 5 10.62 0.51 8 0.08 0.73

1SIS(HF) 5 8.52* 0.26 4 26.84* 0.36 6 33.47* 0.42

1SIS(Mob) 4 7.88 0.37 2 13.17 0.1 3 11.34 0.34

1SIS(PS) 3 18.44 0.2 3 11.93 0.47 6 0.81 0.2

(B) WITH CLINICAL VARIABLES

19HPT(A) 5 69.63 0.69 3 71.35 0.68 3 61.39 0.76

19HPT(U) 3 4.19 0.28 3 0.1 0.22 3 1.51 0.9

1ARAT(A) 16 5.14* 0.96 8 5.72* 0.95 16 7.01* 0.92

1BI 3 0.05 0.1 7 4.59 0.64 8 3.82 0.75

1SIS(ADL) 4 9.45 0.43 5 13.38 0.22 4 14.1 0.13

1SIS(HF) 5 16.15* 0.78 5 23.48* 0.51 4 15.1* 0.8

1SIS(Mob) 4 9.77 0.03 7 9.4 0.54 5 10.51 0.43

1SIS(PS) 4 16.36 0.37 4 13.52 0.32 8 12.53* 0.41

Specific correlates are listed in Table 7. (*) = significant against chance-level based on permutation-test (p<0.05); T4 = pre-therapy; T6 = post-therapy; T7 = 1-month post-therapy.

remained focused on bilateral M1 areas with and without the
influence of the clinical features. These findings illustrate that rs-
FC serves as a stable imaging biomarker in understanding the
functional correlates of the recovery process and could, thus,
guide future rehabilitative studies in tracking changes over time.

Machine Learning as a Tool For Predictive
Modeling
In the context of fMRI studies, fewer studies have used
prediction of outcomes on a continuous scale (Ganesh et al.,
2008; Dosenbach et al., 2010; Michel et al., 2011; Vergun
et al., 2013), where SVR-based models have been adopted to
address different parts of data analysis, the majority of which,
are based on a simple linear-kernel SVR. Even fewer studies
have explored the improved performance offered by non-linear
kernels. For instance, non-linear SVR has been incorporated
in the preprocessing pipeline of fMRI data to accurately
detect activation by accounting for intrinsic spatio-temporal
autocorrelations (Wang et al., 2003) and cognitive states of
participants in a virtual reality environment have been predicted
based on fMRI data using non-linear SVR (Di Bono and Zorzi,
2008). With inclusion of non-linear-kernel SVR, our work adds
to the growing literature that provides insight on adopting the
more generalizable non-linear approaches for regression based
on fMRI data. This could indicate that while the underlying
relationship between rs-FC and behavioral measures might not
necessarily be linear, the relationship within a given behavioral
measure could be better expressed linearly. While linear models
were useful in interpreting the contributing features, non-linear

models performed slightly better in explaining possible non-
linear interactions with better generalizability. Our findings
suggest promise in that, given fMRI data from a large cohort,
machine learning-based regression models may be trained to
predict behavioral change resulting from BCI intervention on
a single-subject level. From the clinical perspective, such an
application could serve as a supplementary prognostic tool for
patients and their families in estimating the timeline and/or
capacity of potential recovery through this intervention.

The Bigger Picture
Our work adds to the ongoing investigation of understanding
the trajectory of motor recovery in the chronic stage of stroke
as a result of BCI-aided rehabilitative intervention using a data-
driven approach. These findings are in line with works that
suggest that using rehabilitative therapies have enabled recovery
even at the chronic stage of stroke (Fasoli et al., 2003; Caria et al.,
2011). This means that even though motor recovery associated
with the paretic side might have plateaued, there could still
be potential for further recovery. This was evident from the
predominant involvement of rs-FC and 1rs-FC associated with
the bilateral M1, which is primarily known to be a center for
voluntary motor behavior including but not limited tomovement
planning, movement initiation and motor learning. While the
roles of neuroimaging methods such as task-fMRI (Young et al.,
2014b) and diffusion images (Song et al., 2014) in relation to
motor recovery facilitated by BCI in our cohort have been
explored, the current study fills a gap by examining rs-fMRI as
a potential biomarker for recovery. Since it is established that
activations identified by task-fMRI have overlapping functional
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TABLE 7 | List of 1rs-FC correlates of 1behavior between all pairs of time-points identified by using linear-kernel SVR are presented below.

Rank 19HPT(A) 19HPT(U) 1SIS(ADL) 1SIS(Mob) 1SIS(PS) 1BI 1ARAT(A) 1SIS(HF)

(A) WITHOUT CLINICAL VARIABLES

Outcomes at T6 and Input 1rs-FC Features at T4

1 R.Thal-R.SMA L.SMA-L.PMC L.SMA-R.PMC R.PMC-R.M1 L.SMA-R.M1 R.Thal-L.PMC L.Thal-L.M1 R.PMC-L.M1

2 R.Thal-R.M1 L.Thal-R.PMC L.Thal-L.M1 R.SMA-L.SMA L.SMA-L.PMC L.Thal-L.PMC R.SMA-R.M1

3 R.SMA-R.PMC R.PMC-L.M1 R.PMC-L.M1 L.SMA-L.PMC L.PMC-L.M1

4 L.Thal-R.PMC L.SMA-R.M1 L.Thal-R.SMA

5 L.SMA-R.PMC L.PMC-R.M1

6 R.M1-L.M1

7 L.Thal-R.PMC

Outcomes at T7 and Input 1rs-FC Features at T4

1 R.Thal-L.SMA L.Thal-R.PMC R.Thal-R.M1 L.Thal-L.M1 R.Thal-L.PMC L.Thal-R.PMC R.Thal-R.SMA R.Thal-L.M1

2 L.Thal-R.PMC R.Thal-R.M1 R.SMA-L.M1 L.PMC-L.M1 L.Thal-L.PMC L.PMC-L.M1

3 R.PMC-R.M1 R.SMA-R.M1 R.SMA-R.PMC L.Thal-L.M1 R.Thal-R.PMC

4 R.PMC-L.PMC R.SMA-R.M1 R.Thal-L.SMA L.SMA-L.M1

5 L.SMA-L.M1 L.SMA-R.M1

Outcomes at T7 and Input 1rs-FC Features at T6

1 L.SMA-L.PMC R.PMC-R.M1 R.Thal-R.SMA R.SMA-R.M1 L.Thal-R.SMA R.SMA-L.SMA L.Thal-L.M1 L.SMA-L.M1

2 L.SMA-R.PMC R.PMC-L.PMC L.Thal-R.SMA R.Thal-R.M1 L.Thal-R.M1 L.PMC-R.M1 L.Thal-L.SMA L.Thal-L.M1

3 R.M1-L.M1 L.SMA-R.PMC R.SMA-R.PMC R.PMC-L.M1 R.Thal-R.PMC R.SMA-R.M1 R.Thal-L.PMC L.SMA-L.PMC

4 R.SMA-L.M1 R.SMA-L.PMC R.SMA-R.M1 L.SMA-L.M1 R.Thal-L.PMC L.Thal-R.PMC L.Thal-R.PMC

5 L.Thal-L.M1 R.PMC-L.PMC R.PMC-L.M1 R.SMA-R.PMC R.Thal-R.SMA L.Thal-L.SMA

6 L.Thal-L.SMA L.SMA-L.PMC L.Thal-L.M1 L.PMC-L.M1 R.PMC-R.M1 L.PMC-L.M1

7 L.Thal-L.PMC

8 L.PMC-R.M1

(B) WITH CLINICAL VARIABLES

Outcome at T6 and Input 1rs-FC at T4 + Clinical Features

1 R.Thal-R.SMA NIHSS L.SMA-R.PMC R.Thal-L.M1 L.SMA-R.M1 R.PMC-L.M1 NIHSS R.PMC-L.M1

2 Gender R.Thal-L.PMC L.Thal-R.PMC L.Thal-R.M1 L.SMA-L.M1 R.Thal-L.PMC Motor Imp. R.Thal-L.SMA

3 R.SMA-L.M1 L.SMA-R.PMC TSS R.PMC-R.M1 R.SMA-L.SMA R.SMA-L.M1 L.SMA-R.PMC R.Thal-R.SMA

4 R.Thal-R.M1 R.M1-L.M1 L.SMA-R.M1 L.Thal-R.M1 R.Thal-L.PMC L.Thal-R.M1

5 R.Thal-L.PMC Lesion Hemi R.SMA-L.PMC

6 R.Thal-L.SMA

7 L.SMA-L.PMC

8 L.SMA-L.M1

9 R.Thal-R.SMA

10 R.PMC-R.M1

11 L.SMA-R.M1

12 R.M1-L.M1

13 R.SMA-R.M1

14 L.Thal-L.M1

15 R.PMC-L.M1

16 TSS

Outcome at T7 and Input 1rs-FC at T4 + Clinical Features

1 R.Thal-L.SMA R.SMA-R.PMC Motor Imp. R.Thal-R.M1 R.SMA-L.M1 L.PMC-L.M1 L.Thal-L.PMC R.Thal-L.M1

2 NIHSS R.Thal-R.M1 R.Thal-R.M1 Age R.Thal-L.PMC L.Thal-R.PMC NIHSS L.PMC-L.M1

3 R.Thal-R.PMC Lesion Hemi L.SMA-R.PMC L.Thal-L.M1 R.PMC-L.M1 R.SMA-R.M1 R.SMA-L.M1 R.Thal-R.PMC

4 R.SMA-L.M1 R.Thal-L.SMA Lesion Hemi L.Thal-L.M1 R.Thal-R.SMA L.Thal-R.PMC

5 R.SMA-R.PMC L.Thal-L.PMC R.M1-L.M1 R.Thal-L.M1 R.SMA-L.M1

6 Motor Imp. R.Thal-L.PMC L.Thal-R.PMC

7 L.Thal-R.SMA NIHSS L.PMC-R.M1

8 L.SMA-L.PMC

(Continued)
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TABLE 7 | Continued

Rank 19HPT(A) 19HPT(U) 1SIS(ADL) 1SIS(Mob) 1SIS(PS) 1BI 1ARAT(A) 1SIS(HF)

Outcome at T7 and Input 1rs-FC at T6 + Clinical Features

1 R.Thal-R.SMA R.PMC-R.M1 L.SMA-L.PMC R.SMA-R.M1 L.SMA-R.M1 R.SMA-L.SMA L.Thal-L.SMA L.SMA-L.M1

2 L.PMC-L.M1 L.SMA-R.PMC R.SMA-R.M1 R.Thal-R.M1 Lesion Hemi L.PMC-R.M1 L.Thal-L.PMC L.Thal-L.M1

3 R.PMC-L.PMC R.SMA-L.PMC L.SMA-R.M1 Motor Imp. R.SMA-L.PMC L.Thal-L.PMC L.Thal-L.M1 R.SMA-R.PMC

4 L.Thal-L.PMC R.Thal-L.Thal R.Thal-L.Thal R.Thal-L.PMC R.SMA-R.PMC R.Thal-L.Thal

5 R.PMC-L.M1 L.Thal-R.PMC R.SMA-L.M1 Age

6 L.SMA-L.M1 R.Thal-L.SMA TSS

7 L.PMC-L.M1 R.Thal-R.PMC L.PMC-R.M1

8 NIHSS L.Thal-R.M1 L.SMA-L.M1

9 R.Thal-L.Thal

10 R.M1-L.M1

11 L.PMC-L.M1

12 Gender

13 L.Thal-R.SMA

14 NIHSS

15 L.Thal-R.PMC

16 L.Thal-R.M1

TABLE 8 | Linear-kernel SVR performances based on leave-one out cross-validation to correlate behavioral measures at preceding time-point and clinical variables with

behavioral measures at succeeding time-point are presented.

Outcome T4 behavior∼T6 behavior T4 behavior∼T7 behavior T6 behavior∼T7 behavior

Features RMSE R2 Features RMSE R2 Features RMSE R2

9HPT(A) 2 2.52* 0.74 1 3.28* 0.52 3 3.25* 0.53

9HPT(U) 4 37.36* 0.91 5 23.4* 0.97 5 9.05* 0.99

ARAT(A) 3 2.73* 0.99 3 3.31* 0.98 3 3.13* 0.98

BI 1 5.48* 0.62 2 5.19* 0.54 3 4.83* 0.6

SIS(ADL) 3 8.56* 0.54 3 10.24* 0.54 3 11.42* 0.43

SIS(HF) 4 12.74* 0.86 4 13.03* 0.85 4 7.9* 0.94

SIS(Mob) 4 5.36* 0.71 2 11.8* 0.28 3 10.09* 0.47

SIS(PS) 2 14.7* 0.49 2 12.03* 0.46 3 8.85* 0.71

Specific correlates are listed in Table 9. (*) = significant against chance-level based on permutation-test (p < 0.05); T4 = pre-therapy; T6 = post-therapy; T7 = 1-month post-therapy.

areas with rs-fMRI within the motor network (Biswal et al.,
1995), it allows us to draw parallels between our study and
those based on task-fMRI. Additionally, thalamic 1rs-FC also
emerged as a region with strong involvement in estimating
changes in ARAT(A) and SIS(HF), which was demonstrated
using task-fMRI activation associated with the same outcomes
in our precedent study (Young et al., 2014b). Another task-
fMRI-based study by Ward et al. (2003b) also reported thalamic
correlations with motor recovery especially in stroke subjects
(time since stroke onset > 3 months) with MCA lesions. It could
be possible that our findings are similar as half of the subjects
included in our study exhibited MCA lesions as well. From data
modeling perspective, while traditional methods such as general
linear models assume a certain distribution of data, SVR offers
a non-parametric method that can model both linear and non-
linear relationships in the data and adds to the growing body
of studies using machine learning prediction models to analyze

fMRI (Di Bono and Zorzi, 2008; Dosenbach et al., 2010; Vergun
et al., 2013).

Limitations
This study highlights how machine learning holds potential to
provide useful information by correlating neuroimaging changes
to behavioral changes. However, the results can be limited by
the sample size that can, in turn, affect the capability of drawing
generalizable conclusions as machine learning models such as
SVR are typically based on training on data from a much larger
cohort. Involvement of NIHSS stroke severity as a feature across
multiple outcomes could suggest that lesion size and/or volume
might be an important consideration (Chen et al., 2000; Shelton
and Reding, 2001) and should be included in future analysis.
Feature selection, realized by SFS, was important in deciding the
role of relevant correlates of each behavioral scale. However, SFS
suffers from the drawback that it cannot remove features from
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TABLE 9 | List of behavioral and clinical correlates at preceding time-points using linear-kernel SVR for estimation of measures at succeeding time-points are presented

below.

Rank 9HPT(A) 9HPT(U) ARAT(A) SIS(ADL) SIS(HF) SIS(Mob) SIS(PS) BI

Outcome at T6 and Input Behavior at T4 + Clinical Variables

1 9HPT(A) 9HPT(U) Motor Imp. SIS(ADL) SIS(HF) SIS(Mob) SIS(PS) BI

2 NIHSS Motor Imp. ARAT(A) Lesion Hemi NIHSS NIHSS NIHSS

3 NIHSS NIHSS NIHSS TSS TSS

4 Lesion Hemi Motor Imp. Lesion Hemi

Outcome at T7 and Input Behavior at T4 + Clinical Variables

1 9HPT(A) 9HPT(U) ARAT(A) SIS(ADL) SIS(HF) SIS(Mob) SIS(PS) BI

2 NIHSS Motor Imp. Motor Imp. NIHSS Motor Imp. Motor Imp. TSS

3 Motor Imp. NIHSS TSS TSS

4 Lesion Hemi Motor Imp.

5 TSS

Outcomes at T7 and Input Behavior at T6 + Clinical Variables

1 9HPT(A) 9HPT(U) ARAT(A) SIS(ADL) SIS(HF) SIS(Mob) SIS(PS) BI

2 TSS Lesion Hemi Motor Imp. Motor Imp. Motor Imp. Motor Imp. Age TSS

3 Motor Imp Motor Imp. NIHSS TSS NIHSS NIHSS Motor Imp. Motor Imp.

4 TSS TSS

5 NIHSS

T4 = pre-therapy; T6 = post-therapy; T7 = 1-month post-therapy.

the model that become obsolete upon addition of new features.
Recent work suggested that rs-FC can be quantified in several
ways using metrics such as cosine similarity and dynamic time
warping (Smith et al., 2011). Thus, the choice of metric used for
rs-FC might affect the features selected for each outcome.

Future Scope
With ongoing recruitment, a larger and more generalizable
prediction model could be developed by considering the
following. The complete BCI-aided intervention involved both
imaging as well as behavioral data at multiple distinct time
points, of which only pre-, post- and 1-month post-intervention
data have been used in the current analysis. With a larger
sample size, the analysis, therefore, could be expanded further
by considering the changes in rs-FC over other time-points
and correlating them with corresponding behavioral outcomes
and changes. Since recovery is a multi-faceted process, other
imaging methods, such as diffusion tensor images, structural
images, and perfusion images can provide complementary
information about brain changes and could be incorporated as
features to SVR. Potentially, multiple of these neuroimaging
methods could be combined so as to assess the relative
importance of each as a biomarker of stroke recovery through
the BCI-intervention. Correlation and interaction among the
different behavioral measures could be simultaneously accounted
for by implementing a multiple-output SVR that uses a
single model to predict multiple outcomes. Additionally,
differences and similarities among predictors between stroke
subjects and matched healthy subjects undergoing the BCI-
intervention will help to further understand the impact of this
intervention.

CONCLUSION

We showed that rs-FC, changes in rs-FC and early-stage behavior
can estimate behavioral outcomes and changes in chronic-
stage stroke subjects following this BCI-aided intervention for
rehabilitation. Machine learning-based SVR models helped to
identify specific correlates of for objective as well as subjective
behavioral scales. Among the neural substrates identified,
important regions contributing to the estimation involved the
left and right primary motor areas. Linear and non-linear
kernels for SVR indicated similar results with non-linear SVR
being slightly more accurate in estimating the outcomes and
forming more generalizable models. The results, however, were
more interpretable using the linear-kernel models. For further
research, the kernel for SVR must be chosen based on the trade-
off between lower error rates and interpretability. Given the
promise of this kind of BCI intervention in stroke rehabilitation,
the coupling of machine learning with neuroimaging and
behavioral measures can aid further identification of neuroplastic
changes corresponding to behavioral outcomes to estimate and
track stroke recovery, both in terms of neural reorganization and
improvements to motor function.
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