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alphaherpesvirus infection
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Pollens are well-known triggers of respiratory allergies and asthma. The pollen burden in today’s
ambient air is constantly increasing due to rising climate change and air pollution. How pollens interact
with the respiratory mucosa remains largely unknown due to a lack of representative model systems.
We here demonstrate how pollen proteases of Kentucky bluegrass, white birch and hazel selectively
destroy integrity and anchorage of columnar respiratory epithelial cells, but not of basal cells, in both
ex vivo respiratory mucosal explants and in vitro primary equine respiratory epithelial cells (EREC). In
turn, this pollen protease-induced damage to respiratory epithelial cell anchorage resulted in increased
infection by the host-specific and ancestral alphaherpesvirus equine herpesvirus type 1 (EHV1). Pollen
proteases of all three plant species were characterized by zymography and those of white birch were
fully identified for the first time as serine proteases of the subtilase family and meiotic prophase
aminopeptidase 1 using mass spectrometry-based proteomics. Together, our findings demonstrate that
pollen proteases selectively and irreversibly damage integrity and anchorage of columnar respiratory
epithelial cells. In turn, alphaherpesviruses benefit from this partial loss-of-barrier function, resulting in
increased infection of the respiratory epithelium.

Asthma and seasonal rhinitis are two allergic diseases with increasing morbidities worldwide'. Plant pollens
are well-known triggers of respiratory allergies and their importance is currently rising due to today’s modern
society>?. Indeed, global warming and today’s air pollution already led to longer-lasting and increased pollen
concentrations in the ambient air and might cause future massive burdens if not prevented. How pollens interact
with the respiratory mucosa remains largely unknown due to a lack of representative model systems.

It is generally believed that upon inhalation by humans or animals, pollens liberate a plethora of substances by
hydration in the respiratory tract, including allergens and proteases. These pollen proteases might facilitate the
para-cellular transport of pollen allergens by impairing the epithelial barrier*>>~”. The epithelial barrier is normally
preserved by firm intercellular junctions (ICJ), which create a network of close connections between adjacent cells
and maintain epithelial integrity. Next, the delivery of pollen allergens to sub-epithelial antigen presenting cells
initiates the priming of T helper 2 (Th2) cells, a key step in the immunopathology of allergy®. This hypothesis is
based on previous studies showing that pollen proteases are able to disrupt epithelial integrity in continuous cell
lines®”®. More precisely, these studies demonstrated that pollen proteases disrupt major constituents of intercel-
lular junctions (ICJ), namely occludin, zonula occludens-1 protein, claudin-1 and E-cadherin. In contrast, a more
recent study using better representative primary isolated human bronchial epithelial cells showed that the epithe-
lial barrier is not disrupted upon treatment with pollen diffusates'®. The discrepancy between these studies could
be explained by the model systems used. For instance, genetic mutations in continuous cell lines may have altered
cellular phenotypes and mechanisms, leading to inconclusive or erroneous results when using these cells''. In

: addition, continuous cell lines cannot fully mimic the in vivo 3D architecture. Primary isolated cells represent a
. more valuable tool to study merely epithelial characteristics such as integrity and polarity and mimic the in vivo
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airway epithelium very well, consisting of a heterogeneous population of ciliated cells, basal cells and (mucus-)
secreting cells'*"!*. However, merely epithelial cells do not fully represent a complete respiratory mucosa, which
is build-up of a ciliated pseudostratified epithelium, basement membrane and underlying supportive connective
tissue embedded with a repertoire of immune cells. Explants provide a good alternative to the previously men-
tioned models, as they maintain the in vivo 3D micro-environment, including all layers of the respiratory mucosa.
In addition, several explants can be obtained from one animal to test multiple conditions, limiting the number
of experimental animals and inter-animal variations'>-'7. Unfortunately, human ex vivo models are sparse and
there is no clear vision on the exact impact of pollen proteases on the respiratory epithelium so far. Here, the
horse (Equus caballus) was used as our study system. Similarly to human pollen allergies, horses commonly suffer
from summer pasture-associated recurrent airway obstruction (SP-RAO) during late winter-spring, as a result
of peaking pollen concentrations in the ambient air'®. In addition, the horse has already been shown to act as a
representative model to study allergies'.

Pollen proteases are mainly localized at the pollen wall and assist in the assembly of a pollen tube within the
flower pistil’s transmission tract to deliver the male gametophyte to its female counterpart?*?!. They have already
been characterized as serine, cysteine, threonine and metalloproteinase in several plants including maize, white
birch, pine, giant ragweed, rye and blue grass, easter lily and olive tree®”?*-2%, However, limited knowledge on
plant genomics and proteomics hindered previous researchers from fully identifying these proteases.

Further, we hypothesized that a plausible pollen protease-induced disruption of epithelial barrier function
might subsequently favour pathogen invasion. For instance, alphaherpesviruses often colonize new hosts through
the respiratory mucosae, but primary infections are usually restricted in healthy hosts?*~2%. We recently showed
that this restriction in viral replication is due to the fact that a main alphaherpesvirus receptor is located basolat-
erally and only becomes accessible upon artificial disruption of the epithelial barrier®’. Hence, pollen proteases
might drive alphaherpesvirus infection by exposing their main binding receptor upon disruption of epithelial
integrity. The horse-specific equine herpesvirus type 1 (EHV1) is a well-known member of the alphaherpesvi-
rus family and is closely related to other alphaherpesviruses (e.g. varicella-zoster virus, herpes simplex virus,
pseudorabies and bovine herpesvirus type 1)***!. Interestingly, EHV1 even stood out as the most central one
among all examined alphaherpesviruses®. Thus, pollen-induced effects and host-specific alphaherpesvirus infec-
tions can optimally be studied using representative equine ex vivo and in vitro models, known to mimic in vivo
conditions'>16.

Together, our study aimed at identifying specific plant proteases and depicting their impact on the respiratory
epithelium and on subsequent alphaherpesvirus host invasion, using representative models.

Results

Pollen grains of Kentucky bluegrass (KBG), white birch (WB) and hazel (H) release proteases
with major metalloproteinase and serine peptidase activities. Proteolytic activities of the pollen
diffusates were first determined by gelatine zymography using specific protease inhibitors (PI) (Fig. 1). Plot pro-
filing of pretreated pollen diffusate lanes was performed by means of image analysis to determine the absence or
presence of specific proteolytic bands. Following control treatment with PBS, all three pollen diffusates contained
proteolytic bands with motilities ranging from 70kDa to over 250kDa. In the KBG, WB and H lanes, one, three
and two major proteolytic bands were identified, respectively. Sequestration of metal ions by EDTA inhibited
metalloproteinases as well as proteases that require metal ions for stabilisation and/or activation. This was suffi-
cient to block merely all proteolytic bands in the three pollen diffusates, as designated by a drop in the respective
plot profiles. Treatment of all three pollen diffusates with the serine protease inhibitor AEBSF clearly inhibited
enzymatic activities in all proteolytic bands, except for two proteolytic bands in the WB lane, located slightly
above 250kDa and at 70kDa. The former band was only efficiently blocked following sequestration of metal ions
by EDTA, suggesting that it harboured a metalloproteinase, while the latter band disappeared after inhibition of
cysteine protease activity with E-64. Inhibiting aspartyl proteases with pepstatin A was not sufficient to block the
proteolysis of gelatine in the proteolytic lanes of all pollen diffusates. Together, our zymography data indicate the
presence of significant protease activity in plant pollen diffusates.

Protease identification in the pollen diffusate of white birch. The recent genomic sequencing of
WB and accompanying annotation of its putative protein sequences®* enabled us to reveal the identity of WB
proteases using mass spectrometry (MS)-based proteomics. For this purpose, LC-MS/MS analysis was performed
on three protein bands corresponding to different enzymatic bands on the zymograms (i.e. mobility at >250kDa
[1], 100-150kDa [2] and 70kDa [3]), which were excised following regular SDS-PAGE (Fig. 2). The raw MS/
MS data were searched against a database of Betula pendula proteins for which functional annotation is available
from orthologous proteins in Arabidopsis thaliana, a widely used model in molecular plant biology and an over-
view of identified proteases, glycosidases and lipases is given in Table 1. Further information on the Arabidopsis
thaliana orthologous proteases can be found using their MEROPS accession number. MEROPS is a peptidase
database which groups proteases of similar evolutionary origins into (sub)clans and (sub)families. In accordance
with our zymography results, primarily serine proteases were identified in all three protein bands. In particular,
the ‘subtilisin-like protease SBT1.7' (Bpev01.c0015.g0096.m0001) was predominantly recovered from all three
lanes, indicating that it might exist in multiple forms. The identification of two additional subtilisin-like serine
proteases (i.e. Bpev01.c1354.g0003.m0001 or ‘subtilisin-like protease SBT5.4’ and Bpev01.c0577.g0026.m0001 or
‘subtilisin-like serine protease’) in two out of three protein bands depicts a major presence of subtilases in the WB
pollen diffusate. In addition, meiotic prophase aminopeptidase 1 (Bpev01.c0170.g0046.m0001), a metalloprotein-
ase with aminopeptidase activity was identified in the protein band with a size corresponding to 100-150 kDa.
Besides these proteases, a repertoire of glycosidases and lipases were also found in different WB lanes (Table 1).
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Figure 1. Pollen diffusates of Kentucky bluegrass (KBG; upper panel), white birch (WB; middle panel) and
hazel (H; lower panel) contain proteolytically active compounds. Pollen diffusates were incubated with PBS

or several protease inhibitors (2.5uM EDTA, 500 uM AEBSF or 15uM E-64) prior to and during zymography
on a gelatin substrate. Following overnight digestion at 37 °C, Coomassie blue staining of the gelatin gels was
performed. RGB-pictures were taken with a ChemiDocMP Imaging System (Bio-Rad) and converted to 8-bit
grey-scaled images using Image]J. A complete overview of the zymogram lanes of PBS-treated pollen diffusates
is shown on the left (cropped images). The red box designates the area that was used for plot profiling in Image].
Plot profiles and their corresponding zymogram lanes are shown in the right set of graphs (cropped images).
Proteolytic bands appear as white zones in the Coomassie blue-stained gelatin gel and are, together with their
corresponding grey value peaks, designated by red arrowheads. Samples were derived from the same pollen
diffusate batches and zymograms were processed in parallel. Original zymograms are given in Fig. S1.
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Figure 2. Protein (left) and proteolytic (right) profiles of pollen diffusates of Kentucky bluegrass (KBG), white
birch (WB) and hazel (H). Three bands (1-3, left red boxes), corresponding to major proteolytic spots on
zymography (1-3, right red boxes), were excised in the WB lane following SDS-PAGE and were subjected to
LC-MS/MS analysis for protein identification.
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Type (and MEROPS Corresponding Sequence Nr. of unique
accession) Protein ID Arabidopsis gene Description Lane (kD) | coverage % peptides
>250 3.3 2
Serine protease (S08.112) | Bpev01.c0015.g0096.m0001 AT5G67360 Subtilisin-like protease SBT1.7 100-150 14.6 10
70 3 2
100-150 1.2 1
Serine protease (S08.A26) | Bpev01.c1354.g0003.m0001 AT5G59810 Subtilisin-like protease SBT5.4 0 - n
Serine protease (S08.A22) | Bpev01.c0577.g0026.m0001 AT1G20160 Subtilisin-like serine protease 100-150 | 1.8 1
Metalloproteinase, - . .
aminopeptidase (M01.029) Bpev01.¢0170.g0046.m0001 AT1G63770 Meiotic prophase aminopeptidase 1 100-150 15 1
>250 8.4 4
Glycosidase Bpev01.c0504.g0008.m0001 AT4G20050 Polygalacturonase QRT3
100-150 33.1 18
Glycosidase Bpev01.c0298.g0032.m0001 AT3G48950 Endo-polygalacturonase-like protein 70 3.1 2
>250 1.8 1
Glycosidase Bpev01.¢1877.g0001.m0001 AT5G64570 Beta-d-xylosidase
100-150 5.8 4
>250 1.5 1
Glycosidase Bpev01.c0313.g0001.m0001 AT5G04885 Glycosyl hydrolase family protein
100-150 6.3 1
100-150 14 1
Glycosidase Bpev01.c0313.g0002.m0001 AT5G20950 Glycosyl hydrolase family protein 0 Py n
. Putative glycosyl hydrolase of unknown
Glycosidase Bpev01.¢0031.g0026.m0001 AT5G12950 function (DUE1680) 70 3.1 3
>250 1.7 1
Lipase Bpev01.c0547.g0017.m0001 AT4G13550 Triglyceride lipase 100-150 | 3.2 2
70 4.1 3

Table 1. Identification of white birch proteases, glycosidases and lipases. Proteases, glycosidases and lipases
identified via proteome analysis of three protein bands (>250kDa [1], 100-150kDa [2], and 70kDa [3]) from
the white birch pollen diffusate, corresponding to proteolytic spots on zymography (shown in Fig. 2).

Pollen proteases selectively and irreversibly alter integrity and anchorage of columnar respira-
tory epithelial cells. Pollen proteases of KBG and WB have been shown to affect epithelial integrity in
Madin-Darby canine kidney (MDCK) cells and in human lung adenocarcinoma Calu-3 cells®”. However, these
continuous cell lines do not reflect the in vivo situation. Therefore, we examined the effect of pollen proteases on
representative ex vivo respiratory mucosal explants and primary equine respiratory epithelial cells (EREC).

Respiratory mucosal explants.  As shown in the haematoxylin-eosin-stained images of Fig. 3a, the inter-
cellular spaces opened up following treatment with all three pollen diffusates, compared to control treatment with
PBS. There was no effect of any of the three pollen diffusates on epithelial integrity when protease inhibitors (PI)
were added (500 uM AEBSE, 15uM E-64 and 2.5 uM EDTA), demonstrating that pollen proteases affect epithelial
intercellular junctions (ICJ). Notably, basal cell IC] were resistant to treatment with pollen proteases throughout
the course of the experiment, as shown by the intact basal cell layer on haematoxylin-eosin-stained sections.
Indeed, the intercellular space significantly (P < 0.05) increased in the columnar cell layer (left graph), but not in
the basal cell layer (right graph). As a control, treatment with the Ca®*-chelating agent EGTA efficiently disrupted
the ICJ of both basal and columnar cells, as demonstrated by the significant increase (P < 0.05) in intercellular
space in both cell layers. Viability of cells within the respiratory epithelium did not significantly drop after treat-
ment with pollen diffusates, compared to control PBS (Fig. S2a, left panel). However, desquamating cells did show
signs of apoptosis, as shown in the right panel of Fig. S2a (green signal).

In contrast to EGTA, the pollen diffusates irreversibly affected epithelial morphology. Twenty-four hours after
the 12h pollen diffusate treatment, the height of the epithelium was significantly lower (KBG, 304 8 um; WB,
24+ 8um; H, 28 + 8 um), compared to PBS or EGTA treatment (62 15 um and 60 £ 12 um, respectively), as
shown in Fig. 3b. In addition, the ciliated appearance of the respiratory epithelium was lost upon incubation with
the pollen diffusates. Again, these effects were attributed to the protease activities of all three pollen diffusates, as
the addition of PI prevented these changes in epithelial morphology. Representative haematoxylin-eosin-images
are given in the upper panel of Fig. 3b.

EREC. IC] integrity of EREC was examined by measuring both the transepithelial electrical resistance (TEER)
and transepithelial permeability to RITC-labelled dextran. EREC reached a steady TEER of ~500-700 Q X cm ™
after 5-7 days of incubation at the air-liquid interface in a transwell cell culture system. Starting from 30 min
post addition, the TEER significantly dropped to baseline levels after treatment with EGTA (positive control),
but not after treatment with PBS or with different pollen diffusates (Fig. 4a). In contrast, the TEER increased
in a time-dependent manner and reached values that were up to 2.5-fold higher at 12 h after exposure than at
0h in both PBS- and pollen diffusate-treated EREC. The TEER of additional EREC that did not receive any
treatment, i.e. had air-filled apical compartments, remained stable throughout the experiment (data not shown).
TEER values did not significantly differ among PBS- and pollen diffusate-treated EREC. The pattern of TEER
values over time was similar in EREC treated with pollen diffusates supplemented with PI, as in EREC treated
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Figure 3. Pollen proteases selectively and irreversibly alter intercellular junctions of columnar equine
respiratory epithelial cells in respiratory mucosal explants. Explants were treated with PBS (control), pollen
diffusates (Kentucky bluegrass or KBG, white birch or WB and hazel or H) supplemented with or without
protease inhibitors (PI) for 12h or EGTA for 1h. (a) Representative haematoxylin-eosin-stained images of the
explants after treatment. The scale bar measures 50 um (upper panel). Schematic representation of the columnar
and basal layer of normal and pollen protease-affected respiratory epithelia (middle panel). The percentage of
intercellular spaces in the columnar (left graph) and basal (right graph) cell layer of the respiratory epithelium
after treatment (lower panels). The percentage of intercellular space was determined using Image]J software.
More precisely, the region of interest (RO, i.e. the columnar epithelial layer or basal epithelial layer) was drawn
manually for each picture in the “ROI manager tool”. Next, the threshold value to distinguish blank spaces from
cellular material was determined and the percentage of blank spaces between the cells (i.e. the intercellular
space) was calculated. Experiments were performed on explants from 3 individual horses and data are
represented as means + SD. Different lower case letters indicate significant (P < 0.05) differences in treatments
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without PI, different upper case letters indicate significant (P < 0.05) differences in treatments with PI. (b)
Representative haematoxylin-eosin-stained images of the explants 24 h after the 12h (pollen diffusates) or 1 h
(EGTA) treatment. The scale bar measures 50 um (upper panel). The height of the epithelium was measured
24h after treatment (lower panel). Experiments were performed on explants from 3 individual horses and data
are represented as means + SD. The lower case letters indicate significant (P < 0.05) differences in treatments
without PI, different upper case letters indicate significant (P < 0.05) differences in treatments with PL

with pollen diffusates without PI (data not shown). Similarly, the transepithelial permeability, as assessed by the
percentage of migrated RITC-labelled dextran across the EREC layer and shown in Fig. 4b, did not significantly
differ between EREC exposed for 121 to different pollen diffusates and control-treated EREC. Chelation of extra-
cellular Ca*" with EGTA, however, was able to significantly increase the percentage of migrated RITC-labelled
dextran across the EREC up to 20%. Treatment with all three pollen diffusates, but not with PBS, EGTA or after
supplementation of PI, induced cellular desquamation. Illustrative light microscopy pictures are given in Fig. 4c.
The loss of columnar epithelial cells upon pollen diffusate pretreatment was also apparent on the 3D recon-
struction of 20 consecutive Z-stack confocal images of the EREC layer, shown in the left panels of Fig. 4d and
on haematoxylin-eosin-stained images of the EREC layer, shown in the right panels of Fig. 4d. Viability of the
EREC was not significantly affected upon treatment with pollen diffusates with or without PI, as determined by
EMA-staining (Fig. S2b).

Together, these results show that integrity and anchorage of the columnar respiratory epithelial cell layer is
selectively disrupted by pollen proteases, while the basal cell layer resists their damaging effect.

Pollen proteases predispose respiratory epithelial cells for efficient EHV1 infection. Respiratory
mucosal explants. Number of plaques: As shown in Fig. 5a, upper left panel, the number of plaques per 50 cry-
osections significantly (P < 0.05) increased from 12 + 6 in PBS-pretreated explants (negative control) to 4549
(KBG), 51 £17 (WB) and 57 £ 16 (H) in pollen diffusate-pretreated explants. The number of plaques was sig-
nificantly (P < 0.05) higher after EGTA pretreatment (positive control), compared to PBS pretreatment and did
not significantly differ from the number of plaques in the pollen diffusate-pretreated explants. Inhibition of the
proteases in the pollen diffusates with PI completely prevented the increase in subsequent EHV 1 infection, as the
number of plaques following pollen diffusate with PI pretreatment (6 & 5 for KBG, 8 == 7 for WB and 6 £ 6 for H)
did not significantly differ from PBS pretreatment (with or without PI; 10 & 6 and 12 £ 6, respectively).

Plaque latitude: The plaque latitude gives an indication about the ease of viral spread in the explant epithelium
and is shown in Fig. 5a, upper right panel. The average latitude of EHV1 plaques increased significantly from
81 45 pm in PBS-pretreated explants to 127 +22 pm (KBG), 126 = 5 pm (WB) and 114 &+ 8 um (H) after pollen
diffusate pretreatment. Similarly, the average EHV1 plaque latitude was higher after EGTA treatment (157 £ 38
pm), compared to control. The average EHV1 plaque latitude in pollen diffusate with PI-pretreated explants
(92+31um for KBG, 88 £ 27 um for WB and 90 + 28 um for H) was similar to PBS-pretreated explants (with or
without PI; 89+ 32 um and 81 + 5 um, respectively).

Percentage of infection in the epithelium: In order to obtain a general overview of EHV1 infection in explants,
the percentage of infection in the epithelium (i.e. ROI) was calculated and is illustrated in Fig. 5a, lower left
panel. In PBS-pretreated explants, 2.20 &= 1.78% of the epithelium was infected by EHV 1. Pretreatment of the
explants with pollen diffusates led to a significant (P < 0.05) increase of this percentage to 12.83 £6.63% (KBG),
10.24£2.07% (WB) and 12.19 £ 3.61% (H). Up to 22.90 £ 6.70% of the epithelium got infected by EHV1 after
pretreatment with EGTA. A similar trend as in the number of plaques was observed for the percentage of infection
in the epithelium of explants pretreated with PBS or pollen diffusates supplemented with PI. Here, 1.41 +0.37%
(PBS), 2.46 +2.38% (KBG), 3.38 = 1.01% (WB) and 3.41 £ 1.74% (H) of the epithelium was infected with EHV1.

Virus titer: More efficient virus replication in the epithelium most likely results in the production of more
extracellular virus particles. Indeed, virus titration (Fig. 5a, lower right panel) confirmed this hypothesis showing
that the supernatant of all pollen diffusate-pretreated explants contained on average a 1 to 1.5 log,, higher titer
(4.7440.70 for KBG, 4.90 £ 0.36 for WB and 4.91 £ 0.92 for H) than control-pretreated explants (3.84 +0.2).
EGTA-pretreated explant supernatant was on average 1.5 log,, higher (5.02 4-0.26) than control supernatant.
Again, preventing protease activities by supplementing PI to the pollen diffusates resulted in a similar virus titer
(4.06 £ 1.1 for KBG, 3.69 4-0.78 for WB and 4.02 +0.96 for H), compared to control (3.72 4-0.21).

Representative confocal images of EHV1 plaques in different pretreated respiratory mucosal explants are
shown in Fig. 5b.

EREC. Number of plaques: On 3 x 10* EREC, we counted an average of 6 -4 EHV1 plaques following PBS
pretreatment of the cells. Disruption of columnar cell IC] with proteases of KBG, WB and H increased the num-
ber of EHV1 plaques in 3 x 10* EREC to 8 4, 12+ 3 and 11 £ 4, respectively. Complete disruption of epithelial
integrity with EGTA completely overcame the restriction in EHV1 infection upon apical inoculation, resulting in
an average of 58 +- 10 EHV 1 plaques per 3 x 10* EREC (Fig. 6a, left panel). Addition of PI to the pollen diffusates
during EREC pretreatment inhibited the increase in EHV1 infectivity.

Plaque latitude: No significant difference in EHV1 plaque latitude was found between different pretreatments
(Fig. 6a, right panel).

Representative confocal images of EHV1 plaques in different pretreated EREC are shown in Fig. 6b.

Taken together, the partial disruption of respiratory epithelial integrity by pollen proteases was sufficient to
enhance subsequent EHV 1 infection, but not to the same level as after a complete disruption of epithelial integrity
with EGTA.
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Figure 4. Pollen proteases selectively and irreversibly alter intercellular junctions of columnar primary equine
respiratory epithelial cells (EREC). Polarized EREC were treated with PBS (control), pollen diffusates (Kentucky
bluegrass or KBG, white birch or WB and hazel or H) or EGTA, supplemented with or without protease
inhibitors (PI). (a) The transepithelial electrical resistance of EREC was measured over time and was normalized
to time point 0 h. (b) Percentage of RITC-labelled dextran 70S in the basolateral chamber solution over that

in the apical chamber solution. RITC-labelled dextran 70S was added 2 h after the initiation of the treatment
and incubated for another 10h (right panel). Three independent experiments were performed and the data are
represented as means =+ SD. Asterisks indicate significant differences (***P < 0.001). (c) Representative light
microscopy pictures of EREC. Note the desquamating cells in EREC pretreated with pollen diffusates without PI
(KBG, WB and H - PI). The scale bar measures 50 um. (d) Cross-section of the EREC layer reconstructed from
20 consecutive confocal Z-stack images (left) or haematoxylin-eosin-stained paraffin coupes of the EREC layer
(right) following treatment with PBS (control, upper panels) or pollens (lower panels). Cell nuclei are shown in
blue (left) or purple (right) and the scale bar measures 50 um.

Discussion

In today’s modern society, the number of patients developing asthma and allergies is dramatically increasing
Our respiratory tract is constantly exposed to respirable hazards from the industrialized world, ranging from
moulds and other airborne pathogens to air pollutants, dust and pollens. All of these substances are potentially
involved in the initiation or progression of allergic diseases, but pollens are among the gold standards>*>¢%7,
Upon hydration either outside or inside the respiratory tract, pollens release a repertoire of proteins, including
allergens and proteases®*3*. All these compounds are of key importance in the onset of pollen allergy and it is
generally believed that pollen proteases affect the epithelial barrier, thereby facilitating the para-cellular transport

33,34

SCIENTIFICREPORTS| (2019) 9:4787 | https://doi.org/10.1038/s41598-019-41305-y 7


https://doi.org/10.1038/s41598-019-41305-y

b c + Pl
120 Ts;zoo-

B 1004 1757 S
2 3 b b S1504 A A, ba
8 T 80+ = 15
o s b 817
5 § 607 %100-_
O ¢ T 754
o £ 404 = .
g € ]2 A A A A o 504
z ¥ 204 8 25

[

>

<

PBS KBG WB H EGTA PBS KBG WB H EGTA

% of infection
N » (6} o
L 1 L 1 . 1

-
1

Virus titer
(log,,TCID4/mL supernatant)
? w

PBS KBG WB H EGTA PBS KBG WB H EGTA

-PI

+ Pl

Figure 5. EHV1 infection of respiratory mucosal explants after pretreatment with PBS (control), pollen
diffusates (Kentucky bluegrass or KBG, white birch or WB and hazel or H) or EGTA, supplemented with

or without protease inhibitors (PI). Explants were frozen 24 hpi and cryosections were stained for late viral
antigens. (a) The total number of plaques was counted on 50 consecutive cryosections (upper left panel), the
average plaque latitude was calculated based on a maximum of 10 individual plaques (upper right panel), the
percentage of EHV 1 infection in the epithelium was analysed on 5 random cryosections (lower left panel)
and the virus titer (lower right panel) was determined in supernatant on RK13 cells. Experiments were
performed on explants from 3 individual horses and data are represented as means + SD. Different lower
case letters indicate significant (P < 0.05) differences in treatments without PI, different upper case letters
indicate significant (P < 0.05) differences in treatments with PI. (b) Representative confocal images of EHV1
plaques (green) in respiratory mucosal explants. The basement membrane is shown in red. Cell nuclei were
counterstained with Hoechst 33342 (blue). The scale bar represents 50 pm.

of pollen allergens®—*°. However, the exact impact of pollen proteases on the respiratory epithelium remains to
be fully characterized, as representative human models are sparse. Interestingly, Bullone and Lavoie'® pointed out
that the horse animal model is well suited to study human respiratory allergies. Similarly, horses commonly suffer
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Figure 6. EHV 1 infection of equine respiratory epithelial cells (EREC) after pretreatment with PBS (control),
pollen diffusates (Kentucky bluegrass or KBG, white birch or WB and hazel or H) or EGTA, supplemented with
or without protease inhibitors (PI). Cells were fixed 10 hpi and stained for immediate early protein (IEP). (a)
The total number of plaques was counted in five different fields of approximately 3 x 10* cells for each condition
(left). Average plaque latitudes were measured on 10 individual plaques (right). Experiments were performed in
triplicate on primary EREC of 3 different horses. Data are represented as means + SD and different lower case
letters indicate significant (P < 0.05) differences in treatments without PI, different upper case letters indicate
significant (P < 0.05) differences in treatments with PI. (b) Representative confocal images of EHV1 IEP-
positive plaques (green) in EREC monolayers, nuclei were detected with Hoechst 33342 (blue). The scale bar
represents 75 pm.

from pollen allergies, which is known as summer pasture-associated recurrent airway obstruction (SP-RAO)S.
Moreover, human asthma and equine RAO share common clinical presentation and also important immunolog-
ical and tissue remodelling features'. Further, we hypothesized that pollen-induced loss of respiratory epithelial
barrier function might facilitate the invasion of the alphaherpesvirus EHV1.

Consistent with previous studies, we observed that PBS-submerged pollens release high molecular weight
proteases with major metalloproteinase and serine peptidase activities®”***. These results were corroborated by
our proteomics-derived data of the white birch (WB) pollen diffusate. Indeed, we mainly identified serine pro-
teases of the subtilase family in all three WB proteolytic lanes, besides the metalloproteinase meiotic prophase
aminopeptidase 1 in the 100-150kDa lane. The identified subtilases presumably occur in multiple forms, as
some of them (e.g. Bpev01.c0015.g0096.m0001 or subtilisin-like serine protease 1.7) were derived from different
proteolytic lanes following non-denaturing SDS PAGE. Multiple other proteases were presumably present in the
WB proteolytic lanes, as also EDTA and E-64 could efficiently block enzymatic activity on zymograms and the
majority of MS/MS spectra could not be assigned to specific proteins by means of proteomics. For instance, our
zymography results showed the presence of an additional major metalloproteinase lacking serine protease activi-
ties in the >250kDa band and a cysteine protease in the 70 kDa band of WB, but proteomics did not (yet) allow us
to identify these proteases. Future knowledge on the complete protein database of WB should eventually unravel
the identities of these putative proteases.
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Previous studies using human continuous cell lines found that pollen proteases affect epithelial integrity by
destroying major constituents of the intercellular junctions (ICJ), namely tight junction proteins (occludin, zonula
occludens-1 protein, claudin-1) and adherent junction proteins (E-cadherin)®”°. Similarly, we showed that pollen
proteases disrupt ICJ and anchorage of respiratory epithelial cells in both ex vivo equine respiratory mucosal
explants and primary EREC. In addition, we analysed the disruption of specific intercellular junction proteins
by means of immunofluorescence staining (e.g. occludin and E-cadherin). However, none of the commercially
available antibodies cross-reacted with the equine forms of the intercellular junction proteins. Remarkably, we
found that only the ICJ of columnar epithelial cells were affected by pollen proteases. This phenomenon was
strikingly different from that observed after addition of the calcium-depleting agent EGTA, which rapidly caused
splitting of both basal and columnar cell intercellular junctions®. As a result, the damage caused by pollens to the
ICJ must have been independent of calcium concentration. First, the degradation of IC] might be a direct conse-
quence of proteolytic actions. The exposed domains of basal cell transmembrane proteins might be less accessible
to exogenous proteases, compared to those of columnar cells. A more tighter sealing in between basal cells would
not be surprising, as loss of these cells would have detrimental effects on the epithelium. Indeed, basal cells not
only function as progenitor cells, but also play a major role in fixation of the complete respiratory epithelium by
expressing hemidesmosomal complexes**#!. Second, activation of a protease-activated receptor (PAR) at the sur-
face of epithelial cells could also induce disruption of epithelial integrity*?. PAR are G protein-coupled receptors
that are activated after proteolytic cleavage of their N-terminus®. It was proposed by Vinhas, et al.® that disrup-
tion of the epithelial barrier by pollen proteases could occur via the activation of a PAR. Allergenic products of
mites, moulds and the Japanese Cedar pollens have already been shown to activate PAR2, thereby initiating the
disassembly of ICJ*-%¢. Interestingly, PARI and 2 are exclusively expressed by columnar epithelial cells of the
human respiratory tract and/or skin*”*. However, due to the lack of commercially available antibodies against
equine PAR, the visualisation of these receptors in the equine respiratory tract was not possible. Further support
for a potential contribution of PAR2 in the pollen-induced loss of epithelial integrity comes from our zymography
results, as almost all proteolytic activities of the pollen diffusates were blocked with AEBSE. In addition, we mainly
identified serine proteases of the subtilase family in the WB pollen diffusate using proteomics. Notably, PAR2 is
selectively activated by serine proteases, through cleavage of its N-terminus*. Future studies will determine the
effect of equine PAR2 agonists on respiratory epithelial cell integrity.

We additionally identified a metalloproteinase ‘meiotic prophase aminopeptidase 1’ in the WB pollen diffu-
sate, together with a plethora of glycosidases and lipases. As described for matrix metalloproteinase 9, meiotic
prophase aminopeptidase 1 might also alter airway epithelial integrity*®. Based on these findings, it seems rea-
sonable to propose that pollen-derived glycosidases clear passage through the mucus blanket by destroying the
mucoprotein network. This strategy not only allows for the delivery of pollen proteases and allergens, but also
airborne pathogens to the respiratory epithelium. Interestingly, our respiratory mucosal explant model is also
able to maintain normal mucus production throughout the incubation period, as shown in the confocal images
of Fig. §3. This finding further adds to the statement that the respiratory mucosal explant model represents the in
vivo environment very well, rendering it ideal to study the impact of pollens on the respiratory tract.

Pollen-derived proteases clearly caused irreversible damage to the respiratory epithelium. Twenty-four hours
after normalizing the medium, merely a thin layer of basal cells persisted in the explants upon treatment with
pollen proteases. The normal ciliated appearance of the respiratory epithelium disappeared due to loss of desqua-
mated and apoptotic epithelial cells. In vivo, this reduced mucociliary clearance might even further promote the
damaging effect of pollen substances, as the induced stasis might further concentrate them in one place. It would
be interesting to study the regeneration capacity and duration of the respiratory epithelium. However, viability of
respiratory mucosal explants rapidly decreases following 4 days of incubation'é. In vivo studies would be better
suitable to study the latter regeneration mechanisms, although they raise ethical questions.

Cellular desquamation was also observed in the EREC upon exposure to pollen diffusates, which is in line with
previous studies®*!. However, in contrast with studies using continuous cell lines, we did not observe a decrease
in transepithelial electrical resistance or an increase in transepithelial permeability across the EREC upon apical
exposure to the pollen diffusates®*2. This corroborates our observations in ex vivo respiratory mucosal explants,
where integrity of the basal cells was not affected upon treatment with pollen diffusates. Upon loss of their neigh-
bouring epithelial cells, the basal cells may have rapidly flatted out and thereby covered the underlying surface,
as they would do in vivo™. Indeed, haematoxylin-eosin-stained paraffin coupes of the EREC layer confirmed that
basal cells resisted pollen protease treatment, while covering the transwell membrane. Surprisingly, coverage of
the apical EREC surface with either PBS or pollen diffusates led to an increase of their TEER. As these results
are consistent with those obtained from primary human bronchial epithelial cells after exposure to grass pollen
extracts, we want to emphasize the importance of using appropriate representative models'’. Here, the increase in
epithelial integrity might have acted as a self-defence mechanism in a harmful environment*. Indeed, respiratory
epithelial cells generally thrive well at the air-liquid interface, but fail to maintain their differentiation level after
full immersion in medium®*-%".

We previously showed that upon destruction of epithelial integrity, infection of the respiratory epithelium
with the alphaherpesvirus equine herpesvirus type 1 (EHV1) was greatly enhanced®. As this ancestral alphaher-
pesvirus targets a receptor located at the basolateral surface of epithelial cells, primary infections are limited and
most often occur subclinically. Here, we demonstrated that the respiratory epithelium is more easily infected by
EHV1 upon disruption of the ICJ by pollen proteases. Nonetheless, the increase in subsequent EHV1 infection
was not to the same degree as following a complete destruction of epithelial integrity with EGTA. Indeed, the
basal cells remained able to seal the epithelium upon exposure to pollen proteases, avoiding unlimited passage of
virus particles. Nonetheless, the basolateral surface of (semi-)detaching columnar cells was still exposed to virus
particles, enabling efficient infection. Especially in the more representative respiratory mucosal explants, EHV1
infection was predominantly enhanced upon pollen protease pretreatment, which was less obvious in EREC.
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Although the EREC, grown in optimal conditions, differentiate into a pseudo-stratified respiratory epithelium,
they presumably cannot fully mimic the in vivo-differentiated respiratory epithelium of mucosal explants'

Our results are corroborated by the seasonally-observed EHV1-associated symptoms (i.e. respiratory dis-
ease, central nervous system disorders and abortion), as these occur most often during late winter and spring,
when pollen concentrations in the outdoor air peak®®-%’. Indeed, in Europe, hazel is the first to shed pollens in
the air (December-April), followed by birch (March-April) and grasses (May-June)*. Nonetheless, other fac-
tors such as crowding of horses during winter and the seasonal breeding cycle of horses also contribute to these
seasonally-observed symptoms.

Vice versa, the enhanced replication of (alpha)herpesviruses in the respiratory epithelium might further
promote the detrimental effects of pollens. First, the viral-induced destruction of epithelial cells leads to
impaired mucociliary clearance, which may further concentrate pollen substances in one place®’. Furthermore,
epithelial damage will facilitate the delivery of these pollen substances to the underlying cells of the immune
system to promote airway sensitization>>%2. Next, alphaherpesviruses might selectively activate Th2 cells or
suppress T regulatory cells in certain individuals, which are both of key importance in the development of
allergies. Indeed, Th2 responses have already been shown to exacerbate HSV1-induced keratitis in mice®.
However, further studies using appropriate host-specific models are required to uncover the role of alphaher-
pesviruses in Th2 cell priming.

Besides alphaherpesviruses, multiple other airborne pathogens might co-migrate along with pollen substances
and benefit from this barrier-dysfunction to enhance infection. For example, adenoviruses and reoviruses like-
wise preferentially infect the basolateral surface of respiratory epithelial cells®#¢*. In addition, damage to the
ciliated epithelial cells by pollen proteases might favour subsequent attachment of and colonisation by bacteria
(e.g. Streptococcus species)®®7.

Together, we shed new light on the detrimental effects of pollens on the respiratory epithelium and their role
in pathogen invasion. More precisely, we found that pollen proteases selectively and irreversibly disrupt integ-
rity and anchorage of columnar respiratory epithelial cells, while the indispensable basal cells are resistant and
succeed in maintaining the epithelial barrier. Upon exposure to pollen proteases, the flatted basal cells can partly
prevent the alphaherpesvirus EHV1 from reaching its binding receptor, located basolaterally in the epithelium.
However, they cannot fully prevent an increase in EHV1 infection of the respiratory epithelium, as the virus can
still reach the basolateral surface of semi-detaching epithelial cells. Finally, we hypothesize that a concurrent
alphaherpesvirus invasion of the respiratory mucosa might further drive the onset and persistence of allergies
through mechanisms yet to be elucidated.

Methods

Preparation of pollen diffusates. Pollens of Kentucky bluegrass (KBG; Poa pratensis), white birch (WB;
Betula pendula) and hazel (H; Corylus americana) were purchased from Stallergeens Greer (Cambridge, MA,
USA). Pollens were shaken at a concentration of 100 mg/mL in phosphate-buffered saline (PBS) for 2h at 4°C
prior to centrifugation at 10,000 g for 10 min at 4 °C. The supernatant was harvested and filtered through 0.22 um
pore size filters (VWR International, Radnor, PA, USA). Protein concentration in the pollen diffusates was
determined using the Bradford assay (ThermoFisher Scientific, Waltham, MA, USA) and a Nanodrop® spec-
trophotometer, following the manufacturer’s instructions. All pollen diffusates were diluted with PBS to a final
concentration of 5mg/mL and either used immediately or frozen in aliquots at —20°C.

Gel electrophoresis and Zymography. To assess protein and proteolytic profiles of the pollen diffusates,
SDS-polyacrylamide gel electrophoresis (SDS-PAGE) followed by either Coomassie blue staining alone or zymog-
raphy and Coomassie blue staining, respectively, was performed. Proteolytic activities were characterized by using
different protease inhibitors (PI) in zymography. Full details are given in the supplementary information (SI).

Proteomics. Sample preparation. White birch protein bands with corresponding enzymatic activity, as
assessed by zymography, were excised from the gel following SDS-PAGE, washed two times in H,O and frozen
at —20°C until further processing. Gel bands were digested overnight at 37 °C using trypsin (Promega). Peptides
eluted from every gel band were dried completely in a vacuum concentrator and re-dissolved in 20 ul loading sol-
vent A (0.1% TFA in water/acetonitrile [98:2, v/v]) for subsequent LC-MS/MS analysis. Full details are given in SI.

LC-MS/MS and Data Analysis. LC-MS/MS analysis was performed on an Ultimate 3000 RSLCnano system
in-line connected to an LTQ Orbitrap Elite mass spectrometer (ThermoFisher Scientific). Data analysis was per-
formed with MaxQuant (version 1.6.1.0) using the Andromeda search engine with default search settings includ-
ing a false discovery rate set at 1% on both the peptide and protein level. Spectra from all three gel bands were
searched together against a database of Betula pendula protein sequences reported by Salojirvi, et al.*? (containing
29,919 protein sequences downloaded from https://genomevolution.org on March 27 2018). A detailed descrip-
tion of the LC-MS/MS and data analysis is given in SI.

Isolation and cultivation of respiratory mucosal explants and primary equine respiratory
epithelial cells (EREC). The tracheae from different healthy horses were collected at the slaughterhouse.
Tracheal mucosal explants and primary equine respiratory epithelial cells (EREC) were isolated and cultured as
previously described!>!6%.

Pollen diffusate treatment of respiratory mucosal explants and EREC. Respiratory mucosal
explants. Explants were cultured 24 h for adaptation before thoroughly washing and embedding them in aga-
rose diluted in 2X MEM, to mimic in vivo conditions, as previously published?”®. Next, the apical surface of
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the epithelium was exposed for 12h at 37 °C to the pollen diffusates supplemented with or without the pro-
tease inhibitor mixture (PI) containing 500 uM AEBSEF, 15uM E-64 and 2.5 uM EDTA. As negative control,
PBS with or without PI was used. One hour treatment with EGTA was included as positive control?. Explants
were removed from the agarose and washed three times in PBS and fixed in a phosphate-buffered 3.5% formal-
dehyde solution for 24 h, either immediately after the last wash or after an additional 24 h incubation on metal
gauzes. Explants were then stored into 70% alcohol until further processing. To guarantee a sufficient viability
(>90%) of the explants after treatment with different pollen diffusates, an ‘In Situ Cell Death Detection Kit’
(Roche Diagnostics Corporation, Basel, Switzerland), based on terminal deoxynucleotidyl transferase dUTP
nick end-labelling (TUNEL), was used.

EREC. Cells were grown to confluency and the transepithelial electrical resistance (TEER) was meas-
ured daily until a steady TEER of ~500-700 Q x cm~2 was reached. The pollen diffusates with or without the
above-described PI were added to the apical surface of the cells. EGTA was used as positive control and PBS
with or without PI was used as negative control. Cells were incubated for 12h, while epithelial cell integrity was
assessed, as described below. Viability of the cells was assessed by ethidium monoazide bromide (EMA)-staining,
ensuring that the treatment with pollen diffusates did not cause a significant cell loss.

Assessment of epithelial cell integrity. Respiratory mucosal explants. Integrity of the intercellular junc-
tions was verified by examining the intercellular space in haematoxylin-eosin-stained paraffin coupes, as previ-
ously described®. The percentage of intercellular space in and thickness of the epithelium was measured using
Image] software (Image], U.S. National Institutes of Health, Bethesda, MD, USA).

EREC. To assess epithelial integrity of the EREC, both the transepithelial electrical resistance (TEER) and the
migration of rhodamine B isothiocyanate (RITC)-labelled dextran 70 (Sigma-Aldrich) across the epithelium
were determined. Full details are given in SI

Viral infection assays. Virus. A Belgian EHV1 isolate (03P37) was used in this study and originates from
the blood taken of a paralytic horse during an outbreak in 2003%. The virus was propagated on rabbit kidney
(RK13) cells and used at the 6™ passage.

Respiratory mucosal explants.  Explants were cultured at the air-liquid interface for 24 h, prior to extensive wash-
ing and embedment in agarose. Next, explants were exposed to the pollen diffusates or PBS with or without
PI (negative control) for 12h or to EGTA (positive control) for 1h, as described above. Following a washing
step, the apical surface of the epithelium was inoculated with 10%° TCIDs, of the 03P37 EHV1 strain for 1h at
37°C. Explants were removed from the agarose and washed 3 times in PBS to remove non-adherent virus parti-
cles. Finally, explants were placed back onto their gauzes and serum-free medium was added. Twenty-four hpi,
explants were placed in methylcellulose-filled plastic tubes and frozen at —80 °C until further processing.

EREC. EREC were grown to full differentiation in a transwell cell culture system prior to treatment with the
pollen diffusates with or without PI, EGTA (positive control) or PBS with or without PI (negative control).
Following a washing step, cells were exposed for 1h to 100pL EHV1 03P37 strain (MOI of 1) at the apical surface.
Non-adsorbed virus particles were removed by washing the EREC three times with DMEM/F12. Fresh EREC
medium was added to the platewells and cells were further incubated at the air-liquid interface. Ten hours post
inoculation, cells were fixed in methanol for 20 min at —20°C and stored dry at —20 °C until further processing.

Immunofluorescence staining and confocal microscopy. Respiratory mucosal explants. Explants
were embedded in methylcellulose and snap-frozen for subsequent cryosectioning.

Cryosections were immunofluorescently stained to label late viral glycoproteins and the basement membrane.
Further details are given in SI.

EREC. Immunofluorescent staining to visualize EHV1 immediate early protein (IEP) and cell nuclei was per-
formed directly in the transwells. Further information is given in SI.

Virus titration. Twenty-four hours after inoculation, explant supernatant was collected and stored at —80°C
until titration. EHV1 titrations were conducted on RK13 cells, which were incubated at 37°C for 7 days. Titers
were expressed as TCIDs,,.

Statistical analyses. Significant differences (P < 0.05) between different treatments were identified by
one-way analysis of variances (ANOVA) followed by Tukey’s post-hoc test. If homoscedasticity of the variables
was not met as assessed by Levene’s test, the data were log-transformed prior to ANOVA. Normality of the residu-
als was verified by the use of the Shapiro-Wilk test. If the variables remained heteroscedastic or normality was not
met after log-transformation, a Kruskall-Wallis test, followed by a Mann-Whitney post-hoc test was performed.
All analyses were conducted in IBM SPSS Statistics for Windows, version 25.0 (IBM Corp, Armonck, NY, USA).

Data Availability
The datasets generated and/or analysed during the current study are available from the corresponding author on
reasonable request.
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