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The emergence of Severe Acute Respiratory Syndrome

coronavirus (SARS-CoV) and Middle East Respiratory Syndrome

coronavirus (MERS-CoV), two strains of animal coronaviruses

that crossed the species barrier to infect and cause severe

respiratory infections in humans within the last 12 years, have

taught us that coronaviruses represent a global threat that does

not recognize international borders. We can expect to see other

novel coronaviruses emerge in the future. An ideal animal model

should reflect the clinical signs, viral replication and pathology

seen in humans. In this review, we present factors to consider in

establishing an animal model for the study of novel

coronaviruses and compare the different animal models that

have been employed to study SARS-CoV and MERS-CoV.
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Introduction
Members of the Coronaviridae family infect a wide range of

animal species in nature and most are limited in their host

range [1]. Human coronaviruses including OC43, 229E,

NL63 and HKU1 are generally associated with self-limit-

ing respiratory tract infections (Table 1) [1,2�]. However, in

the past 12 years, two outbreaks of severe respiratory tract

infection, SARS and MERS, have been caused by animal

coronaviruses that have crossed the species barrier. De-

spite the severe disease and high case fatality rate associ-

ated with SARS and MERS, coronavirus vaccines and

antiviral drugs are not yet available. Animal models are

needed for pathogenesis studies as well as for evaluation of

vaccines and antiviral drugs. We will focus on animal

models for these two coronaviruses in this review.

Coronaviruses contain a 30 KB long positive-sense RNA

genome. Receptor binding domains of the viral spike
www.sciencedirect.com 
protein on SARS-CoV and MERS-CoV attach to angio-

tensin-converting enzyme 2 (ACE2) [3,4] and dipeptidyl-

peptidase 4 (DPP4) proteins [5��,6��], respectively. SARS

was first reported in Hong Kong in 2003, and went on to

cause over 8000 infections with an approximately 10%

case-fatality rate [7,8]. The newly emerged MERS-CoV,

identified in 2012, has caused over 800 infections associ-

ated with a case fatality rate of approximately 40%

[9�,10,11��]. In 2014, the Centers for Disease Control

and Prevention confirmed the first MERS case imported

into the United States. The development and evaluation

of antiviral drugs and vaccines for SARS and MERS

has been challenging, in part because of difficulties in

developing animal models that provide consistent and

reproducible results.

The ideal animal model is one that mimics human disease

in sharing the route of infection, increased severity of

disease in the corresponding demographic groups and

comparable levels of mortality/morbidity. The presence

and distribution of viral receptors should be similar to that

in humans. The virus should replicate in the selected

animal species and a correlation should exist between

virus titer and disease severity. Finally, animal models

should be carefully assessed and selected to meet experi-

mental goals (Figure 1). For example, if the primary focus

is to elucidate pathogenesis, the animal model should

fully replicate key aspects of the disease and immunolog-

ical reagents must be available. By contrast, the primary

outcome in a vaccine efficacy study is a meaningful

difference between vaccinated and the unvaccinated

control groups; the ability of a vaccine to prevent clinical

disease and/or pathology associated with viral replication

following challenge provides compelling evidence of

vaccine efficacy [12] though at a minimum, differences

in challenge virus replication can be assessed as a measure

of vaccine efficacy.

Coronavirus disease in humans
People infected with SARS-CoV and MERS-CoV present

with initial symptoms that include fever, myalgia and

respiratory signs including a nonproductive cough and

dyspnea [9�,11��,13–17,18�]. Chest radiograph abnormali-

ties are evident in almost all cases. Etiologic diagnosis is

made by virus isolation in culture, polymerase chain reac-

tion assays or serological testing for antibodies to the virus.

SARS associated lung pathology was described from ex-

amination of post-mortem tissue samples [7,19–21]; how-

ever, pathologic changes associated with MERS have not

been reported, perhaps because autopsies are rarely per-

formed. The findings in SARS were consistent with pro-

longed inflammation with destruction and desquamation
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Table 1

Coronaviruses associated with disease in humans.

Primary site

of disease

Virus Receptor Other systems

involved

Upper

respiratory

tract

OC43 Unknown Gastrointestinal

229E Aminopeptidase N Gastrointestinal

NL63 ACE2 –

HKU1 Unknown Gastrointestinal

Lower

respiratory

tract

SARS-CoV ACE2 –

MERS-CoV DPP4 Renal failure
of alveolar pneumocytes. Hyaline-membrane formation,

interstitial inflammatory infiltration and intraalveolar

hemorrhage were observed [7] and multinucleated giant

cells were also seen. The presence of viral antigen

was demonstrated  by immunohistochemistry (IHC) in

the lungs.

The median age of patients infected with SARS-CoV and

MERS-CoV is different. MERS-CoV tends to affect

middle-aged males, while SARS-CoV had a predilection

for older people. The overall case-fatality rate for MERS
Figure 1

Large numbers 

Demographics 

Availability of immunological 
reagents 

Key aspects of disease are replicated  

Pathogenesis 

F
ac

to
rs

 to
 c

on
si

de
r 

Proposed ap

Factors to consider when selecting an animal model. Animal models should

pathogenesis, the model should replicate key aspects of the disease and im

background (e.g. age for SARS) of the animal should be taken into conside

studies must demonstrate meaningful differences between vaccinated and 

how animals from different demographic backgrounds respond to the vacci

protection, it is necessary to study the immune response to the vaccine as 

may be of interest to evaluate the response to challenge with other coronav

Current Opinion in Virology 2015, 13:123–129 
(40%) is greater than was seen with SARS (10%). Finally,

preexisting chronic illnesses such as diabetes, renal dis-

ease and heart disease were less common in SARS-CoV

patients [18�].

Animal models for SARS and MERS
Non-human primates

SARS-CoV was shown to infect rhesus macaques [22,23],

cynomolgus macaques [22–26] and African green mon-

keys (AGMs) [22]. Clinical signs, viral replication and

pathology depended upon the species. There is at least

one report of pneumonitis in each species but the findings

in non-human primates (NHPs) were variable, likely

because of genetic variability in subspecies and differ-

ences in experimental methods including inoculum dose

and route [22,23,25]. Greenough et al. reported multi-

organ involvement with fever, diarrhea and hepatitis in

common marmosets [27].

Infection of rhesus macaques and common marmosets

with MERS-CoV has resulted in different outcomes.

Rhesus macaques showed a transient pulmonary infection

[28�,29�]. Radiographs of the chest revealed localized

infiltration and interstitial markings. Clinical illness was
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associated with viral replication in the pneumocytes

around the terminal bronchioles [28�,29�]. These findings

were consistent with viral load detected by reverse tran-

scription polymerase chain reaction (RT-PCR) and viral

antigen in alveolar pneumocytes detected by IHC. By

contrast, the clinical symptoms in the marmoset model

were much more severe [30��]. In addition to bronchoin-

terstitial pneumonia and viral antigen detected in the

lungs, the marmosets supported viral titers a thousand-

fold higher than rhesus macaques [30��].

The anatomical, physiological and immunological simi-

larities of NHPs to humans make them ideal models to

recapitulate the pathogenesis of coronavirus infection in

humans. However, costs, limited availability and individ-

ual variation among NHPs make it difficult to conduct

studies in large enough sample sizes for statistical evalua-

tion and to draw robust conclusions. Despite these limita-

tions, it is desirable to evaluate coronavirus vaccine

candidates in NHPs before proceeding to clinical trials

because we have no clinical experience with human

coronavirus vaccines. Special consideration should be

given to the demographic background (age, sex and

source) and the presence of co-pathogens and studies

should be carried out in large sample sizes in order to

assess statistical significance.

Mice

SARS-CoV replication was observed in several inbred

strains of mice (BALB/c, C57BL6 and 129S) following

intranasal infection, and 129S mice were more susceptible

than BALB/c mice [31–33]. Young inbred mice supported

viral replication but failed to show clinical signs of disease

[31,33]. As in humans infected with SARS-CoV, age

seemed to play an important role in disease susceptibility

in mice. Twelve-month-old BALB/c mice developed

more severe disease than young mice [34,35]. On intra-

nasal infection, the older mice developed weight loss,

ruffled fur and dehydration [34]. Histopathology showed

interstitial pneumonitis along with diffuse alveolar dam-

age and viral antigens were detected by IHC in the lungs.

The older BALB/c mouse provided an opportunity to

study the age-dependent susceptibility of humans to

SARS-CoV [35,36]. Several knockout mice (Rag1�/�,

CD1�/�, Beige) were also infected with SARS-CoV in

order to determine the role of immune effectors in the

disease [31]. STAT 1�/� mice in the 129S background

supported prolonged viral replication and histopathology

similar to humans [32,37]. However, mice with targeted

immune defects are of limited value in vaccine studies.

Because infection in young mice was cleared rapidly

without clinical disease, in addition to infecting older

mice, two approaches were employed to enhance clinical

signs of disease in young mice: the development of

transgenic mice expressing the human ACE2 (hACE2)

receptor and the adaptation of SARS-CoV to mice by
www.sciencedirect.com 
serial passage. McCray et al. demonstrated that expression

of hACE2 under the control of an epithelial cell-specific

promoter K18 resulted in lethal SARS-CoV infection [38].

However, SARS-CoV infection in K18-hACE2 mice was

associated with central nervous system disease, which was

not a feature of SARS in humans. Tseng et al. developed

two lineages of transgenic mice expressing hACE2 under

the CAG promoter, a strong composite promoter consist-

ing of the cytomegalovirus immediate early enhancer, the

chicken b-actin promoter, rabbit globulin splicing and

polyadenylation sites to drive high levels of gene expres-

sion in mammalian expression vectors [39]. The trans-

gene-positive mice (AC70 and AC63) showed robust viral

growth, generalized illness and tissue pathology after

infection with SARS-CoV [39]. The lethal lineage of mice

(AC70) showed a wider spectrum of clinical manifesta-

tions, including death, than the nonlethal lineage mice

(AC63). Transgenic mice were used for pathogenesis

studies and evaluation of vaccines and other therapeutics

[40,41].

Three mouse-adapted (MA) strains of SARS-CoV were

developed independently by serial passage of SARS-CoV

(Urbani strain) in the respiratory tract of mice [40,42,43].

The MA15, MA20 and v163 mouse-adapted SARS-CoV

strains replicated to high titer in the lungs of mice,

associated with pathological changes, dissemination of

the virus to extrapulmonary sites and mortality. The

disease in mice resembled the disease seen in severe

human cases of SARS [40,42,43]. These three MA viruses

shared mutations in specific viral proteins such as the

replicase nonstructural protein nsp9 and the spike glyco-

protein, which attests to the importance of these proteins

in viral pathogenesis [40,43]. Infection of older mice with

the MA15 virus produces clinical disease particularly

reminiscent of acute respiratory distress syndrome

(ARDS) in humans [43].

By contrast to SARS-CoV, mice are not naturally suscep-

tible to infection by MERS-CoV because the mouse

DPP4 receptor differs from human DPP4 (hDPP4) in

crucial areas of interaction with the MERS-CoV spike

protein [44]. BALB/c and B6 mice were transduced with

an adenoviral vector expressing hDPP4 (Ad5-hDPP4);

these mice supported replication of MERS-CoV associated

with interstitial pneumonia and viral antigen in the lungs

[45��]. Older Ad5-hDPP4 transduced mice lost weight but

mortality was not observed. Agrawal et al. recently devel-

oped a transgenic mouse model globally expressing hDPP4

under the control of the CAG promoter used to generate

the SARS transgenic mice [46��]. The hDPP4 mice were

fully permissive to MERS-CoV infection, supporting a

robust infection with severe respiratory and generalized

illness that led to death within days after infection.

High viral titers were recovered from multiple organs

and pathological changes were consistent with extensive

inflammation.
Current Opinion in Virology 2015, 13:123–129
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When mouse models are available, they are useful in

evaluating the pathogenesis of viruses and testing vac-

cines and antiviral drugs. Mice are advantageous due to

their low cost, small size and availability. They can also be

manipulated at the genetic level and immunological

reagents are available to study viral pathogenesis.

Hamsters

The golden Syrian hamster was an excellent model for

SARS-CoV because the virus replicates to high titers in

the lung with associated pathology. Following intranasal

inoculation of SARS-CoV, viral replication was observed

in the upper and lower respiratory tract with peak repli-

cation three days after infection. The virus was cleared

seven to ten days after infection [47]. Viral replication was

accompanied by pronounced histopathological changes in

the lungs including interstitial inflammation, pneumoni-

tis and consolidation. Since hamsters showed no outward

signs of clinical illness, exercise wheels (Nalgene activity

wheel) were employed to measure their activity (revolu-

tions/night); these activity wheels showed that SARS-

CoV infected hamsters were less active from days two

to seven post-infection [47,48]. Primary infection elicited

a neutralizing antibody response that provided protection

from subsequent infections [47]. Hamsters were suitable

for immunoprophylaxis and treatment studies because

objective clinical signs were accompanied by high viral

titers and pulmonary histopathology [49].
Table 2

Clinical signs, viral replication and pathology of SARS-CoV and MERS

Species 

SARS-CoV 

Humans � Clinical signs include fever and respiratory illness.

� Lung pathology is consistent with pneumonia and acu

lung injury.

NHP � Rhesus macaques, cynomolgus macaques, African gre

monkeys and common marmosets are susceptible to

infection. Clinical signs, viral replication and pathology

depend on the species.

Mice � Young inbred mice (BALB/c, C57BL6, 129S) support v

replication but fail to show clinical signs of disease.

� Older inbred mice (BALB/c), knockout mice (STAT 1�/

Rag 1�/�, CD1�/�, Beige) and transgenic mice (K18-

hACE2, A70-hACE2) develop generalized illness, robust v

growth and pronounced lung pathology consistent with

pneumonia and acute lung injury. The K18-hACE2 transge

mice develop central nervous system disease, which is no

feature in humans.

Hamsters � Clinical illness (measured by a decrease in activity on 

exercise wheel) is accompanied by viral replication and

pronounced histopathological changes such as

inflammation, pneumonitis and consolidation in the lungs

Ferrets � Clinical illness (fever and sneezing), is accompanied by v

replication and histologic changes in the lungs.

Rabbits � The rabbit model has not been investigated. 

Current Opinion in Virology 2015, 13:123–129 
Attempts to experimentally infect hamsters with MERS-

CoV were not successful [50].

Ferrets

Ferrets are frequently used as a model for the study of

respiratory viruses that infect humans. However, conflict-

ing data were reported when ferrets were infected with

SARS-CoV [51,52]; one group observed clinical illness

[51], but another group did not [52]. The ferret model was

further characterized to resolve these inconsistent results;

fever and sneezing were associated with high viral titers in

the upper respiratory tract and histologic changes in the

lungs characterized by lymphohistiocytic bronchointer-

stitial pneumonia [53].

Ferrets do not support replication of MERS-CoV [54].

The application of animal models for vaccine

development

SARS-CoV and MERS-CoV research have demonstrated

that a single animal species will not serve as a model for all

coronaviruses (Table 2). The ability to elicit clinical

disease, viral replication and pathology depends on the

expression of the viral receptor, the species and the

demographic characteristics of the animal. Infection of

young mice with SARS-CoV was not ideal because there

was limited histopathology and no clinical disease.

However the combination of two approaches, using
-CoV in humans and various animal models.

Virus

MERS-CoV

te

� Clinical signs include fever and respiratory illness. Some

patients develop renal failure.

� Lung pathology samples are not available for investigation.

en � Rhesus macaques develop a transient infection with

moderate viral replication and pathology in the lung.

� Common marmosets have a more severe response to the

virus with higher viral titers and severe pathology in the lungs.

Lethality is also observed in this model.

iral

�,

iral

nic

t a

� Inbred mice are not naturally susceptible to infection.

� Transduced mice (Ad5-hDPP4) develop clinical signs and

support replication of virus with interstitial pneumonia and

viral antigen found in the lungs.

� Transgenic mice (hCD26/DPP4) develop robust respiratory

and generalized illness with high viral titers and extensive

inflammation in the lungs. Lethality was also observed in this

model.

the

.

� Hamsters do not support replication.

iral � Ferrets do not support replication.

� The rabbit model is currently under investigation.
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mouse-adapted SARS-CoV in older mice, resulted in a

model of ARDS that represents a more stringent chal-

lenge for the evaluation of vaccine efficacy than either

alone. Unfortunately, immune defects associated with

aging are complex and can influence results of vaccine

evaluations [55,56b].

Several animal models were developed for SARS —

largely because the crucial domains of the ACE2 receptor

that binds the SARS-CoV spike protein are conserved

across several species. This has not been the case for

MERS-CoV. There are several point mutations in the

DPP4 protein of different animal species that limit the

ability of the MERS-CoV spike protein to attach to the

host receptor. Therefore, without modification of either

the receptor or the viral spike protein, animal models for

MERS are limited to non-human primates and camels.

Recent studies have shown that there is sequence homol-

ogy between rabbit and human DPP4, raising the possi-

bility that the rabbit may be a promising model for

MERS-CoV infection [56a].

Several SARS vaccine candidates elicited neutralizing

antibodies and were effective in protecting young mice

or hamsters from challenge [48,57–63]. However, reports

of immunopathologic reactions in older mice and in non-

human primates vaccinated with SARS-CoV vaccines that

were subsequently challenged with SARS-CoV [57,59,

62,64] have revealed two concerns about proceeding to

clinical trials with SARS-CoV vaccines. First, there is

a precedent for coronavirus-vaccine associated disease

enhancement; kittens immunized with a vaccinia virus

vectored feline infectious peritonitis virus vaccines de-

veloped severe disease when they were subsequently

infected with FIPV [65]. In these kittens, non-neutraliz-

ing or sub-neutralizing antibodies facilitated viral entry

into macrophages. The concern that is extrapolated from

the FIPV vaccine experience to human SARS-CoV vac-

cines is whether vaccine recipients will develop more

severe disease if they are exposed to or infected with

SARS-CoV after neutralizing antibody titers decline. The

second concern is whether recipients of a SARS-CoV

vaccine would be at risk of developing pulmonary immu-

nopathology following infection with an unrelated human

coronavirus, for example, 229E, OC43, HKU1 or NL63

that usually causes mild, self limited disease. Although

findings from preclinical evaluation have revealed these

concerns, studies in animal models may not be able to

provide data to confirm or allay these concerns.
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