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Abstract: The resins bled from stems and in seed cones and leaves of Cryptomeria japonica, Glyptostrobus
pensilis, Taxodium distichum, and T. mucronatum were characterized to provide an overview of their
major natural product compositions. The total solvent extract solutions were analyzed as the free
and derivatized products by gas chromatography-mass spectrometry to identify the compounds,
which comprised minor mono- and sesquiterpenoids, and dominant di- and triterpenoids, plus
aliphatic lipids (e.g., n-nonacosan-10-ol). Ferruginol, 7α-p-cymenylferruginol, and chamaecydin were
the major characteristic markers for the Taxodioideae conifer subfamily. The mass spectrometric
data can aid polar compound elucidation in environmental, geological, archeological, forensic and
pharmaceutical studies.
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1. Introduction

Natural products, especially terpenoids or their derivatives, are preserved in the ambient
environment or geological record. When extracted and characterized by gas chromatography-mass
spectrometry (GC-MS) they are used by organic geochemists as tracers for sources, transport and
alteration processes of organic matter in any global compartment [1–15]. The application of GC-MS in
the analysis of natural product mixtures extracted from plants for compound characterization can also
be of utility for rapid screening in pharmacological studies [16].

The Coniferae are known as important source plants for resins and are comprised of the
Araucariaceae (3 genera), Cupressaceae (27 genera), Pinaceae (11 genera), Podocarpaceae (18 genera),
Taxaceae (6 genera), and Sciadopityaceae (1 genus) [17]. Here we focus on the Cupressaceae, specifically
the subfamily Taxodioideae with 4 species (Table 1). Fossil remains of Taxodium and Glyptostrobus
leaflets, seed cones and wood are often found in the geologic record of the northern hemisphere since
the Cretaceous, and are especially abundant in the paleofloras of Tertiary brown coals [18–22] and
extant peats of Florida, USA [23].
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Table 1. Sources of plant materials.

Botanical Name Common Name Sample Type Sampling Location Number of Analyses

Cryptomeria japonica Sugi cedar Resin on trunk, branchlet Narita Temple, Tokyo Metro,
Japan 7

Glyptostrobus pensilis Chinese swamp cypress Resin on trunk, cone,
shoot

Botanical Institute, Chinese
Academy of Sciences,

Guangzhou, China
22

Resin on trunk, cone,
shoot Boise, ID, USA

Taxodium distichum Swamp cypress Resin on trunk, shoot Cypress National Park, FL,
USA 22

Resin on trunk, shoot
Botanical Institute, Chinese

Academy of Sciences,
Guangzhou, China

Resin on trunk, shoot Lithia Park, Ashland, OR,
USA

Taxodium mucronatum Montezuma cypress Resin on trunk, cone Tule Tree, Oaxaca, Mexico 14

Resin on trunk, cone Botanical Garden, Los
Angeles, CA, USA

Structure determinations and pharmacological potential studies of resin terpenoids isolated and
purified from species of the Taxodioideae subfamily have been reported by numerous chemists and
pharmacologists [24–42]. However, the connection of the known natural products isolated from these
conifers with their application as tracers in other interdisciplinary sciences has been limited [7,8,14,43].
This is due to the lack of reports on the chemical compositions of the total resin mixtures, and
the paucity of mass spectra for known compounds, especially the oxygenated natural products.
Here we characterize the total compound mixtures in resins from the Taxodioideae subfamily based on
correlation and comparison with known standards. We report the GC-MS results and full mass spectra
of novel compounds of the resins as free and derivatized products. This total mixture analysis provides
an overview of the major compounds present in the resins of the extant Taxodioideae subfamily, and is
a guide for their presence in environmental and fossil samples.

2. Results and Discussion

The contents of terpenoid natural products have been documented in many species of the
Cupressaceae [17,44–46], but the investigation of the former family Taxodiaceae is incomplete.
The terpenoid content of Glyptostrobus pensilis (Staunton) Koch (Chinese Water Pine) is limited [17],
with only two trace diterpenoids, namely glypensin A and 12-acetoxy-ent-labda-8(17),13E-dien-15-oic
acid, identified [37]. According to the merger of Cupressaceae and Taxodiaceae to the Cupressaceae
s.l., G. pensilis was placed in the subfamily Taxodioideae [47].

The diterpenoid constituents of Cryptomeria japonica and Taxodium distichum have been studied
more extensively [24–29,31–35,38–42,48] and references therein]. However, none of these earlier studies
reported the natural product compositions of the total resin/plant extracts, but instead the mixtures
were separated by liquid or high-pressure liquid chromatography (LC or HPLC), followed by structure
determination of each compound by NMR, HRMS for elemental composition, and sometimes MS
(underivatized by direct insertion probe). The diterpenoid components of Taxodium mucronatum have
had limited examination [7,8,49].

The compounds identified as significant components in the bled resins (as total extracts) of the four
conifers in this subfamily (Table 1) are listed here in Table 2. Analyses of extracts of leaves and cones
yielded similar results, except the solvent mixture used for extraction also isolated the epicuticular wax
and polar cell (e.g., saccharides) components which were superimposed on the terpenoids. Examples of
annotated total ion current traces for the GC-MS results are shown in Figure 1. The mass spectra of
the major compounds in the extract mixtures are given in the figures of the Supplementary Materials
section or can be found in the literature cited in Table 2.
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Figure 1. Annotated examples of GC-MS total ion current traces for the total extracts (analyzed as
the trimethylsilyl derivatives) of: (a) Cryptomeria japonica resin from trunk, (b) Glyptostrobus pensilis
resin from cone, (c) Taxodium distichum resin from trunk, and (d) T. mucronatum resin from cones.
Compound identities are given in Table 2 and structures in Appendix A.

2.1. Cryptomeria

The resin of Cryptomeria japonica (sugi cedar) was comprised of minor diterpenoids as the phenolic
abietane-type: Ferruginol (a2, all chemical structures are given in Appendix A), 6,7-dehydroferruginol
(a1), sugiol (a4), 7α-p-cymenylferruginol (a26), chamaecydin (a27), iso-chamaecydin (a28), and
6-hydroxychamaecydin (a29); and major diterpenoid resin acids with the pimarane and labdane
skeletons: Sandaracopimaric acid (p1), isopimaric acid (p2, 100%), iso-communic acid (L3),
13-epi-cupressic acid (L5), imbricataloic acid (L4), imbricatoloic acid (L7), iso-cupressic acid (L6),
13,14-dihydroagathic acid (L8), and 13E- and 13Z-communic acids (L2). No sesquiterpenoids were
detectable, and the lipid compound, n-nonacosan-10-ol (n1), was a carryover from the epicuticular
leaf wax.

The essential oil of C. japonica has been analyzed, but only mono- and sesquiterpenoids were
reported [50]. Kaurenes and dehydroabietane with the lower terpenoids were reported for sugi leaf
oil [51]. The minor resin acids have been characterized in bark and leaf extracts [27–29], and the
chamaecydins were elucidated in leaf extracts from C. japonica [25,26]. The diterpenoids from bark
and fruits of C. fortunei, also known as C. japonica var. sinensis, have been studied [36,52]. Sugiol (a4),
11-hydroxysugiol (a15), and 14-deoxycoleon U (a17), also found in this study, were reported.



Molecules 2019, 24, 3036 4 of 18

Table 2. Diterpenoids in the resins of Cryptomeria japonica, Glyptostrobus pensilis, Taxodium distichum, and T. mucronatum.

Number
(Appendix A) Name Formula 1 MW Relative Abundance 2 ID 3 References

Crytomeria
japonica

Glyptostr.
pensilis

Taxodium
distichum

Taxodium
mucronatum

ALIPHATICS
n1 n-Nonacosan-10-ol C29H60O 424 6 15 8 L [53]
n2 n-Nonacosan-10-one C29H58O 422 8 L [54]

SESQUITERPENOIDS
s1 Cuparene C15H22 202 3 S [55]
s2 Widdrene (thujopsene) C15H24 204 20 S [55]
s3 Mayurone C14H20O 204 5 L [55]
s4 Widdrol (thujopsol) C15H24O 220 4 S [55]

DITERPENOIDS
Abietanes

a1 6,7-Dehydroferruginol C20H28O 284 18 20 55 25 L [31,56]
a2 Ferruginol C20H30O 286 40 80 80 100 S [34]
a3 6,7-Dehydropisiferol C20H28O2 300 48 I [54]
a4 Sugiol (7-ketoferruginol) C20H28O2 300 10 30 30 10 S [54]
a5 19(20)-Oxoferruginol C20H28O2 300 26 I

a6 11-Hydroxy-12-oxoabieta-7,9(11),13-triene (or
6-deoxotaxodione) C20H28O2 300 8 9 21 S,L,I [55]

a7 Pisiferol C20H30O2 302 60 L, I [7,54]
a8 abeo-Pisiferol C20H30O2 302 75 L [57]
a9 11-Hydroxyferruginol C20H30O2 302 12 23 L [58]

a10 Taxodione, R=H C20H26O3 314 50 10 S,L [24]
a11 Salvinolone C20H26O3 314 50 8 1 S [33]
a12 6,7-Dehydroroyleanone C20H26O3 314 6 4 S [34]
a13 Royleanone C20H28O3 316 10 8 S,L [24]
a14 Taxodone C20H28O3 316 100 12 S,L [24]
a15 11-Hydroxysugiol C20H28O3 316 60 L [27,31]
a16 abeo-Carnosol (demethyl salvicanol) C20H30O3 318 100 L [59]
a17 6-Hydroxysalvinolone (14-deoxycoleon U) C20H26O4 330 60 74 S [33,54]
a18 Taxoquinone C20H28O4 332 27 40 L [24]
a19 7-Hydroxytaxodone C20H28O4 332 24 70 I [54]
a20 7-epi-Taxoquinone (horminone) C20H28O4 332 12 I [24]
a21 6α,11-Dihydroxysugiol (5,6-dihydro-6β-hydroxysalvinolone) C20H28O4 332 35 8 L, I [31]
a22 6β,11-Dihydroxysugiol (5,6-dihydro-6β-hydroxysalvinolone) C20H28O4 332 16 I
a23 6α-Hydroxytaxoquinone C20H28O5 348 55 6 S,I [54]
a24 6β-Hydroxytaxoquinone C20H28O5 348 70 11 S,I [54]
a10 Taxodione acetate, R=Ac C22H28O4 356 12 14 I [54]
a25 7-Acetoxy-6,7-dehydroroyleanone C22H28O5 372 5 20 S [54]
a26 7α-p-Cymenylferruginol C30H42O 418 2 1 15 5 L [36]
a27 Chamaecydin C30H40O3 448 42 1 40 25 S [26,54]
a28 Iso-chamaecydin C30H40O3 448 2 2 8 4 L [26,54]
a29 6β-Hydroxychamaecydin C30H40O4 464 2 3 3 1 S [26,54]
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Table 2. Cont.

Number
(Appendix A) Name Formula 1 MW Relative Abundance 2 ID 3 References

Crytomeria
japonica

Glyptostr.
pensilis

Taxodium
distichum

Taxodium
mucronatum

Pimaranes
p1 Sandaracopimaric acid C20H30O2 302 35 18 10 S
p2 Isopimaric acid C20H30O2 302 100 S

Labdanes
L1 Manool C20H34O 290 12 5 15 S
L2 E,Z-Communic acids C20H30O2 302 11 L [55]
L3 Iso-communic acid C20H30O2 302 4 L [60]
L4 Imbricataloic acid C20H32O3 320 5 S
L5 13-epi-Cupressic acid C20H32O3 320 75 L [28,61]
L6 Iso-cupressic acid C20H32O3 320 20 L [62]
L7 Imbricatoloic acid C20H34O3 322 48 S [28,62]
L8 13,14-Dihydroagathic acid C20H32O4 336 9 S [54]

TRITERPENOIDS
T1 24-Methylenecycloartan-3-one C31H50O 438 1 I [54]
T2 24-Ethylenecycloartan-3-one C32H52O 452 0.4 I [54]

1 Analyzed as the natural or trimethysilylated compounds in the extract mixtures. 2 Relative abundance normalized to major peak = 100%. 3 Identification: S = standard; L = published
data; I = interpretation of mass spectrometric fragmentation pattern.
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2.2. Glyptostrobus

The resin of Glyptostrobus pensilis consisted mainly of diterpenoids as the phenolic abietanes:
Ferruginol (a2), 6,7-dehydropisiferol (a3), pisiferol (a7), abeo-pisiferol (a8), abeo-carnosol (a16,
100%), sugiol (a4), salvinolone (a11), and 6-hydroxysalvinolone (14-deoxycoleon U, a17) as major
compounds. The minor compounds were 6,7-dehydroferruginol (a1), 7-hydroxytaxodone (a19),
sandaracopimaric acid (p1), 7α-p-cymenylferruginol (a26), chamaecydin (a27), iso-chamaecydin
(a28), 6-hydroxychamaecydin (a29), and 19(20)-oxoferruginol (a5), also mostly phenolic abietanes.
The epicuticular wax extracted from shoots of G. pensilis was comprised of lipids, mainly
n-nonacosan-10-ol (n1), n-nonacosan-10-one (n2) and n-alkanes ranging from C27 to C33; with minor
diterpenoids: Ferruginol (a2, 100%), 6,7-dehydroferruginol (a1), 6,7-dehydropisiferol (a3), pisiferol
(a7), sugiol (a4), salvinolone (a11), 6-hydroxysalvinolone (a17), abeo-carnosol (a16), abeo-pisiferol
(a8), and triterpenoids: 24-methylenecycloartan-3-one (T1), and 24-ethylenecycloartan-3-one (T2).
No sesquiterpenoids were detected.

The terpenoids of oil steam distilled from wood of G. pensilis from Vietnam were comprised of
mono- and sesquiterpenoids with traces of phytol and ferruginol [63]. However, fossil leaves
of this conifer back to the Eocene retained mainly the following natural products: ferruginol,
6,7-dehydroferruginol, salvinolone, 5,6-dehydrosugiol, taxodione acetate, abeo-carnosol, sugiol,
cymenylferruginol, chamaecydin, and iso-chamaecydin [7,8,54,64,65].

2.3. Taxodium distichum

The resin of Taxodium distichum was comprised mainly of phenolic abietanes: Ferruginol
(a2), 6,7-dehydroferruginol (a1), sugiol (a4), taxoquinone (a18), taxodione (a10, R=H),
6α-hydroxytaxoquinone (a23), 6β-hydroxytaxoquinone (a24), taxodone (a14, 100%), 11-hydroxysugiol
(a15), 7-hydroxytaxodone (a19), 6-hydroxysalvinolone (a17), salvinolone (a11), and chamaecydin
(a27). The other minor compounds that could be identified were: 6-deoxotaxodione (a6),
7α-p-cymenylferruginol (a26), sandaracopimaric acid (p1), iso- and 6-hydroxychamaecydin (a28,
a29), royleanone (a13), taxodione acetate (a10, R=Ac), and 7-acetoxy-6,7-dehydroroyleanone (a25).

These compounds, with numerous trace components, have all been reported in the extensive
literature [24,31–34,38,66], also as cited in Table 2. Taxodium peat has been analyzed but only
aromatic hydrocarbons derived from diterpenoids were reported [23]. Discrete fossils of Taxodium
back to the Eocene contained ferruginol, 6,7-dehydroferruginol, taxodione acetate, sugiol, and the
chamaecydins [7,8,65,67,68].

2.4. Taxodium mucronatum

The T. mucronatum resin consisted of significant sesquiterpenoids: Widdrol (s4), widdrene
(s2), mannol (L1), cuparene (s1), and mayurone (s3). The diterpenoids were exclusively only
phenolics of the abietane-type: Ferruginol (a2, 100%), 6,7-dehydroferruginol (a1), 6-deoxotaxodione
(a6), 7-acetoxyroyleanone (a25), taxodone (a14), taxodione acetate (a10, R = Ac), and chamaecydin (a27).
The minor components were: Royleanone (a13), sugiol (a4), salvinolone (a11), 7α-p-cymenylferruginol
(a26), iso- and 6-hydroxychamaecydin (a28, a29), and the lipid n-nonacosan-10-ol (n1). One study
reported the presence of 8β-hydroxypimar-15-en-19-oic acid in this plant [49].

2.5. Mass Spectrometry

The mass spectra of all compounds analyzed by GC-MS are listed in Table 2. Those indicated by
S match with the respective reference standards, and those indicated by L match with the literature
data cited.

The mass spectra of 6,7-dehydroferruginol (a1), as the free compound and methyl
ether [12,65,69,70], as well as the NMR data [27,71] have been published. The interpretation of the
mass spectrometric fragmentation, specifically the even mass fragment ion from the retro-Diels–Alder
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rearrangement loss of ring-A [56] is unusual and should indicate 2,3-dehydroferruginol. The same
loss of ring-A by retro-Diels–Alder rearrangement of the C-2 to C-3 double bond is observed in mass
spectra of standard cholest-2-ene (loss of C4H6 from M + 370 to m/z 316), friedel-2-ene (loss of C5H8

from M + 410 to m/z 342), or lupa-2,22(29)-diene (loss of C6H10 from M + 408 to m/z 326). This would be
consistent for 2,3-dehydroferruginol (loss of C6H10 from M + 284 to m/z 202, Figure 2a) and its silyl
derivative (loss of C6H10 from M + 356 to m/z 274, Figure 2d). However, the NMR data indicate the
double bond is at C-6 to C-7 [71], so that bond can also induce fragmentation by H-transfer and loss of
ring-A to m/z 202 (Figure 3a). Therefore, the double bond position could be misinterpreted based solely
on mass spectra, but with the NMR data the assignment as 6,7-dehydoferruginol is correct.

Figure 2. Mass spectra for: (a) 6,7-dehydroferruginol (a1, extant), (b) 5,6-dehydroferruginol (fossil),
(c) 15,16-dehydroferruginol (fossil), (d) 6,7-dehydroferruginol-TMS, (e) 5,6-dehydroferruginol-TMS,
(f) 15,16-dehydroferruginol-TMS, (g) 19(20)-oxoferruginol (a5), and (h) 19(20)-oxoferruginol-TMS.
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In fossil resins of these conifers we also found 5,6-dehydroferruginol (tentative
identification [7,8,67]), where the elimination of C4H8 to m/z 228 with secondary loss of C2H4 to m/z
200 (or direct loss of ring-A to m/z 200) are evident for the free compound and the same fragmentation
for the silyl derivative to m/z 300 (Figure 2b,e and Figure 3a). Another isomer was tentatively identified
as 15,16-dehydroferruginol in the same fossil resins, but not reported before (Figure 2c). Its key
fragment ion is m/z 215 from loss of C5H9 in ring-A, as confirmed in the mass spectrum of its silyl
derivative where the same loss of C5H9 results in the fragment ion at m/z 287 (Figures 2f and 3a).
We find 6,7-dehydroferruginol and ferruginol primarily in extant conifers, and the tentatively assigned
5,6-dehydroferruginol and 15,16-dehydroferruginol with ferruginol and minor 6,7-dehydroferruginol
in fossil conifer resins.

Figure 3. Interpretation of key fragment ions for the mass spectra of Figures 2 and 4.

The mass spectra of 7α-p-cymenylferruginol (i.e., 7α-p-isopropyl-benzyl-ferruginol, a26) and
its trimethylsilyl derivative (Figure 4d,f) were identified based on the structure determination by
NMR and HRMS [36]. The compound has a low intensity molecular ion (M + at m/z 418 and loses the
p-cymenyl fragment to the base peak at m/z 285, which is also reflected in the C10H13 ion at m/z 133
(Figure 3c). Its TMS derivative also has a low intensity M + at m/z 490, with losses of CH3 to m/z 475 and
C10H13 to the base peak at m/z 357, and the corresponding key ion at m/z 133 (Figure 3c). We also find a
lesser amount (typically 20% of the 7α-isomer) of 7β-p-cymenylferruginol (Figure 4c) in all samples
analyzed. It is reported as the total of both isomers in Table 2. The extant sample of T. mucronatum and
the fossil samples of T. dubium and G. oregonensis had mass spectra of a minor compound, interpreted
as 7α-thymylferruginol with M + at m/z 434 and base peak at m/z 285, and for its TMS derivative with
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M + at m/z 578 and base peak at m/z 357 (Figure 4b,e,h, respectively). It has not yet been reported in the
natural products literature.

Figure 4. GC-MS data for: (a,b) Key ion plots of m/z 285 and 357 showing the elution of the C30

isomers (a26), (c) mass spectrum of 7β-p-cymenylferruginol (7βC, M + 418), (d) mass spectrum
of 7α-p-cymenylferruginol (7αC, M + 418), (e) mass spectrum of 7α-p-thymylferruginol (7αT, M
+ 434), (f) mass spectrum of 7β-p-cymenylferruginol-TMS (7βC, M + 490), (g) mass spectrum of
7α-p-cymenylferruginol-TMS (7αC, M + 490), and (h) mass spectrum of 7α-p-thymylferruginol-TMS
(7αT, M + 578).

The identification of cymenylferruginol (a26), a triterpenoid like the chamaecydins, in both the
extant and fossil resins is of interest because natural product chemists are identifying numerous
dimer terpenoids, i.e., mono-to-diterpenoid, sesqui-to-diterpenoid and diterpenoid dimers, in extant
plants [25,26,36,41,48]. Therefore, the formation mechanism is for example ferruginol reacting at
C-7 with cymene to produce 7-cymenylferruginol, 6-deoxotaxodione reacting at C-7 and C-14 with
sabinene or thujene to form chamaecydin, cadinols reacting with ferruginol at C-7 to yield the various
sesquaterpenoids, or peroxidation of ferruginol to dimers [26,41,48,72,73]. Some of these natural
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products, if adequately concentrated in the extant biomass, may become preserved as tracers in the
geological record, as for example cymenylferruginol reported here.

The resin of T. distichum has a significant compound identified in the literature as
11-hydroxy-12-oxoabieta-7,9(11),13-triene (a.k.a. 6-deoxotaxodione, a6). Its mass spectrum is
shown in Figure S1b and matches that reported [55]. The interpretation of the fragmentation
pattern is based on the analogous fragmentation of 6,7-dehydroferruginol discussed above and
correlation with the GC retention index. It also eliminates C6H10 from the M + at m/z 300 to m/z
218 (Figure S1b), indicating that the structure may be 11-hydroxy-6,7-dehydroferruginol (a6) or its
isomer 11-hydroxy-12-oxoabieta-7,9(11),13-triene (a6). Silylation of the T. distichum resin extract did
not produce a compound with M + at m/z 372, but a mass spectrum of a TMS derivative with M + at
m/z 444 that eliminates C6H10 to m/z 362, fitting for 11-hydroxy-6,7-dehydroferruginol-diTMS (Figure
S4g). The GC-MS results for the standard of 11-hydroxy-12-oxoabieta-7,9(11),13-triene revealed that
it had oxidized to primarily taxodione and numerous other polyoxygenated products. However,
silylation of this standard did yield a trace derivative with a mass spectrum showing M + at m/z 372
with fragments at m/z 357, 329 and 287, but no ion for elimination of C6H10 at m/z 290 (Figure S3f).
Its structure could be that of 11-trimethylsiloxy-12-oxoabieta-7,9(11),13-triene. Therefore, we conclude
that 11-hydroxy-12-oxoabieta-7,9(11),13-triene may isomerize to 11-hydroxy-6,7-dehydroferruginol
during the silylation derivatization reaction. Furthermore, the hydroxy functionality at C-11 is preferred
rather than at C-14 due to the concurrent presence of 11-hydroxyferruginol (a9).

Another compound that occurred as a minor component in extant and fossil Glyptostrobus sp.
had mass spectra that were misinterpreted as hinokione [54,65]. Based on prior mass spectrometric
data for hinokione [74,75] we now tentatively suggest that compound to be 19(20)-oxoferruginol
(a5). Its mass spectrum has M + at m/z 300 for C20H28O2 with the base peak at m/z 189 due to
loss of C7H11O, i.e., rearrangement loss of C-20 and ring-A (Figures 2g and 3b). The same loss is
observed in the mass spectrum of its TMS derivative from M + at m/z 372 to the base peak at m/z 261
(Figures 2h and 3b). The mass spectrometric data do not match with that of the known formosanoxide
(i.e., 7(20)-oxoferruginol [76]). Therefore, 19(20)-oxoferruginol may be a natural product derived from
epoxidation to C-19 of pisiferol (a7) also present in extant G. pensilis.

2.6. Key Molecular Tracers for the Taxodioideae

Ferruginol, 6,7-dehydroferruginol, sugiol, 7α-p-cymenylferruginol, chamaecydin,
iso-chamaecydin, and 6β-hydroxychamaecydin were present as generally significant components in
the resins of all four species (Table 2). These natural products are stable and have been reported in
environmental and fossil samples [7,8,11,14,54,64,65,77].

Resins from G. pensilis contained the following unique natural products in addition to those
above: pisiferol, abeo-pisiferol, salvinolone, abeo-carnosol, 6-hydroxysalvinolone, 19(20)-oxoferruginol,
and 6α- and 6β,11-dihydroxysugiols. Resins from Eocene fossils of G. pensilis consisted of ferruginol,
6,7-dehydroferruginol, 19(20)-oxoferruginol, sugiol, abeo-carnosol, salvinolone, and chamaecydins, but
no pisiferol or abeo-pisiferol [54]. Therefore, the geological fate of the abeo-diterpenoids is not fully
known. However, a derivative biomarker, i.e., 10α- and 10β-dehydroicetexane, has been elucidated
in sediments and petroleum [78], and it could be derived from pisiferol/abeo-pisiferol by reductive
dehydroxylation during diagenesis and preservation of organic matter. The resin of extant G. pensilis
contained traces of 7α-p-cymenylferruginol [36]. It was reported first as an unknown compound
in fossil G. oregonensis from the Miocene of Emerald Creek, ID (labeled U7 in [65]), then in fossil
G. nordenskioeldi from the Eocene of Axel Heiberg Island, Nunavut, Canada, but misidentified as
roylean-20-oic acid [54]. It is now correctly identified as 7α-p-cymenylferruginol (a26).

The resins of the two Taxodium species had similar compositions comprised of the compounds
present in all four species with additional unique quinoid diterpenoids, specifically: taxodione,
royleanone, taxodone, taxoquinone, horminone, 6α- and 6β-hydroxytaxoquinones, taxodione acetate,
and 7-acetoxy-6,7-dehydroroyleanone [24]. The natural triterpenoid, 7α-p-cymenylferruginol, was a
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significant component in the resins of both species (e.g., Figure 3c). Resin from a Miocene T. dubium
contained ferruginol, 6,7-dehydroferruginol, taxodione acetate, 7-acetoxy-6,7-dehydroroyleanone,
sugiol, and 7α-p-cymenylferruginol [65]. Therefore, the phenolic and quinoid diterpenoids are of
utility as environmental and geological tracers for source origin.

3. Samples and Experimental Methods

3.1. Plant Material

The bled resins from trunks and branchlets or seed cones with bled resin blebs of Cryptomeria
japonica, Glyptostrobus pensilis, Taxodium distichum, and T. mucronatum were sampled from mature trees
with botanical labels in various park and garden reserves (Table 1). The resins were placed in glass
vials and cones and branchlets in paper envelopes to allow air drying. We are aware that the structure
determinations by natural product chemists typically concentrated on internal compounds extracted
from bulk trunk wood, bark, leaves or cones to elucidate the different compound compositions and
trace components. However, we examined the external bled compounds in order to determine those
that enter the environment before or after tree senescence and may become part of the geological
fossil record.

3.2. Extraction

Cones and branchlets were cut into pieces and extracted by ultra-sonication for 10 min with
dichloromethane:methanol (DCM:MeOH, 1:1 v/v) and soaking in the solvent mixture for 24 h. The resin
samples were dissolved (100% soluble) in the same solvent mixture. The total extracts were filtered
through glass fiber filters, and concentrated by use of a rotary evaporator and blow-down with dry
nitrogen gas.

3.3. Derivatization

Aliquots of total extracts were converted to trimethylsilyl derivatives by reaction with
N,O-bis-(trimethylsilyl)trifluoroacetamide (BSTFA, Sigma-Aldrich, St. Louis, MO, USA) and a trace of
pyridine for 3 h at 70 ◦C. The samples were blown down to dryness with nitrogen gas and dissolved in
hexane prior to analysis. Other aliquots were treated with trimethylsilyldiazomethane (2M in hexane,
Sigma-Aldrich) at room temperature for 30 min to convert carboxylic acids to methyl esters. The excess
reagent was reacted with concentrated acetic acid, followed by blow-down with nitrogen gas, and
solution in hexane prior to analysis.

3.4. GC-MS Analysis

The GC-MS analyses of the total and derivatized extracts were performed on a Hewlett-Packard
model 6890 GC coupled to a Hewlett-Packard model 5973 MSD (Palo Alto, CA, USA). Separation
was achieved on a DB5 (Agilent, Santa Clara, CA, USA) capillary column (30 or 60 m × 0.25 mm i.d.,
0.25 µm film thickness). The GC operating conditions were as follows: temperature hold at 65 ◦C
for 2 min, increase from 65 to 300 ◦C at a rate of 6 ◦C min−1, with a final isothermal hold for 20 min.
Helium was used as carrier gas. The samples were injected splitless (typically 1 µL) with the injector
temperature at 280 ◦C. The MS was operated in the electron impact mode at 70 eV and scanned from
50 to 650 da. Data were acquired and processed with the Chemstation software (Hewlett-Packard,
Palo Alto, CA, USA). Individual compounds were identified by comparison of mass spectra with
literature and library data, comparison with authentic standards, and interpretation of GC retention
times and mass spectrometric fragmentation patterns. The GC retention times are expressed as Kovats
indices (KI) and cited on each respective mass spectrum [79].
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4. Conclusions

Natural products (diterpenoids) in resins are the best molecular tracers for conifers in the
environment and fossil record. Not all compounds survive as such because they are altered or removed
by oxidation and diagenetic reactions. However, compounds in resin are protected from oxidation and
instead undergo disproportionation or polymerization reactions. The major characteristic markers
for the Taxodioideae conifer subfamily are ferruginol, 7α-p-cymenylferruginol and chamaecydin,
with secondary salvinolone, abeo-carnosol and taxodione acetate. We provided an overview of the
natural product precursors of the Taxodioideae to apply in environmental, geological, archeological,
forensic and pharmaceutical studies. Furthermore, we summarized the presence of these tracers in the
fossil record.

Supplementary Materials: Additional mass spectra of related and derivatized natural products are collected in
the Supplementary Materials section available with this article. Figures S1–7: Mass spectra of the terpenoids from
the Taxodioideae resins (ordered in ascending molecular weights).
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