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ABSTRACT

Carbonic anhydrases (CAs, EC 4.2.1.1) are ubiquitous metalloenzymes, grouped into seven different classes,
which catalyze the reaction of CO, hydration to bicarbonate and protons. All of the fifteen human isoforms
reported to date belong to the a-class and contain zinc as a cofactor. The structure of human Zn,Cu-CA Il
has been solved which contains a copper ion bound at its N-terminal, coordinated to His4 and His64. In
the active site a dioxygen molecule is coordinated to the zinc ion. Since dioxygen is a rather unexpected
CA ligand, molecular dynamics (MD) simulations were performed which suggested a superoxide character

of the zinc bound O..

1. Introduction

One of the most abundant zinc enzymes in the blood is carbonic
anhydrase (CA, EC 4.2.1.1), which catalyzes a simple but essential
reaction in all life kingdoms, CO, hydration to bicarbonate and
protons' ™. This reaction, or the three chemical entities involved in
it, carbon dioxide, bicarbonate and protons, are important for the
pH regulation and homeostasis of the organism, CO, and HCO;™
transport in several biosynthetic processes, for the production of
body fluids, bone resorption, tumorigenicity, and other physio-
logical processes in vertebrates, whereas in some bacteria, plants
and algae they are involved in photosynthetic processes®™’.

The catalytic mechanism of CAs is understood in detail' . In all
CA classes known to date (a-, B, v-, 6-, {-, n- and 6-CAs) a metal
hydroxide species (Ls-M?"-OH") of the enzyme is the catalytically
active species, acting as a strong nucleophile (at neutral pH) on
the CO, molecule bound in a hydrophobic pocket nearby'™. This
hydroxide species is generated from a water coordinated to the
metal ion, which is found at the bottom of the active site cavity.
The active center normally comprises M(Il) ions in tetrahedral
geometry, with three protein ligands (L) in addition to the water
molecule/hydroxide ion, although Zn(ll) or Co(ll) were also
observed in trigonal bipyramidal or octahedral coordination geo-
metries, at least in y—CAs7. In many enzymes, generation of the
hydroxide species from the metal-coordinated water one, is the
rate determining step of the catalytic turnover, which for some o-
and (-CAs achieves ke/Ky values >108 M™' xs™', making CAs
among the most effective catalysts known in nature'™3. The metal
ion ligands are three His residues in a-, y-, and 3-CAs or one His
and two Cys residues in B- and {-CAs'™” .The inhibition and activa-
tion of CAs are well understood processes, with most types of
inhibitors binding to the metal center®, whereas the activators
bind at the entrance of the active site cavity where they partici-
pate in the proton shuttling between the metal-coordinated water
molecule and the environment®. Inorganic simple anions are an
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important class of CA inhibitors (CAls)'’. Both metal-complexing
anions (such as cyanide, thiocyanate, hydrogen sulfide, etc.) as
well as anions showing less affinity for metal ions in solution (such
as nitrate, bisulfite, sulfate, sulfamate and sulfamidate) are known
to inhibit these metalloenzymes'®, and for many of them detailed
X-ray crystallographic studies allowed a profound understanding
of the inhibition mechanism'®'3. As shown in Figure 1, bisulfite
binds to Zn(ll) in a tetrahedral geometry (Figure 1A), bromide in a
distorted tetrahedral geometry (Figure 1B), formate in a trigonal
bipyramidal geometry (Figure 1C) and nitrate is one of the few
inhibitors non-coordinated to the zinc but binding very nearby to
the catalytic metal ion (Figure 1D)'%7",

However, up until now, oxygen was never evidenced as a pos-
sible ligand of zinc in the CAs, except for one case'® which has
been poorly understood and less discussed, being obtained from
the apo-enzyme which has been reconstituted with diverse metal
ions (e.g. Co®™). Here we report an interesting finding: when Cu(ll)
coordinates with His64 (an amino acid residue crucial for the cata-
lytic cycle, as it acts as a proton shuttle between the water coordi-
nated to the zinc and the environment)'®, oxygen was found
bound to Zn(ll) within the active site of human (h) CA I, the
physiologically dominant mammalian CA isoform’.

2. Material and methods
2.1. Crystallization and X-ray data collection

Crystals of native hCA Il were obtained using the hanging drop
vapor diffusion method. 2 ul of a solution 10 mg/ml protein solu-
tion in water were mixed with 2l of a solution containing 2.4 M
ammonium sulfate, 50 mM Tris-HC1 pH 8.0, 2mM HgCl, and were
equilibrated against the same solution at 296 K. Crystals grew in
two weeks. The metal derivative was prepared by soaking the
native crystals in 3M ammonium sulfate, 50mM Tris pH 8.0 and
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Figure 1. Structure of hCA Il complexed with (A) bisulfite (tetrahedral geometry of Zn(ll)), (B) bromide (distorted tetrahedral geometry of Zn(ll)), (C) formate (trigonal
bipyramidal geometry of Zn(ll)) and (D) nitrate (inhibitor non-coordinated to the zinc)'®'%. The three protein zinc ligands (His94, 96 and 119) as well as the other two
amino acid residues involved in the catalytic mechanism and binding of inhibitors, Glu106 and Thr199, are also evidenced."°,

2mM CuSO, for two days. Crystals were flash-frozen at 100K using
a solution obtained by adding 25% (v/v) glycerol to the mother
liquor solution as cryoprotectant. X-ray data were collected at the
Centro di Cristallografia Strutturale (CRIST) in Florence using an
Oxford Diffraction instrument equipped with a sealed tube
Enhance Ultra (Cu) and a Onyx CCD detector. Data were inte-
grated and scaled using the program XDS'S. Data processing
statistics are showed in Table 1.

2.2. Structure determination and refinement

The crystal structure of hCA Il (PDB ID 4FIK) without solvent mole-
cules and other heteroatoms was used to obtain initial phases
using Refmac5'”. 5% of the unique reflections were selected ran-
domly and excluded from the refinement data set for the purpose
of Rfree calculations. Refinements proceeded using normal proto-
cols of positional, isotropic atomic displacement parameters alter-
nating with manual building of the model using COOT'®. Solvent
molecules were introduced automatically using the program
ARP'®. The quality of the final model was assessed with COOT and
Rampage®. Crystal parameters and model refinement data are
summarized in Table 1. Atomic coordinates were deposited in the
Protein Data Bank (PDB ID 5EOI). Graphical representations were
generated with Chimera?'.

2.3. Computational studies

The structure of carbonic anhydrase in complex with the O, ligand
was taken from the present work (PDB ID 5EOI). Standard proton-
ation states were used for all residues. The amber ff99SB-ILDN and
GAFF forcefields®*?**, were employed. The protein was solvated

Table 1. Summary of Data Collection and Atomic Model Refinement Statistics.?
PDB ID 5EQI

Wavelength (A) 1.5406

Space Group P2,

Unit cell (a,b,c,p) (A°) 42,03, 41.48, 72.07, 104.6
Limiting resolution (A) 14.8-1.80 (1.91-1.80)
Unique reflections 21538 (2771)

Reym (%) 7.6 (47.8)
Rieas (%) 8.4 (61.0)
Redundancy 5.7 (2.4)
Completeness overall (%) 96.1 (78.6)
<I/()> 17.12 (1.92)
CC(1/2) 99.8 (69.5)
Refinement statistics
Resolution range (A) 14.8-1.8
Unique reflections, working/free 20464/1074
Rfactor (%) 14.71
Rfree(%) 20.61
No. of protein atoms
No. of water molecole 344
r.m.s.d. bonds (&) 0.0184
r.m.s.d. angles (°) 1.884
Ramachandran statistics (%)
Most favored 95.7
additionally allowed 43
outlier regions 0
Average B factor (A?)
All atoms 16.46
Solvent 30.39

Values in parentheses are for the highest resolution shell.

with TIP3P water molecules®*?*, in a cubic box with smallest sol-

ute-edge distance of 12A. CI~ counterions were added up to sys-
tem charge neutrality. The system was locally optimized and
equilibrated for 400 ps by classical molecular dynamics (MD) in the
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Figure 2. Active site of Zn,Cu-hCA Il. The zinc ion (gray sphere) is coordinated by His94, His96 and His119 and a O, molecule. The Cu(ll) (orange sphere) bound to His
64 and His4. An omit Fo — Fc electron density map contoured at 3.5 o level is also shown.

NVT ensemble, using the NAMD 2.9 code?®. Temperature was kept
at target value of 300K by Langevin dynamics with damping par-
ameter set at 5ps . The cutoff for the non-bonded interaction
was set to 12 A. Bonds were kept rigid and the integration time-
step used was 2 fs. The protein region in the QM box included
the whole residues Thr199, Glu106, His96, His94, His119, the Zn?*
ion and the ligand O,. During classical dynamics equilibration, this
region was kept fixed. The system geometry after equilibration
was used as the starting conformation for QW/MM (Figure 5a),
which was run using the cp2k 4.1 code®’. All water molecules less
than 8 A away from the Zn?" ion were included in the QM subsys-
tem. The orthorhombic QM box was constructed so that in the ini-
tial state the minimum solute-edge distance was larger than 8A.
Mechanical embedding was used for the QM/MM interface.
Goedecker-Teter-Hutter pseudopotentials?® and double zeta
valence basis sets*® with one polarization function were used for
all elements. The plane wave cutoff was set to 400 Rydberg. MD
simulations were performed in the NVT ensemble, using a time-
step of 0.5 fs. The CSVR method®® was used to keep the tempera-
ture at the target value of 300K. The system was initially run for
1 ps using a CSVR time constant of 0.01 ps. The time constant was
then switched to 0.1ps for further 1ps production QM/MM run.
Smooth particle mesh Ewald of order 6 and with 1 grid point per
A was used. The BLYP functional®' with DFT-D3 corrections®? was
employed. The carboxylic acid of Glu106 and the catalytic Zn**
were given a formal charge of —1 and +2, respectively. Depending
on the formal charge attributed to the O, binder, the total charge
of the QM region was —1 (neutral binder) or 0 (charged binder).
Average distances and standard deviations were computed using
the last 500 fs of the simulations. A smaller full QM model was
built by considering only the Zn?*, O, and three imidazole binders
replacing His96, His94 and His119. Geometry optimization of this
model was carried out in vacuo using a cubic box with side length
of 20A, up to a force convergence threshold of 2-10~* atomic

units. Calculations in the small model were performed at both
BLYP and B3LYP* level of theory. The 0,/Zn*" and 0O, /Zn*"
bonding distance differences between the BLYP and B3LYP
approach were less than 0.05A. Our results for the gas phase
model refer to the B3LYP calculations. All QM calculations allowed
spin polarization. Orbital decomposition of electronic Kohn-Sham
states was obtained by standard projection methods. Quantum
theory of atom in molecule (QTAIM) analysis was performed using
the Bader’** and the Angyan®® approach for the charge and
bond order estimations, respectively.

3. Results and discussion

The crystal structure of the Zn,Cu(ll)-hCAIl complex was obtained
from data collected on a crystal of the native enzyme soaked in a
solution containing 2mM CuSO,. The initial |Fo - Fc| difference
electron density maps showed a spherical density near His64 that
was attributed to a copper ion. The Cu(ll) ion was introduced at
0.75 occupancy and the B factor refined to a value of 22.3. Two
protein residues His64 and His4 coordinate the Cu(ll) ion, with two
water molecules that complete the coordination sphere around
the metal at a distance of 2.2 A. Two other water molecules are at
a distance of 2.5 and 2.8A from the Cu(ll) ion (Figure 2). Overall,
the coordination geometry can be described as distorted octahe-
dral. The distance from the copper ion to the closest (NE2) atom
of His64 is 2.1 A. The corresponding value to His4 is 2.0 A. The side
chain of His4 was modeled in two different conformations.
Conversely the side chain of His64, which is actively involved in
the proton shuttle and is responsible for converting the Zn-bound
water molecule to hydroxide ion'®, was modeled as a single con-
formation, whereas it has been often observed to occupy two dif-
ferent conformations as in the first structure of a copper derivative
published by Hakansson et al.'® In this crystallographic study'®,



1002 M. FERRARONI ET AL.

Thr199

Figure 3. Superposition of the Zn,Cu-hCA Il structure (this work) with the copper derivative reported in ref.'>. Copper ions are represented as orange spheres, zinc as a
gray sphere. It should be observed that the O, molecules occupy a different position within the coordination sphere of the two hCA Il copper derivatives.
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Figure 4. Superposition of the Zn,Cu-hCA Il structure (this work) with the native enzyme (PDB ID 2ILI). Zinc ions are represented as gray spheres and water molecues

as red spheres (Zn,Cu-hCA II) and orange spheres (native enzyme).

the X-ray structures of hCA Il metal-substituted derivatives were
obtained, in which diverse metal ions replaced the Zn(ll) ion in
the active site. In the copper derivative, two Cu(ll) ions were
observed, the second bound at the same N-terminal site reported
in the present structure, being coordinated to His64 and His4. No
solvent molecules were reported in the second copper coordin-
ation sphere'®. This second copper (Il) binding site in hCA Il has
been recently characterized also thermodynamically and by spec-
troscopic techniques®” 38,

In our Zn,Cu-hCAll structure, as in many others, the zinc ion
within the catalytic site is coordinate by His94, His96 and His119.
An elongated density in the |[Fo — Fc| electron density map was
present at the position occupied by the zinc coordinated water in
the wild-type enzyme (Figure 2). The introduction of a water mol-
ecule resulted in residual electron density in the |Fo — Fc| map,
but molecular oxygen was successfully modeled into that density
(0-O distance refined to 1.2A, without applying any restraints,
and B-factors to 25.2 and 22.3 for the the two atoms at 1.0
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Figure 5. (A) Model used for MD simulations at QM/MM level. Water molecules are included in the calculation but are not shown for clarity. The QM box is reported
and QM atoms are explicitly reported in the inset. (B) Time evolution of the 0,/Zn?*, Wat/Zn*" and 0, /Zn*" distance. Here Wat represents the water molecule dis-
placing O, from the binding site, as described in the main text. (C) Geometry and bonding features of the complex in the small gas phase model. The numbers repre-
sent the bond order obtained by the QTAIM approach. Numbers in brackets and without brackets refer to the 0,/Zn*" and O, /Zn®* complex, respectively. The
orange surface represents the O, /Zn®" complex HOMO density isosurface, computed at a density of 0.05 e /A3,

occupancy). O, forms an “end-on” (n') complex with the zinc ion.
In “end-on” 02 complexes only one oxygen atom is bound to the
metal and they have a bent geometry at the proximal oxygen
atom®?. The coordination of the zinc is tetrahedral, with the oxy-
gen of the O, molecule at a distance of 1.9 A. The same oxygen is
at a distance of 2.6A from the OG1 atom of Thr199 and 2.7 A
from a water molecule. The oxygen atom that is not coordinated
is at a distance of 2.8 A from the Zn(ll) ion (Figure 2).

An oxygen molecule bound in the active site of hCA Il has
already been reported in the structure of the above mentioned
copper derivative'® and also in the cobalt derivative described in
the same article (PDB ID 1RZC and 1RZA). The O, molecule was
bound to the Cu(ll) and Co(ll) ions which replace the zinc in the
active site. Contrary to the structure of the Zn,-Cu-hCA Il here
reported, the Cu(ll) and Cof(ll) ions in the active site maintained
also the coordinated water molecule (Figure 3).

Compared to the native enzyme the O, molecule occupies the
position of the zinc-bound water and of the so-called “deep”
water (Figure 4).

As oxygen is a rather unexpected CA ligand, and it also does
not bind to the enzyme which has not been loaded with copper
ions at the N-terminal region, we performed a computational
study on this system (Figure 5a). During the molecular dynamics
(MD) simulations carried out at the quantum mechanics/molecular
mechanics (QM/MM) level, the binding distance between the neu-
tral O, and Zn>" increased from the starting crystallographic value
to above 2.80A (Figure 5b). Conversely, one water molecule
reached a distance of 2.09+0.06 A from Zn?", displacing the O,
molecule from the Zn*" coordination shell. The resulting geometry
is reminiscent of the Co®"-substituted hCA II'> but poorly repre-
sents the experimental Zn?*/0, coordination. However, MD simu-
lations predict O, to stably bind Zn?" at 2.03+0.04A, in good
agreement with the crystallographic structure. Similar binding geo-
metries were obtained by structural optimization of the coordin-
ation shell in gas phase. In this case, the O, /Zn*" and 0,/Zn*"
distances were 1.90 A and 2.27 A, respectively. The orbital compos-
ition of the HOMO in the O, /Zn*" complex (see also Figure 5c) is
predominantly O-derived (91%), but also bears a non-negligible
contribution from Zn-derived orbitals (7%). This shows that the
extra e- added to the system containing neutral O, mainly
increases the charge on the O, molecule itself, turning it to a very
good extent into O,, but also contributes to the covalent charac-
ter of the resulting 0,7/Zn®" bond. This was also quantified by
the quantum theory of atoms in molecule (QTAIM) analysis of the
small model, predicting the bond order of the 0,/Zn*" and O,/
Zn?" systems to be 0.24 and 0.58, respectively (Figure 5). Overall,

computational studies suggest that negatively charged molecular
oxygen binding to Zn?>" improves both covalent and electrostatic
0,7/Zn*" interactions. Furthermore, from a structural standpoint,
the 0,7/Zn*" complex well agrees with the crystallographic out-
come, demonstrating that a negative molecular oxygen can better
fit into the experimental structure.

4. Conclusions

In native hCA Il loaded with Cu(ll) ions at the N-terminal region,
the copper is coordinated by His4 and His64, probably creating a
redox center within the active site, which leads to the transfer of
one electron to an oxygen molecule which thereafter replaces the
water coordinated to the zinc ion deep within the CA active site,
becoming a zinc ligand. Although many details of this process are
still poorly understood, our data do not preclude the fact that in
biological systems copper-loaded CA may have a role in oxygen
transport, apart its well-known role in bicarbonate trafficking
between the metabolic sites and the excretion organs (lungs and
kidneys). In fact, CA Il is highly abundant in the blood with almost
micromolar concentrations being reached (the hCA 1+ hCA Il con-
centration in the blood is 0.2 mM*® but hCA | is the predominant
although catalytically less effective isoform). Future studies are
thus warranted to better understand the physiological role of the
present finding.
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