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Abstract 

Backgound:  Evolution of cancer cells is characterized by large scale and rapid changes in the chromosomal  land-
scape. The fluorescence in situ hybridization (FISH) technique provides a way to measure the copy numbers of 
preselected genes in a group of cells and has been found to be a reliable source of data to model the evolution 
of tumor cells. Chowdhury et al. (Bioinformatics 29(13):189–98, 23; PLoS Comput Biol 10(7):1003740, 24) recently 
develop a computational model for tumor progression driven by gains and losses in cell count patterns obtained 
by FISH probes. Their model aims to find the rectilinear Steiner minimum tree (RSMT) (Chowdhury et al. in Bioinfor-
matics 29(13):189–98, 23) and the duplication Steiner minimum tree (DSMT) (Chowdhury et al. in PLoS Comput Biol 
10(7):1003740, 24) that describe the progression of FISH cell count patterns over its branches in a parsimonious man-
ner. Both the RSMT and DSMT problems are NP-hard and heuristics are required to solve the problems efficiently.

Methods:  In this paper we propose two approaches to solve the RSMT problem, one inspired by iterative methods 
to address the “small phylogeny” problem (Sankoff et al. in J Mol Evol 7(2):133–49, 27; Blanchette et al. in Genome 
Inform 8:25–34, 28), and the other based on maximum parsimony phylogeny inference. We further show how to 
extend these heuristics to obtain solutions to the DSMT problem, that models large scale duplication events.

Results:  Experimental results from both simulated and real tumor data show that our methods outperform previous 
heuristics (Chowdhury et al. in Bioinformatics 29(13):189–98, 23; Chowdhury et al. in PLoS Comput Biol 10(7):1003740, 
24) in obtaining solutions to both RSMT and DSMT problems.

Conclusion:  The methods introduced here are able to provide more parsimony phylogenies compared to earlier 
ones which are consider better choices.

Keywords:  Tumor phylogeny, Maximum parsimony, Gene copy number, FISH, Rectilinear Steiner minimum tree, 
Gene duplication, Chromosomal duplication, Whole genome duplication
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Background
Cancer is recognized to be an evolutionary process driven 
by mutations in tumor cells [1]. These evolutionary pro-
cesses include single-nucleotide variations, insertions 
and deletions, copy-number aberrations, fragment dupli-
cation, structural variations and gene fusions [2]. Many 
experiments reveal considerable intra-tumor and inter-
tumor heterogeneity [3], attributed to these evolutionary 
processes. Clinical implications of this heterogeneity, for 

example in drug resistance and disease diagnosis, have 
been well studied [3, 4].

Rapid, simultaneous linear and branching evolution 
in multiple subclones of cancer cells can be modeled 
by a phylogenetic tree [5]. Inferring such phylogenies 
facilitates the study of cancer initiation, progression, 
treatment, and resistance [6]. They can help pinpoint 
important changes that lead to the recurrence of some 
genome aberrations [7]. Phylogeny studies also aid in 
identifying genes crucial for evolution and hence may 
contribute to developing better cancer treatment [8–11].

Mutation patterns in cancer are characterized by fre-
quent and widespread gains and losses of genomic mate-
rial which is markedly different from what is observed in 
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species or population level evolution [6]. The gene copy 
number variation is due to failures in DNA repair mecha-
nisms (e.g., translesion synthesis and non-homologous 
end joining) especially during tumor development [12–
15]. Gene copy number changes affect a larger fraction of 
the genome in cancers than do any other type of somatic 
genetic alteration [16, 17]. Another characteristic fea-
ture of tumor evolution is the high genetic heterogeneity 
found. Previous phylogenetic models for cancer [9, 18–
22], either do not account for these unique characteris-
tics of cancer evolution or are not scalable and hence of 
limited practical use. Thus there is need for development 
of new phylogenetic models with scalable algorithms that 
can adequately model cancer evolution. A step towards 
a scalable model for inferring tumor phylogeny by copy 
number variation was taken by Chowdhury et al. [23, 24] 
using FISH data.

Fluorescence in  situ hybridization (FISH) was devel-
oped by bio-medical researchers in the early 1980s and 
has been used to detect and localize the presence or 
absence of specific DNA sequences and to visualize the 
genomic diversity of chromosome aberrations [25]. 
While single cell sequencing (SCS) technique also has the 
potential to count the number of specific genes or spe-
cific regions for a group of cells, the highly non-uniform 
coverage, the admixture signal and relatively high cost 
make the current SCS technique unsuitable. By allow-
ing us to count copies of gene probes across hundreds to 
thousands of cells, FISH provides a way to characterize 
tumor heterogeneity reliably.

Chowdhury et al. [23] model the progression of tumor 
cells from the FISH copy number data and show that 
such a progression of FISH cell count patterns over a 
tree effectively models the evolution of tumor cells. They 
assume a parsimonious model describing evolution by 
single gene copy number changes [23] and later extend 
it to incorporate large scale duplication events (includ-
ing chromosomal and whole genome duplication events) 
[24]. They reduce the modeling problem to the NP-hard 
rectilinear Steiner minimum tree (RSMT) problem and a 
more general duplication Steiner minimum tree (DSMT) 
problem, and develop heuristics to construct RSMT/
DSMT trees. RSMT/DSMT topologies and other tree-
based statistics yield insights into selective pressure 
which simpler statistics (like cell counts) do not and pro-
vide independent support to clinical findings such as in 
[26]. They also are useful as discriminatory features in 
down-stream classification-based analyses. Earlier exper-
iments [23, 24] suggest that better phylogeny inference 
models can potentially improve these analyses that rely 
on accurate RSMT/DSMT inference.

A model based on the Steiner minimum tree has also 
been introduced in the “small phylogeny” problem at 

both the sequence level [27] and the gene order level 
[28]. Given a phylogenetic tree structure and genomes 
(sequences or gene orders) at the leaf vertices, the 
“small phylogeny” problem attempts to reconstruct all 
the ancestral genomes at internal vertices such that the 
total number of evolutionary operations, measured by 
the sum of distances between adjacent genomes, is mini-
mized. A special case of the “small phylogeny” problem 
is called the median problem—given three genomes, find 
the configuration of a median genome to minimize the 
sum of the pairwise distances between the median and 
three input genomes [29]. Sankoff et al. propose methods 
to find approximate solutions that iteratively solve the 
median problem for one internal vertex at a time until a 
local optimum to the Steiner minimum tree is found [27, 
28].

Since FISH [23] yields cell count patterns of gene copy 
numbers at single-cell resolution, parsimony-based phy-
logenetic approaches (designed previously for build-
ing phylogenies of species) can be applied to such data. 
Maximum parsimony approaches seek the tree and the 
cell count patterns (gene copy numbers) for the internal 
nodes that minimize the total number of events needed 
to produce the given input from a common ancestor. 
Although this also results in an NP hard formulation, 
several heuristics have been developed in the last decade 
to solve the Maximum Parsimony Phylogeny problem 
[30]. Packages such as TNT [31] have largely overcome 
computational limitations and allow reconstructions of 
large trees, inferring accurate trees with hundreds of taxa 
within minutes, and the use of continuous characters 
[32].

In this paper, we propose two approaches to solve the 
RSMT problem, one approach through iteratively opti-
mizing the median version of RSMT problem and the 
other approach based on Maximum Parsimony tree 
reconstruction. We further show how to use heuristics 
developed for RMST to find approximate solutions for 
the DSMT problem.

Experimental results from both simulated and real 
tumor data show that our approaches outperform previ-
ous heuristics by finding better solutions for both RSMT 
and DSMT problems and thus enabling us to obtain good 
models for cancer phylogenies using cell count patterns 
from FISH data.

Methods
In this section we describe the rectilinear Steiner mini-
mum tree (RSMT) and the duplication Steiner minimum 
tree (DSMT) problems for modeling the progression of 
FISH cell count patterns and compare them with mini-
mum spanning tree (MST) and maximum parsimony tree 
(MPT) problems. We then describe two new heuristics 
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for obtaining approximate solutions to RSMT from MST 
and MPT, and show how to extend these heuristics for 
RSMT to obtain solutions for DSMT.

RSMT, MST, MPT and DSMT
The rectilinear Steiner minimum tree (RSMT) problem 
for gene copy number changes is defined as follows [23].

Definition: RSMT(n, d)
Input: FISH data of n cell count patterns on d gene 

probes for a given patient
Output: A minimum weight tree with the rectilinear 

metric (or L1 distance) including all the observed n cell 
count patterns and, as needed, unobserved Steiner nodes 
along with their cell count patterns for d probes, Steiner 
nodes are used to represent missing nodes during pro-
cess of gene copy number changes.

Each cell has some non-negative integer count of 
each gene probe. Given two cell count patterns (x1, 
x2,..., xd) and (y1, y2,..., yd), the pairwise distance under 
the rectilinear metric (or L1 distance) is defined as 
∣

∣x1 − y1
∣

∣+ |x2 − y2| + · · · + |xd − yd |, where xi, yi ∈ N xi, 
yi N*****. The weight of a tree with nodes labeled by cell 
count patterns is defined as the sum of all branch lengths 
under the rectilinear metric. Since the distance between 
two cell count patterns under the rectilinear metric rep-
resents the number of single gene duplication and loss 
events between them, a minimum weight tree, includ-
ing Steiner nodes if needed, explains the n observed cell 
count patterns of d probes with minimum total number 
of single gene duplication and loss events, from a single 
ancestor. The single ancestor could be, for example, cell 
count pattern with a copy number count of 2 for each 
gene probe (a healthy diploid cell) [23, 24]. The RSMT 
problem is NP-complete [33].

If all possible cell count patterns in cancer cells are 
present as the input, then the RSMT is simply the MST, 
since no additional Steiner nodes are needed. The MST 
problem for gene copy number changes is defined as 
follows.

Definition: MST(n, d)
Input: FISH data of n cell count patterns on d gene 

probes for a given patient
Output: A minimum weight tree with the rectilinear 

metric (or L1 distance) including all the observed n cell 
count patterns.

Since both the minimum spanning tree and the mini-
mum spanning network can be constructed efficiently, 
previous heuristics have approximated RSMT by adding 
additional Steiner nodes to the minimum spanning net-
work [23, 24].

If all possible cell count patterns in cancer cells are con-
sidered to be all the n leaf nodes of a tree, then the RSMT 
problem becomes the MPT problem, since a MPT can be 

viewed as a Steiner tree of n leaf nodes and (n − 2) addi-
tional internal/Steiner nodes. The maximum parsimony 
tree problem for phylogenetic inference of gene copy 
number changes is defined as follows.

Definition: MPT(n, d)
Input: FISH data of n cell count patterns on d gene 

probes for a given patient
Output: A minimum weight unrooted binary tree with 

the rectilinear metric (or L1 distance) including all the 
observed n cell count patterns as leaves and n − 2 unob-
served internal nodes

The MPT problem is also NP complete [34] but heuris-
tics like TNT [31], have largely overcome computational 
limitations and allow reconstructions of large trees and 
the use of continuous characters [32]. The copy number 
of each gene can be treated as continuous characters and 
TNT can be used to find the minimum weight phyloge-
netic tree.

The above problem definitions use the rectilinear met-
ric to model single gene duplication and loss events. 
Chowdhury et  al. [24] generalize the distance metric to 
incorporate large scale duplication events including chro-
mosomal duplication and whole genome duplication. The 
duplication Steiner minimum tree (DSMT) problem is 
defined as follows.

Definition: DSMT(n, d)
Input: FISH data of n cell count patterns on d gene 

probes for a given patient
Output: A minimum weight tree with a generalized 

metric [24] (incorporating large scale duplication events) 
including all the observed n cell count patterns and, as 
needed, unobserved Steiner nodes along with their cell 
count patterns for d probes, Steiner nodes here are used 
to represent missing nodes during the process of gene 
copy number changes.

From MST to RSMT
The median version of the RSMT problem can be solved 
in linear time.

Theorem 1  RSMT(3, d) can be solved in time O(d).

Proof Given three cell count patterns (X1
1 ,X

1
2 , . . . ,X

1
n) , 

(X2
1 ,X

2
2 , . . . ,X

2
n) and (X3

1 ,X
3
2 , . . . ,X

3
n), RSMT(3, d) 

returns a cell count pattern (m1, m2,...,md) such that 
∑3

i=1

∑d
j=1 |X

i
j −mj| is minimized, where Xi

j ,mj ∈ N  . 
Since the count for each gene probe is independent, 
we can optimize mj independently which minimizes 
∑3

i=1

∣

∣

∣
Xi
j −mj

∣

∣

∣
, respectively, and mj simply equals to the 

median of X1
j ,X

2
j and X3

j . Thus (m1, m2, …, md) can be 
constructed in time O(d) and if it differs from all three 
input cell count patterns then a Steiner node with cell 
count pattern (m1, m2,…, md) has to be introduced. 
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On the other hand, 
∑

j=1 miny∈N
∑3

i=1 |X
i
j − y| 

is a lower bound for the minimum weight of any 
Steiner tree on three input cell count patterns, and 
arg miny∈N

∑3
i=1 |X

i
j − y| = mj, thus the above construc-

tion is optimal under the rectilinear metric.
Two instances of RSMT(3, d) are shown in Fig. 1(a, b, 

c). Given three cell count patterns in Fig. 1(a), a Steiner 
node is introduced in Fig. 1(b) which reduces the weight 
of the tree (i.e., the number of single gene duplication and 
loss events) from 7 to 4. Figure  1(c) shows an instance 
where no Steiner node is introduced.

Sankoff et  al. study iterative methods to find approxi-
mate solutions to the Steiner tree problem. They solve the 
median problem for one internal vertex at a time, itera-
tively improving the solution until a local optimum is 
found [27, 28]. For each internal node in the (binary) tree, 
in each iteration, the input for a median instance consists 
of its three immediate neighbors [28].

Our algorithm is based on the observation that the order 
in which Steiner nodes are added to a tree affects the final 
weight of the resulting tree. For example, Fig. 2(a) shows 
the original tree before iterative optimization, and Fig. 2(b, 
c) show two different orders in which Steiner node 
(21422282) is introduced resulting in different tree scores.

We define the Steiner count of any node to be the 
number of triplets which contain the node and require 
the introduction of a Steiner node to optimize the tree 
weight. The inference score for each potential Steiner 
node with respect to a triplet is thus defined as the sum 
of Steiner counts of the three nodes in that triplet. At each 
iteration of our algorithm, the potential Steiner node 
with minimum inference score is added to minimize the 
inference score from other potential Steiner nodes with 
respect to the current tree. An example is shown in Fig. 3.

Our iterative algorithm starts from a MST built from 
the set of input cell count patterns, selects a median 
instance at a time, and iteratively improves the solution 
until a local optimum is found. The detailed description 
is given in Algorithm 1.

From MPT to RSMT
In general, there may be multiple optimal solutions for 
the MPT problem, e.g., the internal nodes labeled by 
different cell count patterns. In any MPT with all nodes 
labeled by cell count patterns, a branch is called trivial if 
its length is 0 under the rectilinear metric. For any MPT, 
an unobserved internal node is a Steiner node if and only 
if it is labeled by a distinct cell count pattern other than 
any input cell count patterns. If we contract all trivial 
branches in MPT, the remaining unobserved internal 
nodes will be the Steiner nodes in RSMT. See Fig. 4 for 
an example.

Minimizing Steiner nodes
The MPT, as obtained above, may contain up to (n − 2) 
Steiner nodes. Following the philosophy of parsimony, 
we seek to minimize 

 

Fig. 1  Instances of RSMT(3, d) and the introduction of the Steiner node as the median. a shows an example of triple original nodes. b shows a case 
where a steiner node can be added to the original triple original nodes. c shows one example where no steiner node can be added
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these artificially introduced nodes, although this step 
does not reduce the final tree weight and is not required 
by the formal definition of RSMT (which does not 

place any explicit constraints on the number of Steiner 
nodes). In fact, all the previous heuristics [23, 24, 35] 
also implicitly do not add unnecessary Steiner nodes and 
thus are biased towards a parsimonious solution due to 
their incremental way of adding Steiner nodes to an ini-
tial tree with no Steiner nodes.

Given any MPT, if the internal nodes are labeled by cell 
count patterns, the RSMT can be derived by contracting 
all its trivial edges; but the MPT obtained does not have 
labels assigned to the internal nodes. Hence the problem 
reduces to finding the best possible labels for internal 
nodes that does not increase the weight. The dynamic 
programming (DP) method of [36] can be adapted to 
find the internal labels, but modifications are needed to 
account for the rectilinear metric and its implications on 
the total tree weight. Our algorithm proceeds by finding 
whether a leaf label can be reused in (or “lifted” to) its 
parent for each leaf in the tree. If a leaf can be “lifted” to 
its parent, the leaf is removed from the tree and its parent 
is chosen to be the root. In the bottom–up phase of the 
DP, labels from all other leaves are propagated up the tree 
by using ranges of cell count patterns that can maintain 

Fig. 2  Different orders of adding Steiner nodes result in different weights of the resulting trees. White nodes means original cell patterns while green 
nodes stand for steiner nodes. a, b, c share the same original cell patterns. a is one minimum spanning tree without introducing any steiner nodes. 
The steiner node (21422282) is introduced first for b and last for c

Fig. 3  The definition of Steiner count of the existing nodes and the 
inference score of potential Steiner nodes to be added
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the leaf cell counts without increasing the tree weight. 
In the top–down phase, cell count values are assigned to 
the internal nodes and a candidate tree is generated by 
contracting trivial edges. Several such candidate trees are 
generated by selecting different root nodes from lifted 
leaves. We choose a candidate tree with minimum num-
ber of Steiner nodes, with no increase in tree weight. The 
complete algorithm is presented in Algorithm  2 and a 
detailed example is shown in Fig. 5.

From RSMT to DSMT
Cancer genomes are prone to large scale duplications 
(including duplication of the entire chromosome or 
genome), but the above two heuristics for RSMT only 
take into account single gene duplication and loss events 
and thus may be of limited biological interest. In the fol-
lowing, we show how to extend the heuristics for RSMT 
to derive approximate solutions for DSMT.

We follow the idea from Chowdhury et  al. [24] to first 
identify possible large scale duplications. Specifically, given 
a tree reconstructed by [24] for DSMT, we first locate all 
branches containing large scale duplications (including 
both chromosomal and whole genome duplications). We 
then remove such branches, and thus split the tree into 
disjoint subtrees. For each subtree, we use only the leaf 
genomes as the input and reconstruct a new RSMT tree by 
using the above two heuristics (described in “From MST 
to RSMT” and “From MPT to RSMT” sections). Finally, 

we re-insert the removed branches and thus assemble the 
reconstructed RSMT subtrees into a new tree which is our 
approximate solution for DSMT.

Experimental results
In the following, we refer to previous heuristics as FISH-
tree [23, 24],1 our MST-based iterative approach MST-
tree, and our MPT-based approach as MPTtree. We also 
refer to the exact method [23] as EXACTtree.

Real cancer datasets
We use both the real cervical cancer and breast cancer 
data samples and simulation samples generated through 
the process described by Chowdhury et al. [23, 24]. The 
cervical cancer data contains four gene probes LAMP3, 
PROX1, PRKAA1 and CCND1, and the breast cancer 
data contains eight gene probes COX-2, MYC, CCND1, 
HER-2, ZNF217, DBC2, CDH1 and p53. These genes are 
chosen because they are considered as important factors 
for cancer growth inhibition or promotion. The cervi-
cal cancer data is from 16 lymph positive patients (both 
primary and metastatic tumors) and 15 lymph negative 
patients, making 47 samples in total. The breast cancer 
data is from 12 patients with both IDC and DCIS and 1 

1  We use the best result derived from the heuristic option in [23] and the 
option PLOIDY LESS HEURISTIC in [24] that also approximate RSMT 
under the case of gene copy number changes of single probes.

Fig. 4  Top The input data of 4 cell count patterns on 3 genes. Bottom Two maximum parsimony trees MPT and MPT′, both of weight 6, are shown 
on the left. Nodes with identical cell count patterns are shown in the same color in both MPT and MPT′. The corresponding RSMT and RSMT′, both of 
weight 6, are shown on the right, and the Steiner node in RSMT is colored in red
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Fig. 5  An example to test whether Leaf1 can be optimally “lifted” to its parent node Node6 in MPT. a A MPT on 5 leaves and 3 internal nodes. b Leaf1 
and compute the ranges of possible values to internal nodes, except Node6, in MPT Leaf1 in a bottom-up phase. c Assign the cell count pattern of 
Leaf1 to the root of MP T Leaf1, and determine the values for other internal nodes in MPT Leaf1 in a top-down phase. d Contract all trivial branches in 
MPT Leafi and derive RSMT*. Nodes with identical cell count patterns are shown in the same color and the Steiner node in RSMT* is colored in red
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patient with only DCIS, making 25 samples in total. More 
details of this FISH data set can be found in Chowdhury 
et al. [23, 24].

For the RSMT problem, Tables 1 and 2 summarize the 
comparison of FISHtree [23], MSTtree and MPTtree 
for breast cancer samples and cervical cancer samples, 
respectively (best tree weights are shown in italic). Note 
that MPTtree performs the best in all the samples. Fig-
ure 6 shows three approximate RSMT trees for the cervi-
cal cancer sample of patient 29, constructed by FISHtree 
(Fig.  6(a), tree weight  =  83), iFISHtree (Fig.  6(b), tree 
weight = 82) and mpFISHtree (Fig. 6(c), tree weight = 81), 
respectively.  

For the DSMT problem, we compare FISHtree [24] 
and MPTtree, since MPTtree outperforms MSTtree for 
RSMT. We summarize the results on breast cancer sam-
ples and cervical cancer samples in Tables 3 and 4 (bet-
ter tree weights are shown in italic). Similarly, MPTtree 
outperforms FISHtree in both breast cancer samples and 
cervical cancer samples. 

Note that both the RSMT and DSMT problems are 
NP-hard and so obtaining optimal solutions can be very 
difficult. Although the improvements in terms of tree 
weights appear small, coming closer to the optimal tree 

even by a few units is challenging. The improvements 
are more clearly seen on simulated data in the following 
section.

Simulated cancer data
We test on simulated datasets generated for different 
number of gene probes (4, 6, 8) and for different tree 
growth factors (0.4 and 0.5) [23, 24]. For each pair of 
parameters, we simulate 200 samples with the number of 
distinct cell count patterns varying from 120 to 150.

For the RSMT problem, Table  5 summarizes the 
number of times each of the methods, FISHtree, MST-
tree, MPTtree and EXACTtree, obtains the best results 
on these simulation datasets. For the DSMT problem, 
Table  6 summarizes the number of times each of the 
methods, FISHtree and MPTtree, obtains the better 
results on these simulation datasets.

MPTtree performs the best in all the simulation data-
sets. Due to the very efficient implementation of TNT 
[37], the running time of MPTtree is comparable to 
that of FISHtree, MSTtree, all of which are orders of 

Table 1  Comparison on  the real datasets for  RSMT 
on breast cancer samples. (EXACTtree results are not avail-
able due to the time limitation)

The best tree weights are shown in italics for each sample. The number of 
Steiner nodes is shown in parenthesis. Seven breast cancer samples have ties in 
tree weights and thus are not included due to the space limit

Case # RSMT tree weight (# Steiner nodes)

FISHtree MSTtree MPTtree

B1 IDC 213 (15) 212 (13) 211 (19)

B1 DCIS 241 (14) 242 (15) 239 (22)

B2 IDC 217 (15) 216 (20) 211 (22)

B2 DCIS 56 (2) 56 (2) 55 (3)

B3 DCIS 100 (7) 98 (7) 98 (10)

B4 IDC 214 (16) 213 (17) 213 (17)

B6 IDC 112 (4) 111 (4) 111 (6)

B7 IDC 116 (8) 113 (12) 113 (12)

B7 DCIS 186 (13) 184 (14) 182 (22)

B9 IDC 222 (22) 217 (25) 213 (30)

B9 DCIS 164 (12) 163 (13) 161 (15)

B10 IDC 128 (4) 128 (4) 127 (4)

B10 DCIS 146 (6) 145 (8) 145 (9)

B11 DCIS 136 (6) 135 (7) 134 (7)

B12 IDC 201 (9) 200 (10) 198 (15)

B12 DCIS 161 (9) 161 (10) 158 (13)

B13 IDC 132 (7) 131 (8) 131 (8)

B13 DCIS 63 (3) 62 (4) 62 (4)

Table 2  Comparison on the real datasets for RSMT on cer-
vical cancer samples

The best tree weights are shown in italics for each sample. The number of 
Steiner nodes is shown in parenthesis. 24 cervical cancer samples have ties in 
tree weights and thus are not included due to the space limit

Case # RSMT tree weight (# Steiner nodes)

FISHtree MSTtree MPTtree EXACTtree

C5 195 (13) 196 (12) 194 (13) 194 (13)

C6 82 (2) 82 (2) 81 (5) 81 (4)

C8 103 (6) 103 (6) 100 (9) 100 (8)

C9 143 (1) 142 (2) 142 (5) 142 (2)

C10 87 (0) 86 (1) 86 (1) 86 (1)

C12 72 (1) 71 (2) 71 (2) 71 (2)

C13 150 (5) 150 (5) 149 (7) 149 (7)

C15 74 (1) 73 (2) 73 (2) 73 (2)

C18 127 (4) 127 (4) 126 (6) 126 (6)

C21 73 (4) 74 (3) 73 (5) 73 (4)

C27 59 (1) 57 (3) 57 (2) 57 (3)

C29 83 (2) 82 (3) 81 (3) 81 (3)

C30 118 (9) 118 (9) 116 (9) 116 (10)

C32 209 (7) 207 (9) 205 (14) 205 (13)

C34 83 (5) 82 (6) 82 (6) 82 (6)

C35 67 (1) 67 (1) 66 (2) 66 (3)

C42 199 (7) 198 (9) 197 (12) 197 (11)

C45 172 (10) 169 (13) 169 (14) 169 (15)

C46 110 (5) 109 (6) 108 (8) 108 (7)

C49 162 (4) 161 (5) 161 (7) 161 (7)

C53 80 (3) 79 (4) 79 (4) 79 (4)

C54 146 (6) 145 (7) 144 (10) 144 (9)
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Fig. 6  Given the metastatic cervical cancer sample of patient 12, a approximate RSMT constructed by FISHtree with weight 83, b approximate 
RSMT constructed by iFISHtree with weight 82 and c approximate RSMT constructed by mpFISHtree with weight 81. Each node in the tree is 
labeled by a cell count pattern of four gene probes LAMP3, PROX1, PRKAA1 and CCND1. Each white node represents an input cell count pattern, 
and each red node represents an inferred Steiner node. Branch lengths are shown in blue
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magnitude faster than the exact method (we could not 
obtain the optimal solutions within a reasonable amount 
of time when there are more than 6 gene probes—shown 
as N/A in Tables 1 and 5).

Discussion
Both the RSMT and DSMT have been shown to be rea-
sonable models for progression of cancer cells using FISH 
cell count pattern data [23, 24]. Efficient heuristics are nec-
essary to obtain approximations to RSMT/DSMT since 
finding the optimal solution is NP-hard. We present two 
new algorithms to approximate RSMT, one from the MST, 
and the other from the MPT. We also show how to extend 
these heuristics for RSMT to obtain approximate solu-
tions for DSMT. Our experiments on both synthetic and 
real datasets demonstrate the superiority of our algorithms 
over previous methods in obtaining better parsimonious 
models of cancer evolution.

RSMT instances found by our heuristics may have mul-
tiple solutions with the same tree weight and exploring 
strategies to choose the best from multiple.

RSMT solutions remains open problems. Methods to 
provide reliable bootstrap-based confidence scores [38, 

Table 3  Comparison on  the real datasets for  DSMT 
on  breast cancer samples: number of  times and  percent-
age that  the best scoring tree (including ties) is obtained 
by FISHtree and MPTtree

Italic font is used for the cases with lower weights

Cell line DSMT best score

FISHtree MPTtree

B1 IDC 217 206

B1 DCIS 150 140

B2 IDC 203 189

B3 DCIS 99 97

B4 IDC 203 193

B5 IDC 64 63

B6 IDC 108 106

B6 DCIS 42 43

B7 IDC 116 115

B10 IDC 125 123

B11 DCIS 122 121

B12 IDC 125 123

B12 DCIS 162 149

B13 IDC 132 129

B13 DCIS 63 61

Table 4  Comparison on the real datasets for DSMT on cer-
vical cancer samples: number of  times and  percentage 
that  the best scoring tree (including ties) is obtained 
by FISHtree and MPTtree

Italic font is used for the cases with lower weight

Cell Line DSMT Best score

FISHtree MPTtree

C6 82 81

C8 95 93

C18 126 122

C24 201 204

C29 80 76

C34 81 82

C53 75 71

Table 5  Comparison on simulated datasets for RSMT: number of times and percentage that the best scoring tree (includ-
ing ties) is obtained by the four methods

EXACTtree results for datasets with over four gene probes are not available due to the time limitation

Probe # Growth factor RSMT Best score count (Best score percentage)

FISHtree MSTtree MPTtree EXACTtree

4 0.4 92 (46 %) 137 (68.5 %) 196 (98 %) 200

6 0.4 70 (35 %) 98 (49 %) 194 (97 %) N/A

8 0.4 41 (20.5 %) 69 (34.5 %) 196 (98 %) N/A

16 0.4 N/A 53 (26.5 %) 200 (100 %) N/A

4 0.5 93 (46.5 %) 130 (65 %) 194 (97 %) 200

6 0.5 68 (34 %) 99 (49.5 %) 196 (98 %) N/A

8 0.5 40 (20 %) 64 (32 %) 195 (97.5 %) N/A

16 0.5 N/A 57 (28.5 %) 200 (100 %) N/A

Table 6  Comparison on  simulated datasets for  DMST: 
number of  times and  percent- age that  the best scoring 
tree (including ties) is obtained by FISHtree and MPTtree

Probe # Growth 
factor

DMST Best score 
count

(Best score percentage)

FISHtree MPTtree

4 0.4 175 (87.5 %) 191 (95.5 %)

6 0.4 145 (35 %) 194 (97 %)

8 0.4 101 (50.5 %) 199 (99.5 %)

4 0.5 178 (89 %) 189 (94.5 %)

6 0.5 147 (73.5 %) 193 (96.5 %)

8 0.5 93 (46.5 %) 200 (100 %)
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39] for the inferred tumor phylogenies would also be 
worth exploring.
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