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Abstract: Despite the continued development of cystic fibrosis transmembrane conductance regulator
(CFTR) modulator drugs for the treatment of cystic fibrosis (CF), the need for mutation agnostic
treatments remains. In a sub-group of CF individuals with mutations that may not respond to
modulators, such as those with nonsense mutations, CFTR gene transfer to airway epithelia offers
the potential for an effective treatment. Lentiviral vectors are well-suited for this purpose because
they transduce nondividing cells, and provide long-term transgene expression. Studies in primary
cultures of human CF airway epithelia and CF animal models demonstrate the long-term correction
of CF phenotypes and low immunogenicity using lentiviral vectors. Further development of CF gene
therapy requires the investigation of optimal CFTR expression in the airways. Lentiviral vectors with
improved safety features have minimized insertional mutagenesis safety concerns raised in early
clinical trials for severe combined immunodeficiency using γ-retroviral vectors. Recent clinical trials
using improved lentiviral vectors support the feasibility and safety of lentiviral gene therapy for
monogenetic diseases. While work remains to be done before CF gene therapy reaches the bedside,
recent advances in lentiviral vector development reviewed here are encouraging and suggest it could
be tested in clinical studies in the near future.
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1. Introduction

Cystic fibrosis (CF) is a common autosomal recessive disease caused by mutations in the
cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes an anion channel.
CF affects many organ systems, but the most severe symptoms arise from progressive pulmonary
disease characterized by recurrent and persistent infection and inflammation, resulting in irreversible
tissue remodeling that usually requires lung transplantation, or is fatal. In recent years, small molecule
therapies that can partially restore CFTR function have significantly improved the outcomes for some
patients [1–5]. However, these are life-long treatments and their benefits are mutation class specific.
With over 2000 CFTR mutations identified to date (https://www.cftr2.org/), the need for mutation
agnostic treatments remains.

Soon after CFTR was discovered [6], efforts to develop gene therapy for CF began. Only four years
later, three patients were treated with an adenoviral vector carrying a CFTR expression cassette [7].
Adenoviral vectors were selected for their large carrying capacity that easily accommodates the nearly
4.5 kb CFTR cDNA, a promoter, and a polyadenylation signal, and they can be produced to a high titer.
Subsequent studies demonstrated that adenoviral gene delivery to airway epithelia was inefficient
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and transient [8–10], which meant repeat administrations would be necessary for effective treatment.
An investigation of repeated administration revealed that gene delivery efficiency was significantly
reduced by host humoral and cellular immune responses [11].

Additional CF gene therapy clinical trials evaluated adeno-associated virus (AAV) [12,13] and
non-viral cationic lipids complexed with plasmid DNA [14–17]. Like adenoviral vectors, both of
these treatments require repeat administration due to transient transgene expression from episomes.
Although multi-dose treatments were well-tolerated for both, pulmonary function improvements
were modest [12,16]. Recent reviews comprehensively outline the clinical trials experience with gene
therapy for CF [18–20].

While lentiviral vectors have not been tested in CF clinical trials, they have a sufficient packaging
capacity for a CFTR expression cassette and can transduce non-dividing cells [21,22]. This is particularly
important for CF gene therapy because most airway epithelial cells are mitotically quiescent [23,24].
Lentiviral vectors also integrate their cargo into the host genome, ensuring persistent expression for the
life of the cell [25,26], which implies that if progenitor cells are transduced, daughter cells expressing
the therapeutic transgene can repopulate the surface epithelium. Additionally, unlike adenoviral
vectors, lentiviral vectors display low immunogenicity [27–29]. In a sub-group of CF individuals with
more severe lung disease who may not respond to CFTR modulators, such as those with nonsense or
splicing mutations, lentiviral vectors may offer particular advantages.

An important question regarding the use of lentiviral vectors for in vivo somatic cell gene therapy
is safety. Because they integrate, there is a potential risk of insertional mutagenesis. Here, we will
contrast features of γ-retroviral and lentiviral vector systems. We will review results from clinical
trials for other diseases that raised safety issues and discuss the steps taken to address these concerns.
We will also review current progress towards lentiviral gene therapy for CF disease, and other ongoing
advances in the lentiviral gene therapy field.

2. Retroviruses

The Retroviridae family is composed of seven genera, including five retroviruses (α, β, γ, δ,
ε), lentiviruses, and spumaviruses. This family is characterized by their diploid, single-stranded,
positive sense RNA genomes, which are transcribed into viral DNA in the cytosol by the reverse
transcriptase enzyme. This double-stranded DNA is then transported to the nucleus and integrates
into the genome [30]. These viruses can be modified for use as replication incompetent vectors to
deliver genes of interest to mammalian cells.

While several retroviruses, including α-retroviruses [31] and spumaviruses [32], have been
investigated for gene therapy applications, γ-retroviruses and lentiviruses are the most extensively
studied in human gene therapy clinical trials. γ-retroviruses were the first to be used in clinical trials
for the treatment of a genetic disease. Some findings from these first trials raised concerns regarding the
use of integrating vectors. As a consequence, many safety features were incorporated into subsequent
versions of γ-retroviral and lentiviral vectors for gene therapy. Despite the excellent track record
of safety and efficacy in several clinical trials, concerns regarding the safety of retroviral vectors for
human gene therapy persist. For this reason, we will review the outcomes of the early γ-retroviral
clinical trials and discuss the lessons from these studies that influenced the subsequent development
of lentiviral vectors.

2.1. γ-Retroviral Gene Therapy

This retrovirus family member was the first to be used in human gene therapy clinical trials for
the treatment of a genetic disorder. Severe combined immunodeficiency (SCID) comprises a group of
genetic conditions that affect bone marrow-derived immune cells, resulting in impaired T and B cell
function leading to severe and often lethal infections. While an HLA-matched bone marrow transplant
can be curative, not all patients find a suitable match, and those that do can experience graft-vs-host
disease [33]. Thus, the severity of the disease, lack of universally effective treatments, and an easily
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accessible progenitor cell population that could be transduced ex vivo, made SCID an ideal candidate
for the development of retroviral gene therapy.

In 1990, a clinical trial for SCID due to adenosine deaminase (ADA) deficiency began, involving
ex vivo delivery of the ADA gene to patient-derived T cells using a γ-retroviral vector [34]. In this and
other pilot studies, there was evidence of partial immune reconstitution, an integrated vector, and ADA
gene expression in the T cells that persisted, but enzyme replacement therapy was still required in
all patients [34–36]. In this disease, genetically complemented cells have a selective advantage for
survival and expansion that is inhibited by enzyme replacement therapy [36–39]. In subsequent studies
with improved engraftment using nonmyeloablative conditioning, 10 patients had no deleterious
effects during follow-up over a median of four years, and most did not require enzyme replacement
therapy [40,41].

In 1999, clinical trials were initiated for X-linked SCID (SCID-X1) also using γ-retroviral vectors.
In these studies, hematopoietic stem cells (HSC) were isolated and transduced with a γ-retroviral
vector ex vivo to deliver the common cytokine receptor γ chain (γc), encoded by the IL2RG gene,
and then returned to the patients. Twenty patients were enrolled in participating centers in France
and the UK [42–44]. Of note, when γc expression is restored, transduced cells have a selective
survival advantage [38,39,45]. Initial results were very promising, with all patients showing evidence
of improved immune reconstitution soon after treatment [42–44]. In the years following, however,
clonal T cell lymphoproliferations occurred in six of the 20 patients after γ-retroviral vector gene
therapy for SCID-X1 [46–50]. One of these patients did not respond to leukemia treatment and
eventually died. When the first case of lymphoproliferation was reported in 2002, the trials were
immediately halted [51]. Trials resumed two years later, as the benefits to the treated patients without
adverse effects were considered to outweigh the potential risks of clonal T cell lymphoproliferations.
To further minimize the risks, the French group restricted the treatment to older children and returned
fewer transduced cells to patients [52]. Ultimately, all trials were suspended a year later after the
third case of clonal T cell lymphoproliferation and the death of one of the original patients were
reported [53].

While all retroviruses integrate into the host genome, their integration site preferences are
virus-specific [54–57]. γ-retroviral integration is enriched near enhancer and promoter regions of
actively transcribed genes [55,58]. In the case of the SCID-X1 patients who experienced clonal T cell
lymphoproliferation, insertions were mapped near proto-oncogenes (LMO2, BMI1, CCND2) [46,47,59].
These genes were dysregulated through expression driven by strong enhancer elements present within
the γ-retroviral long terminal repeat (LTR), leading to lymphoproliferation. Activation insertions
were also reported in people treated with γ-retroviral vectors for X-linked chronic granulomatous
disease (X-CGD) and Wiskott-Aldrich Syndrome (WAS). Three people treated for X-CGD exhibited
the insertional activation of genes, leading to myelodysplasia, in addition to transgene silencing by
promoter methylation in two of these patients [60,61]. Similarly, seven patients treated for WAS
developed acute leukemias following genotoxic insertional activations [62]. Although insertional
mutagenesis is a serious adverse event, it is important to note that malignancy has not been reported in
any treated ADA-SCID patients and nearly all of the treated patients from both SCID groups continued
to benefit from the treatment 20 years later [63], in the face of a disease with up to 50% mortality [64,65].
The possibility exists, that there could be something unique about the pathophysiology of SCID-X1,
X-CGD, and WAS that facilitated integration near oncogenes. These findings from clinical trials
stimulated a number of studies to improve the safety of retroviral gene therapy vectors.

In addition to vector insertion site preference and the choice of promoters, there are other
factors to consider for optimal vector design and delivery. For instance, HSC expressing exogenous
multi-drug resistance 1 (MDR1) delivered using a retroviral vector showed a selective advantage,
allowing improved expansion. When transplanted into mice, however, all animals developed a
myeloproliferative disorder [66]. Separate studies demonstrated that MDR1 or fluorescent protein
gene delivery using high doses of retroviral vectors resulted in genomic instability and acquired
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leukemias [67]. Malignant transformation is a complex process that requires multiple aberrant
processes to coincide. Retroviral insertion site preference is only one cooperating factor [48,68].

The adverse outcomes in γ-retroviral clinical trials led to the development of improved vectors
developed for SCID. These improved vectors incorporated several safety features. A significant
improvement was the development of a self-inactivating (SIN) γ-retroviral vector. In SIN vectors,
the LTR enhancer–promoter sequences are deleted and the gene of interest is expressed from an
internal promoter; strong enhancers are generally avoided. In the improved SIN γ-retroviral vector
for SCID-X1, the LTR U3 enhancer from the Moloney murine leukemia virus was deleted [69].
In addition, the modified vector used the human elongation factor 1α (EF1α) promoter to drive
constitutive transgene expression [69]. Cellular promoters such as EF1α have shown reduced potential
to induce the expression of neighboring genes, compared to retroviral enhancer-promoters [50].
Since these modifications were introduced, there have been no reports of cancer to date in >40
treated patients [69–73], and Strimvelis, a γ-retroviral vector for the ex vivo treatment of ADA-SCID,
was approved by the European Medicines Agency in 2016 [74]. These results indicate that stepwise
vector improvements reduced the risk of insertional mutagenesis with early γ-retroviral vectors. Taken
together, these studies suggest that there are at least six key factors to consider regarding retroviral
vector design for gene therapy applications: (1) retroviral insertion site preference; (2) transgene
promoter strength; (3) enhancer activity of the vector LTR; (4) selective survival advantage of corrected
cells; (5) vector dose (vector copy number per diploid genome); and (6) predisposing factors that could
lead to genotoxicity in response to the integration of an exogenous gene.

2.2. Lentiviral Vectors

Based on the genotoxicity associated with γ-retroviral vectors, the field has largely moved on
to lentiviral vectors due to the very low to negligible genotoxicity risk. Human immunodeficiency
virus (HIV) and other primate (simian (SIV)) and non-primate lentivirus species, including feline
immunodeficiency virus (FIV) and equine infectious anemia virus (EIAV), are currently being assessed
for their potential gene therapy applications. HIV-based lentiviral vectors differ from γ-retroviral
vectors in significant ways that improve safety. First, they display an integration site preference that,
while still within transcriptionally active regions of the genome, shows no preference for enhancer
or promoter regions, and is therefore less likely to be genotoxic [56–58,75,76]. Lentiviral vector
integrations map across transcribed genes, predominantly in introns. Second, since enhancer–promoter
elements contribute more to genotoxicity than insertion patterns [77,78], SIN lentiviral vectors were
developed to reduce genotoxicity [79,80]. Additional modifications include the use of a synthetic
chromatin insulator in lentiviral vectors to reduce interactions between the inserted transgene and
neighboring genes [81–83]. A moderate multiplicity of infection dose helps to avoid multiple
integration events per cell. Ideally, an average of one integration event per cell would take place and
result in monoallelic integration. Collectively, these modifications reduce the risk of genotoxicity.

Other safety features have been incorporated into lentiviral vector design and production.
In addition to separating the viral genes necessary for vector production into separate plasmids,
accessory genes not required for virus packaging or replication have been removed or expressed in
trans [84,85]. For lentiviral vector production, the required components are expressed from different
plasmids to reduce any possibility of recombination and production of replication competent viral
particles. The vector components are usually separated into three or four plasmids: (1) gag-pol
plasmid(s), which contain the viral structural genes and packaging signal; (2) a transgene plasmid
with a heterologous promoter and gene of interest; and (3) the viral envelope glycoprotein plasmid to
express the envelope and pseudotype the vector. In some cases, rev genes are separated from gag-pol as
a fourth component [84,85].
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3. Lentiviral Vector Development for Cystic Fibrosis Gene Therapy

Lentivirus vector systems have been investigated for CF applications since their development
in the 1990s [22]. This includes the HIV [86–89], FIV [81,90–92], EIAV [29,93], and SIV [94–96] vector
platforms. In addition to transducing non-dividing cells, another attractive feature of lentiviral
vectors is the ability to alter their cell and tissue tropism by changing the envelope glycoprotein
pseudotype [97]. A broad range of virus families have been tested for their tropism for airway cell
types. For example, envelope glycoproteins from filoviruses [98,99], baculovirus [91,100], influenza
virus [29], and Sendai virus (SeV) [27,94,96], all confer tropism to the apical surface of airway epithelia.
In contrast, the widely used vesicular stomatitis virus glycoprotein (VSV-G) predominantly permits
vector entry from the basolateral surface [91,101–103]. To enhance in vitro or in vivo delivery for
VSV-G pseudotyped vectors, tight junctions can be transiently disrupted using agents such as calcium
chelators [104], injury [89], or mild detergents such as lysophosphatidylcholine (LPC) [105]; however,
this could increase the risk of infection in the CF lung colonized with pathogenic bacteria. Lentiviral
vectors successfully delivered reporter genes to airway epithelia in well-differentiated primary culture
models and animal models [22,29,81,86–88,90,91,94,95]. Gene expression persists for the life of the
animal in mouse models [25,27,90] and can be successfully re-administered to respiratory epithelia
without eliciting a blocking immune response [27–29].

Lentiviral vectors have also been used to deliver CFTR to the airways of CF animal models.
HIV lentiviral vectors were successfully used to express CFTR to the airways of mice and rescue CF
phenotypes for at least 12 months [106]. In the CF pig, which recapitulates several features of CF
in humans, FIV-CFTR pseudotyped with the baculovirus GP64 envelope was aerosolized into the
airways, and partially rescued CF phenotypes within two weeks [92]. In a step towards the validation
of lentiviral gene delivery to human airways, Farrow et al. showed that the conducting airways
of marmosets could be transduced with a VSV-G pseudotyped HIV-LacZ reporter vector after LPC
pretreatment to disrupt tight junctions [87].

In preparation for a CF human clinical trial, Alton et al. identified an SIV-based, SeV pseudotyped
SIN lentiviral vector, featuring a hybrid EF1α and cytomegalovirus (CMV) promoter. The vector was
tested for efficiency in mouse and human airway epithelial cells in vitro and integration sites mapped
to determine safety and vector dosing [95]. They concluded that this vector is suitable for use in
humans and outlined steps towards a clinical trial in people with CF.

3.1. Questions Regarding the Development of Lentiviral Gene Therapy for Cystic Fibrosis

3.1.1. Which Cell Types Should Be Targeted?

A major advantage of gene therapy as a treatment for CF is the potential for lasting correction
of CFTR function. To accomplish this, cells with a progenitor capacity will need to be targeted.
CF is primarily a disease of the airways and a focus of most gene therapy strategies is to deliver
cargo to the epithelia of the proximal large airways (cartilage and submucosal gland containing;
pseudostratified columnar epithelium) and distal small airways (no cartilage; simple columnar
epithelium). Several progenitor cell types are distributed regionally in the conducting airways [107].
Within these regions, the progenitor cell types include basal cells (Muc5AC−, K5+, p63+) in the proximal
cartilage containing tracheobronchial epithelium [108,109], club cells, and a population of basal and
α6β4+ cells in the small airways [110,111]. Of note, some basal cells in the proximal airways may
have cell membrane extensions that reach the airway lumen [112], while the epithelial progenitors
of the small airways (basal, club, and α6β4+ cells) are directly accessible from the lumen [110,111].
Differentiated cells such as ciliated cells of the large and small airways are long-lived in mice (half-life
of six months in the trachea and 17 months in bronchioles [113]). Robust data concerning airway
cell turnover in humans are lacking. Of note, multiple studies of gene transfer to various epithelial
cell types have been reported with lentiviral vectors pseudotyped with the VSV-G [87], GP64 [28],
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and SeV [95] envelopes. In addition, the transduction of some airway epithelial cell progenitor cell
types by lentiviral vectors has been demonstrated in vitro [114] and in vivo [95].

Recent studies in mouse trachea describe a new stem cell niche that contributes to airway repair,
the submucosal gland myoepithelial cells [115]. In these studies, glandular myoepithelial cells adopted
a basal cell phenotype and established lasting progenitors capable of further regeneration following
re-injury. Their role in human airways is not yet known. Additionally, the recent progress in single
cell RNA expression profiling has also identified new airway cell types. Bulk microarray or RNA
sequencing experiments demonstrate that CFTR is a low abundance transcript in the tracheobronchial
epithelium. In two recent publications, a new cell type termed the pulmonary ionocyte, was identified
using single cell RNA sequencing technology [116,117]. Ionocytes represent approximately 1% of
epithelial cells in the proximal airways, but were found to express approximately 50% of all CFTR
mRNA transcripts in the large airway epithelium of a mouse or humans [116,117]. The remaining CFTR
mRNA transcripts were expressed at low levels in secretory and ciliated cell types [117]. These findings
point out a previously unrecognized diversity of cell types and CFTR distribution in the airway
epithelium [118]. While additional studies are needed to understand their place in therapeutic CF
phenotypic correction, it is likely that a therapeutic benefit can be gained by correcting both long-lived
terminally differentiated and progenitor cell types [119–121].

3.1.2. What Level of Cystic Fibrosis Transmembrane Conductance Regulator Expression Must
Be Achieved?

An important question for gene therapy is the level of CFTR expression that must be achieved in
transduced cells to correct CF phenotypes. At least five studies examined the relationship between the
percent of cells expressing CFTR and transepithelial Cl− secretion [122–126]. Overall, they suggest
that expressing CFTR in 10–50% of cells restores Cl− secretion to wildtype levels. These studies
led to the idea that correcting ~10% of the cells would restore Cl− transport and correct the clinical
phenotype. However, these studies do not address HCO3

− secretion or differentiate between wildtype
or exogenous CFTR expression levels. In recent cell mixing studies using airway epithelia from CF and
wildtype pigs, it was reported that as the proportion of wildtype cells increased, cAMP-stimulated Cl−

current increased and exhibited close to wildtype levels with a 50:50 mix of cells [127]. Interestingly,
50% wildtype cells generated only ~50% of HCO3

− current, although the amount of HCO3
− current

needed to achieve clinically relevant improvement in pulmonary function is uncertain. Of note,
heterozygote CFTR+/− epithelia, which produce ~50% as much CFTR as wildtype, generated ~100%
of wildtype Cl− current, but again, ~50% of wildtype HCO3

− current [127]. Carriers of CFTR
mutations, however, do not commonly manifest respiratory defects, suggesting that 50% wildtype
CFTR expression is sufficient to avoid disease and correction of ≤50% of cells may be therapeutically
relevant. One interpretation of these results, combined with the recent discovery of the pulmonary
ionocyte, is that it is possible that expressing greater than wildtype CFTR levels in a small number of
cells might restore defects associated with CF, including Cl− and HCO3

− secretion, airway surface
liquid pH, and host defense abnormalities. Although achieving CFTR expression to 50% of wildtype
levels should be curative (i.e., the treated CF lung would become equivalent to the healthy lung
of a CF carrier), CFTR expression at as little as 10% of wildtype levels may still provide substantial
improvement in pulmonary function via significant improvement in Cl− current. Such an improvement
would be considered a successful step in CF gene therapy on the path towards a complete cure.
Additional studies are needed to better understand the therapeutic implications of these findings.

3.1.3. How Can Physical Barriers to In Vivo, Somatic Cell Gene Therapy for Cystic Fibrosis
Be Overcome?

The first obstacle for gene transfer to somatic cells is physical. While HSC can be readily harvested,
modified ex vivo, and replaced, the modification of airway epithelial cells requires in vivo delivery.
In studies of gene delivery to newborn pigs, intratracheal vector instillation using a microsprayer [128]
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or atomizer [92] successfully delivered the transgene to multiple regions of the airways. Similar devices
could be adapted for use in humans. Alton et al. also noted that an aerosol generating nebulizer could
be used for whole lung delivery in the future, but focused on testing nasal delivery devices such as
catheters and a nasal spray bottle for the initial safety studies they proposed [95]. They concluded that
vector passage through the devices did not compromise the transduction efficiency.

Once the vector is delivered to the desired region of the respiratory tract, the next challenge is
obtaining the required transduction efficiency. Lentiviral vector transduction efficiency in the airways
may be limited by several factors, including vector titers, mucociliary clearance, epithelial barrier
properties, and viral envelope glycoprotein access to receptors. To overcome the rapid clearance of
vectors from the airways, viscoelastic gels such as methylcellulose have been used to slow mucociliary
transport and allow a more prolonged residence time of the vector on epithelial cells for increased
receptor binding and entry [90,92,129,130]. While enveloped lentiviral vectors offer more production
challenges than encapsidated AAV and adenovirus vectors, advances continue in this field.

3.1.4. What Is the Risk-Benefit Ratio of Somatic Cell Lentiviral Gene Therapy for Cystic Fibrosis?

To date, of the more than 1,350 patients treated with lentiviral vectors in clinical trials,
none have evidence of insertional mutagenesis [131,132]. The majority involve the ex vivo
treatment of hematopoietic stem cells for monogenetic diseases (>350 patients and 1000 patient-years,
based on review of current and completed clinical trials utilizing lentiviral vectors), including
SCID-X1 [133], adrenoleukodystrophy (ALD) [134], metachromatic leukodystrophy (MLD) [135],
WAS [136], β-thalassemia [137], sickle cell disease [138], and others summarized in Table 1. In general,
these treatments polyclonally reconstitute the hematopoietic system [133–138]. One patient in the
thalassemia trial developed a clonal expansion of a population, but it spontaneously regressed without
treatment [139]. In addition, in vivo somatic cell lentiviral gene therapy trials targeting the brain for
MLD, X-ALD, and the retina for Stargardt’s macular degeneration and Usher syndrome type 1B are
now underway. These and other in vivo clinical trials for monogenetic diseases are summarized in
Table 1. Lentiviral gene therapy is also in clinical trials for non-genetic diseases such as Parkinson’s
disease [140,141] and chronic HIV infection [142,143].

Among subjects receiving lentiviral gene therapy, the longest treated group are those with ALD.
Within this cohort, there are patients that received treatment over 10 years ago (2–12 years), without
adverse events [131,144]. In addition to the absence of adverse events, the stable engraftment of HSC
was observed in nine patients at a median follow-up of three years. A notable outcome, relevant
for progressive diseases such as CF, is that in eight patients treated prior to symptom onset, disease
development was prevented, and three patients showed signs of re-myelination [144].

Another growing population of patients who received lentiviral therapies are those treated with
US Federal Food and Drug Administration approved ex vivo chimeric antigen receptor T (CAR-T) cell
therapies for malignancies [145,146]. Lentiviral vectors are the most widely used tool to deliver CAR-T
treatments and we estimate that more than 1000 patients have received this therapy, with no reports of
genotoxicity related to the lentiviral gene transfer [132,147,148].

Lentiviral gene therapy with HSC is the most rigorous scenario for evaluating the risk of
insertional mutagenesis. We note that HSC differ in significant ways from airway epithelial cells. For
example, with many diseases (e.g., SCID-X1, ADA-SCID, and X-CGD), treated HSC acquire a selective
survival advantage and will expand [36–40,45,46,149]. Primary immunodeficiencies are also associated
with an increased risk of malignancy [150,151], which may contribute to oncogenesis following gene
therapy. In addition, HSC are a pluripotent, dividing cell type and are not mitotically quiescent.

Hematopoietic stem cells also express many stem cell genes, providing more transcriptionally
active target genes for insertional mutagenesis. Thus, HSC transduction likely carries more risks than
transducing a mitotically quiescent airway epithelial cell in the setting of CF. In addition, there is no
known survival advantage for a corrected CF airway epithelial cell. We conclude that HSC are a litmus
for transformation by lentiviral vectors and safety in this cell type is reassuring.
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Table 1. Current and completed gene therapy clinical trials using lentiviral vectors for monogenetic diseases.

Ex Vivo Lentiviral Gene Therapy Clinical Trials 1

Disease Autologous Cells Transplanted ClinicalTrials.gov Identifier Gene Delivered

β-Thalassemia Major Genetically modified HSC

NCT01639690 HBB
NCT02906202 HBB
NCT03276455 HBB
NCT01745120 HBB (LentiGlobin BB305)
NCT02151526 HBB (LentiGlobin BB305)
NCT03207009 HBB (LentiGlobin BB305)
NCT02453477 HBB (GLOBE)

Sickle Cell Disease Genetically modified HSC

NCT02186418 HbF
NCT02247843 βAS3-globin
NCT03282656 shRNA targeting BCL11A
NCT02151526 HBB (LentiGlobin BB305)
NCT02140554 HBB (LentiGlobin BB305)

ADA-SCID Genetically modified HSC

NCT03765632

ADA
NCT02999984
NCT01852071
NCT01380990
NTC02022696

ART-SCID Genetically modified HSC NCT03538899 DCLRE1C

SCID-X1 Genetically modified HSC
NCT01306019

IL2RGNCT03601286
NCT03315078

X-CGD Genetically modified HSC

NCT01855685

GP91-PHOX
NCT02234934
NCT02757911
NCT03645486

WAS Genetically modified HSC

NCT01515462

WAS
NCT01347346
NCT01347242
NCT01410825

MLD Genetically modified HSC
NCT03392987

ARSANCT01560182
NCT02559830

ALD Genetically modified HSC NCT02559830 ARSA
NCT01896102 ARSA (LentiD)

Fabry Disease Genetically modified HSC NCT02800070 GLA

Fanconi Anemia Genetically modified HSC NCT01331018 FANCA

Hemophilia A Genetically modified HSC NCT03818763 F8

Leukocyte Adhesion
Defect Genetically modified HSC NCT03812263 ITGB2

Mucopolysaccharidosis
Type 1, Hurler variant Genetically modified HSC NCT03488394 IDUA

Severe localized
scleroderma Genetically modified fibroblasts NCT03740724 MMP-1

Epidermolysis Bullosa
Dystrophica Genetically modified fibroblasts NCT02810951 COL7

In vivo somatic cell lentiviral gene therapy clinical trials for monogenetic diseases 2

Disease Lentiviral vector injection site ClinicalTrials.gov Identifier Gene Delivered

MLD Intracerebral NCT03725670 ARSA

X-ALD Intracerebral NCT03727555 ABCD1

Stargardt’s Macular
Degeneration Subretinal NCT01367444 ABCR (SAR422459)

Usher Syndrome Type 1B Subretinal NCT01505062 MYO7A (SAR421869)

1 This table only includes gene therapy clinical trials for monogenetic diseases. There are many others using
lentiviral vectors to deliver cancer treatments, such as chimeric antigen receptor T (CAR-T) therapies, not included
here. 2 Also not included are clinical trials of intracerebral administration for sporadic Parkinson’s Disease. HSC:
hematopoietic stem cells, SCID: severe combined immunodeficiency, ADA: adenosine deaminase, ART: Artemis,
CGD: chronic granulomatous disease, WAS: Wiskott-Aldrich Syndrome, MLD: metachromatic leukodystrophy,
ALD: adrenoleukodystrophy.

The current evidence points to a low genotoxicity risk for lentiviral vectors. Given that over
1350 patients have been treated with lentiviral vector gene therapy to date without developing cancer,
the risk of genotoxicity can be estimated to be 0–0.22% (95% confidence interval, rule of three) [152].
If patients receiving CAR-T are excluded, there are over 350 patients treated, leading to a genotoxicity
risk of 0–0.86% (95% CI). As additional patients are treated with lentiviral vectors without genotoxicity,
the risk will likely lessen.

ClinicalTrials.gov
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How can these data be considered in the case of gene therapy for CF? An assessment of drug
development candidates always depends on an analysis of the risk-benefit ratio. For the ~10%
of CF individuals with nonsense mutations, splice site mutations, and other mutations for which
correctors and potentiators will not be effective, one must weigh the potential benefit of effective
lentiviral vector gene therapy vs. the 30–50% five-year mortality rate of lung transplantation [153] or
0–0.22% genotoxicity risk. We should also consider that life-long periodic exposure to IV vancomycin,
IV aminoglycosides, IV piperacillin, or high dose ibuprofen, all have cumulative risks of serious
adverse reactions. In summary, the benefit-risk analysis of lentiviral vector development supports the
treatment of adults with minimal function CFTR mutations and advanced CF lung disease for whom
no near-term options exist for CFTR-directed treatment prior to lung transplantation.

4. Summary

Currently, clinical trials of gene therapy with lentiviral vector systems are having a profound
impact on several monogenetic diseases, including ADA-SCID, SCID-X1, ALD, MLD, X-CGD, WAS,
β-thalassemia, and sickle cell disease [133–138]. The CF gene therapy field continues to make
remarkable steps towards understanding barriers and developing new, more efficient gene transfer
tools. While there is still progress to be made, there are many reasons to be optimistic that gene therapy
for CF is on the horizon.
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