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The profiling of the tumor immune microenvironment (TIME) is critical for guiding
immunotherapy strategies. However, how the composition of the immune landscape
affects the tumor progression of gastric cancer (GC) is ill-defined. Here, we used mass
cytometry to perform simultaneous in-depth immune profiling of the tumor, adjacent
tissues, and blood cells from GC patients and revealed a unique GC tumor-immune
signature, where CD8" T cells were present at a lower frequency in tumor tissues
compared to adjacent tissues, whereas regulatory T cells and tumor-associated
macrophages (TAMs) were significantly increased, indicating strong suppressive TIME
in GC. Incorporated with oncogenic genomic traits, we found that the unique
immunophenotype was interactively shaped by a specific GC gene signature across
tumor progression. Earlier-stage GC lesions with IFN signaling enrichment harbored
significantly altered T-cell compartments while advanced GC featured by metabolism
signaling activation was accumulated by TAMs. Interestingly, PD-1 expression on CD8* T
cells was relatively higher in earlier-stage GC patients, indicating that these patients may
derive more benefits from PD-1 inhibitors. The dynamic properties of diverse immune cell
types revealed by our study provide new dimensions to the immune landscape of GC and
facilitate the development of novel immunotherapy strategies for GC patients.
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INTRODUCTION

Immunotherapy has become highly successful against cancers
by triggering or restoring the cytotoxic potential of the human
immune system (1-3). Among cancer immunotherapies,
immune checkpoint blockade (ICB) which targets cytotoxic T
lymphocyte antigen 4 (CTLA-4) or the programmed cell death
1 (PD1)-programmed cell death ligand 1 (PDL1) axis has been
approved for the treatment of several different cancer types
(4-7). Despite the great achievements ICB has made, clinical
positive responses have only been observed in a small fraction
of patients and most patients including patients with gastric
cancer (GC) still do not obtain a meaningful response to it (2, 3,
8). GC is the fifth most common cancer and the fourth leading
cause of cancer-related deaths worldwide (9, 10), and the
progression of GC was demonstrated to be strongly
correlated with the immune response (11, 12). Therefore, the
adoption of more extensive immunogenetic profiling of tumor-
infiltrating immune cells in GC is expected to pave the way
toward understanding the integrated tumoral immune system
as well as help discover precision immunotherapy to fight
against GC.

The tumor immune microenvironment (TIME) is a
heterogeneous and complex system with continuous changes
in the progression of tumor initiation, growth, and
dissemination. Cells of the adaptive and innate immune
systems infiltrate TIME and form an ecosystem that
modulates all aspects of tumor development. CD4+ helper T
cells and cytotoxic CD8+ T cells can prevent tumor growth by
targeting antigenic tumor cells, and high numbers of activated
CD8+ T cells are associated with a good prognosis in GC and
various cancers (13, 14). Meanwhile, tumor-infiltrating T
lymphocytes (TILs) also include a population of regulatory T
(Treg) cells, a subset of CD4+ T cells, which accumulate in
TIME and suppress tumor-specific T-cell responses (15, 16).
Tumor-associated macrophages (TAMs) and dendritic cells
(DCs), as the main components of antigen-presenting cells,
play an indispensable role in the adaptive immune response by
capturing and presenting tumor antigens to CD4+ and CD8+ T
cells. Besides, TAMs are the major constituent of immune cells
in the TIME that can either block or facilitate tumor growth in
many cancers (17). Growing evidence has shown a strong
association between TAM density and poor prognosis in GC
and other solid cancers (18-22). Recently, B cells were
identified to play an important role in antitumor immune
response in TIME (23-25). In addition, innate immune cells
such as natural killer (NK) cells are proved to be important as
well (26). An in-depth analysis of complexity within the TIME
is likely to reveal the mechanism of tumor immune evasion that
will prove fruitful in understanding the tumor progression and
will benefit the search for novel targets for therapeutic
modulation. However, the thorough composition of GC
immune landscape and its effects on tumor progression
remain exclusive. Thus, it is important to characterize the
baseline GC immune milieu to clarify the composition and
property of tumor-infiltrating immune cells in comparison with
ones in other immune-relevant anatomical compartments.

In the study, using mass cytometry by time of flight (CyTOF)
combined with genomic bioinformatic analysis, we present a
paired single-cell analysis of the immune landscape in tumor
samples and matched adjacent tissues as well as peripheral blood
cells from GC patients. We identify the characterized immune
landscape that is unique to GC tumor lesions. We further
identified the specific intrinsic tumor features that significantly
associate with their immune infiltrate. Our findings provide a
landscape of the interactions between tumor and immune cells
across gastric cancer. Given the unmet need in developing
TIME-targeted therapies for gastric cancer, this comprehensive
analysis of the immune landscape in GC offers insights into the
interpretation of the response of gastric cancer to ICB and
possible personalized strategies to overcome tumor-supporting
TIME properties and thereby guide the development of novel
drug combination strategies.

RESULTS

Single-cell Mapping of Imnmune Landscape
in Human Gastric Cancer by CyTOF

To generate in-deep immunophenotyping of the immune cell
states in human gastric cancer, we performed a large-scale mass
cytometry analysis of 20,000 CD45+ immune cells for each
sample collected from 10 primary tumor samples from patients
undergoing surgery with all grades of GC (Figure 1A). Clinical
information of all GC patients that were representative of the
gastric adenocarcinoma distribution across age, gender, and
predominant histological subtype was summarized in
Supplementary Table S2. To explore tumor-specific immune
changes from the gastric immune microenvironment, we sought
to simultaneously map the immune compartment of the tumor
lesion, adjacent tissue, and peripheral blood of GC (Figure 1A).
To this end, we designed a comprehensive CyTOF panel
together, measuring 37 parameters at the single-cell level that
allowed simultaneous analysis of cells from all three sample
types, to deeply interrogate the lymphoid compartment and
capture the entire spectrum of myeloid populations, together
with lineage-identifying and functional markers to map the
cellular frequencies of major immune cell populations and
their functional status (Supplementary Figure S1A).

This strategy allowed us to visualize high-dimensional data in
two dimensions and systematically identify the main immune cell
types in both lymphocytes and myeloid cells across the three tissues
of all patients (Figure 1B and Supplementary Figures S1B-D).
Totally, the immune cell compartment in GC tissues comprised all
major immune lineages. Interestingly, we observed the diverse
situations in tumor lesions of GC, indicated by lower relative
frequencies of T cells (47.3%) and higher frequencies of myeloid
cells (22.6%), compared with 61.0% and 15.1% in adjacent tissues
(Figure 1C and Supplementary Figures S1E, F). Our findings
highlight that tissue of residence is a significant determinant of
immune phenotype, showing that GC shapes TIME with a distinct
immune cell composition: myeloid cells dominate the TIME in
tumor lesions whereas lymphocytes dominate in adjacent tissues. A
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FIGURE 1 | The immune landscape of human gastric cancer (GC) by CyTOF. (A) Experimental approach of the study. (B) tSNE maps displaying immune cells of GC
patients colored by 27 Phenograph clusters (top) and the main cell populations by manual identification of Phenograph clustering (oelow). (C) Average frequencies of major
immune lineages for each type of sample (peripheral blood mononuclear cells [PBMCs, P], n = 8; adjacent tissues [AT] and tumor tissues [T], n = 10) across GC patients.
(D-F) Distribution of the T (D, B, E), and NK (F) cells in different types of samples (left) and frequency of that for each patient (right) based on manual identification of
Phenograph clusters. Bar plots show mean + SEM; *p < 0.05 by paired t-test. P, peripheral blood mononuclear cells (PBMCs); AT, adjacent tissues; T, tumor tissues.

close analysis of the immune compartment of TIME allowed us to
distinguish the specific immune change in GC.

Unique Characterization in Lymphocyte
Composition of GC

As lymphocytes represent the most abundant cell subsets across
GC tumor lesions and adjacent tissues and are considered the
most clinically impactful for antitumor immunity and
immunotherapy, we focused subsequent in-depth analyses on
these major cell types (Figure 1C). Upon t-SNE dimensionality
reduction in conjunction with Phenograph clustering, we
identified three major compositions of lymphocytes, namely, T
cells (CD3+), B cells (CD19+), and NK cells (CD3-CD56+)
(Figures 1D-F). Across all samples, T and B lymphocytes
were present at a higher frequency in the GC tumor
microenvironment and adjacent tissue microenvironment
compared to blood (Figures 1D, E), whereas the frequency of
NK cells was slightly reduced across all GC patients
examined (Figure 1F).

Notably, it showed the tendency among the GC patients
examined that B lymphocytes were present at a higher
frequency in the GC tumor microenvironment compared to
the adjacent tissues (Figure 1E). Tumor-infiltrating B cells are
heterogeneous, and their roles in tumor immunity remain
elusive. Specifically, in our study, total B cells were significantly

increased in GC tissues compared to adjacent tissues and
peripheral blood; however, we found that the CXCR5+ B cell
(cluster 10) is decreased in GC tissues and other clusters of B cells
were significantly increased (Supplementary Figure S1H, I).

T-cell Status Reveals Various Phenotypes
Associated with GC Immunosuppression

T cells were the main immune cell population in the GC TIME.
Here, upon t-SNE dimensionality reduction in conjunction with
Phenograph clustering, we in-depth identified five major
compositions of T cells including CD8+ cytolytic T cells
(CD3+CD8+, CTL), CD4+ T help cells (CD3+CD4+CD25-,
CD4+ Th), regulatory T cells (CD3+CD4+CD25+Foxp3+,
Tregs), double-negative T cells (CD3+CD4-CD8-, DNT), and
double-positive T cells (CD3+CD4+CD8+, DPT) (Figure 2A).
Interestingly, despite infiltration of more CD8+ T cells in tissues
than in PBMCs, it seemed that CD8+ T cells were limited in
adjacent tissues rather than GC tissues (Figure 2B, and
Supplementary Figure S2A). Besides, it was proved that
Granzyme B (GZMB)-CD8+ T cells significantly increase in
tumor tissues compared with PBMCs while GZMB+CD8+ T
cells showed no significant difference, and the expression of
GZMB on CD8+ T cells was observed significantly lower in
tumor tissues than in peripheral blood, which may indicate both
tumor immune resistance-induced spatial limitation and
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FIGURE 2 | In-depth characterization of the amount and function of T-cell (CD3*) compartments in the three types of samples (% of CD3" T cells). (A) tSNE plots
showing the distribution of the T-cell subgroups in different types of GC samples. (B) Frequency (left) and individual characterization (right) of CD8" T cells for each
patient based on summation of Phenograph clusters. (C) Frequency of GZMB*CD8" (left) and GZMB CD8" (right) T-cell clusters for each patient based on
summation of Phenograph clusters. (D) Frequency (left) and individual characterization (right) of CD4* helper T (Th) cells for each patient based on summation of
Phenograph clusters. (E) Frequency of Tregs for each patient based on summation of Phenograph clusters. (F) Expression level of ICOS and CCRS8 in Tregs for
each patient based on summation of Phenograph clusters. (G) Cytotoxic T lymphocyte (CTLs)/Treg ratio for each patient based on summation of Phenograph
clusters. (H) Frequency of CD4 CD8™ double-negative T (DNT) and CD4*CD8" double-positive T (DPT) cells for each patient based on summation of Phenograph
clusters. (I) Expression level of PD-1 in different T-cell subgroups (left) and tSNE maps of relative expression of the PD-1 for T cell subgroups in GC samples of
adjacent tissues and tumor tissues. Bar plots show mean + SEM; *p < 0.05, **p < 0.01, **p < 0.001, and ***p < 0.0001 by paired t-test.

dysfunction of CD8+ T cells (Figure 2C, and Supplementary
Figures S2B, C). However, the reduction of GZMB-CD8+ T cells
was more pronounced compared to GZMB+CD8+ T cells in
cancerous tissues (Figure 2C, and Supplementary Figure S2B).
In contrast to CD8+ T cells, CD4+ Th cells were of a lower
frequency in the GC lesions and adjacent tissues compared to
blood (Figure 2D, and Supplementary Figure S2D).

Specifically, Tregs were major components of CD4+ T cells
and significantly accumulated in the tumor lesion across all
GC patients (Figure 2E, and Supplementary Figure S2D).
Moreover, Tregs present in GC and adjacent tissues expressed
high ICOS compared to blood, with no change in CCR8
expression (Figure 2F). Remarkably, the CTL/Treg ratio was
significantly lower in the tumor lesions of GC than in adjacent
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tissues and blood (Figure 2G). This characterization of T subsets
strongly indicates the suppressive microenvironment in TIME of
GC. Immunohistochemical results showed less infiltration of T
cells in tumor tissues than that in adjacent tissues for GC patients
(Supplementary Figure S2E).

Among the T-cell components, two specific forms were
identified, double-negative CD4-CD8- (DNTs) and double-
positive CD4+CD8+ population (DPTs), which were observed
across all GC samples, reaching up to 5%-10% and 0.5%-2.5% of
the T-cell compartment in GC tissues, respectively (Figure 2H).
Despite that the origin of DNT's has not been fully unveiled, our
previous report showed that DNTs have emerged as functional
immune cells in the field of antitumor therapy due to their high
cytotoxicity in multiple tumor cells (27). In this study, we found
that the frequency of DNTs in GC tissues displayed a lower
tendency compared to that of adjacent tissues (Figure 2H). The
exact function of DNTs and DPTs for GC progression or
potential immunotherapeutic application still needs to
be identified.

In view of the promising efficacy of anti-PD-1 therapy in
several cancer patients, we examined the expression of the
checkpoint molecule PD-1 on all distinct T subsets and found
that the PD-1 expression on T-cell subsets, particularly CD8+ T
cells, between cancer tissues and adjacent tissues was basically
comparable (Figure 2I).

The GC TIME Harbors a Heterogeneous
Myeloid Cell Population

Although myeloid cells are key components of the tumor
microenvironment, their heterogeneity and impact on GC
progression remain insufficiently characterized. Phenograph
clustering of all tissues in GC patients confirmed the diversity
of myeloid cells in GC tumors, and macrophages, monocytes, DC
subsets, and neutrophil subsets were identified based on the
expression of protein markers, including CD11b, CD68, CD163,
CD206, CD16, CD14, CD11c, CD141, PPARY, and HLA-DR,
among others. Paired mass cytometry analysis revealed a distinct
composition and phenotype of myeloid populations between
tumor and adjacent tissue samples (Figure 3A). Specifically,
macrophages displayed an increased tendency in the tumor
lesion across all GC patients, while dendritic cells (DCs)
reduced in cancer tissues compared with adjacent tissues
(Figure 3B and Supplementary Figure 3A). Granulocytes and
monocytes accounted for approximately the same proportion
between tumor and adjacent tissues (Figure 3B and
Supplementary Figure S3A).

Notably, TAMs and monocytes comprised 77.4% of myeloid
cells in the tumor lesions, which was higher than those in non-
tumor adjacent tissues (Figure 3B). Using paired CyTOF
analyses, we found that tumor macrophages exhibited a
distinct signature in GC compared to their adjacent
counterparts across all patients (Figure 3B). Importantly, while
M2-type macrophages dominated gastric cancer that was in line
with previous studies (21, 22), the increased proportion of
macrophages in tumor sites was mainly due to the enrichment
of M1-type macrophages (Figure 3C and Supplementary Figure

S3B). In addition, the M1/M2 rate tended to be higher in cancer
tissues in comparison to that in adjacent tissues, although
without statistical significance (Figure 3C). Tumor
macrophages expressed higher levels of CD68 and PPARY and
lower levels of HLA-DR compared to components that resided in
adjacent tissues (Supplementary Figure S3C). Using paired
CyTOF analyses, we identified the presence of three DC
subsets (cDC1, ¢DC2, and pDCs) at the tumor site across GC
patients. DCs, as professional antigen presentation cells (APC),
excel at antigen presentation and play a critical role in the
induction of antitumor T-cell immunity. Strikingly, CD141+
DCs, cross-presenting cells that preferentially prime CD8+ T
cells, were significantly reduced in tumor lesions compared to
adjacent tissues (Supplementary Figure S3D), which consistent
with the desert status of CD8+ T cells in GC tumor tissues
(Figures 2B, C). These findings indicated the deficiency of
specific antitumor immunity in GC tumor sites. Tumor-
infiltrating myeloid cells can express PD-L1, which is a key
regulator of T-cell immunity in cancer (28, 29). We detected PD-
L1 expression on distinct myeloid subsets and found that
macrophages highly express PD-L1, while the expression of
PD-L1 in DCs was relatively lower in cancer tissues (Figure 3D).

To quantify relationships between immune cell components
presented in the TIME of GC, we calculated the frequencies for
major immune cell phenotypes across all GC patients.
Interestingly, we found that the main pro-tumor TAM clusters
displayed a mutually exclusive relationship with CD8+ T cells,
whereas this negative correlation only happened in the tumor
lesions (r = -0.93, P = 0.0003) (Figure 3E), not in adjacent tissue
(Supplementary Figure S3E). These differences of tumor lesions
compared to adjacent tissues likely work in concert to exhibit an
immunosuppressive microenvironment.

Dynamic Signature of the Immune
Landscape Underlying GC Tumor
Progress and Clinical Outcomes

To obtain an overall profile of the tumor-immune systems in
response to gastric cancer, we analyzed the immune landscape of
diverse tumor-infiltrating immune cells across tumor
progression based on TNM stage (T—tumor; N—node; M—
metastasis) classification. We examined whether the immune
contexture of the tumor lesions significantly differed between
earlier-stage (stage I/II) and later-stage (stage III/IV) tumors.
Intriguingly, the distribution of major immune cell subsets
including T-cell subsets, B cells, and NK cells as well as
macrophages and DCs showed different trends in frequency
across different stages (Figure 4A and Supplementary Figure
S4A). Tumor lesions with earlier-stage gastric cancer harbored
significantly altered T-cell compartments in the tumor immune
microenvironment compared with adjacent tissues, which was
characterized by higher infiltrations of CD8+ T cells and a
predominant phenotype of CD4+ T cells (Figures 4A-C;
Supplementary Figures S4B, S4C. However, the later-stage
GC lesions were characterized by tumor-infiltrating myeloid
cell subsets, which likely compromise antitumor T-cell
immunity (Figures 4A, B).
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for both macrophages and DCs (Figure 4E; Supplementary
Figure S4D).

To obtain a global understanding of the relationships between
all immune subsets and characteristics of the tumors, we
compared the immune feature in GC patients with or without
recurrence and metastasis based on 2 years of following up.
Similarly, recurrence patients exhibited the comparable immune
signatures with later-stage GC patients, as indicated with no
dramatic change regarding the frequency of total T, B, NK, and
myeloid populations (Supplementary Figures S4E, F).

Genomic Traits of GC Modulate Tumor
Immunophenotypes and Response to
Checkpoint Blockade

To identify genomic and transcriptomic traits associated with
these immunophenotypes in GC, we performed an extensive
immunogenomic analysis of GC tumors by utilizing publicly
available cancer genomics data compiled by TCGA. To this end,
we first computed the relative abundance of an array of 22 main
immune-cell populations in GC tumor tissues and adjacent
normal tissues. In concordance with CyTOF data, we observed
that among 22 inferred immune cell types by CIBERSORT, the
higher cellular fractions of CD4+ T cells, especially the memory
CD4+ T cells, and macrophages (M0, M1, M2) eventually
increased in tumor sites compared to normal tissues
(Figure 5A and Supplementary Figure S5A). This pattern of
immune signature was validated by other GC cohorts (GEO) and
reached a similar pattern (Supplementary Figure S5B). In
agreement with CyTOF data, a higher fraction of macrophages
was associated with a more aggressive phenotype (Figure 5B,
Supplementary S5C). This analysis revealed that the relative
abundance of many immune cell populations is correlated
(Figure 5C and Supplementary S5D), suggesting at least some
degree of co-infiltration of the GC tumor.

Incorporated with CyTOF data, these analyses of genomic
traits suggested that tumor cells might have reprogrammed
the TIME to facilitate GC progression. We reasoned that
the component of the infiltration of the immune cells was the
main responsible for the selective pressure applied on GC
tumors, resulting in the positive selection of specific features
that support the escape of immunosurveillance. Based on TCGA
data analysis, we clustered tumors with similar infiltration
patterns and defined two main immunophenotype groups: T-
cell dominant and macrophage dominant (Figure 5D). Next, we
intended to identify the genomic features of GC tumors
associated with these two immunophenotypes. All subsequent
analyses of the gene set enrichment analysis (GSEA) pathway
enrichment was stratified across both immunophenotypes.
Strikingly, several cancer hallmark signaling pathways were
nearly universally upregulated in T-cell-dominated phenotypes
(Figure 5D), including a marked enrichment of IFN-o. and IFN-
Y responses, chemokine signaling pathway, JAK-STAT signaling
pathway, TNF pathway, complement system, inflammatory
response, and apoptosis. On the other hand, enrichment of
PI3K2 signaling, transferrin endocytosis and recycling,
glycolysis, and iron uptake/transport was observed in the

macrophage-dominated immunophenotypes (Figure 5D), in
agreement with a previous study showing the relationship of
iron metabolism with macrophage function (30). Particularly,
the cholesterol homeostasis was more frequent in macrophage-
dominant immunophenotypes, in line with our recent report
that lipid metabolism of tumors regulates macrophage
polarization (21). Notably, the GSEA pathway enrichment
assay across distinct tumor progression displayed similar
patterns with macrophage-dominant immunophenotypes with
enriched metabolism signaling pathways (Supplementary
Figure S5E). Finally, we also observed that tumors of more
macrophages which accumulated at diagnosis were significantly
associated with poor prognosis in GC patients (Figure 5E).
These observations suggest that tumors preferentially progress
in the presence of a high macrophage infiltrate. In contrast,
tumors with a favorably T-cell immunophenotype would be
partially kept in check by the immune system and progress less
frequently to advanced stages.

DISCUSSION

Therapy resistance and the lack of rational therapeutic targets
represent the major obstacles in improving the survival of
patients with GC (31). It is widely appreciated that
immunosurveillance is a fundamental property of cancer
contributing to the development of distant metastases and
therapeutic failure (32). Therefore, deeper dissection of TIME
is critical for understanding the mechanisms driving the poor
prognosis of GC and for overcoming therapeutic resistance. In
this study, we dissected, at single-cell resolution, the cellular and
transcriptomic TIME of GC tumors using the cutting-edge
CyTOF approaches, in combination with integrative
computational bioinformatic analyses.

Previous studies have drawn the immune atlas of various tumors
such as lung cancer and kidney cancer by mass cytometry (33-35),
guiding the immunotherapy of related cancers. In this study, we
conducted paired single-cell analyses of the immune cells to deeply
interrogate the immune landscape of TIME in gastric cancer. We
distinguished the immune changes driven by the tumor lesion from
those driven by the gastric tissue, emphasizing the relevance of this
type of analysis for the study of the unique tumor
microenvironment of GC. Strikingly, GC tumor lesions had
strongly reduced CD8+ T effector cells and a significant
expansion of Treg at the tumor site compared to adjacent tissues.
This reduced CD8+ T effector cell and increased Treg may be useful
as a refined biomarker of disease course or response to treatment
(15, 16). We further examined the expression of PD-1 on all
different T subgroups and found no significant difference in PD-1
expression between cancer tissues and adjacent tissues. These
findings may partially explain the failure of anti-PD1
monotherapy in GC patients and further indicated that the key
feature of CD8+ T cells in GC is the low frequency, not the defect of
function by PD-1, meaning that increasing the recruitment of CD8+
T-cell infiltration in tumor lesions is likely more critical to boosting
the antitumor immunity rather than antagonizing PD-1 alone for
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GC patients. The distinct TIL tumor signature was accompanied by
significant alterations of tumor B cells, as they were strongly
increased in tumors. Currently, the research on antitumor
immunity has been mainly focused on T cells, while the
important role of B cells has been overlooked. Previously, we
reported that a subset of CD19+CD24hiCD38hi B cells (Breg)
increased in GC and played an immunosuppressive role in gastric
cancer by inhibiting T-cell cytokines as well as conversion to Tregs
(36). Recently, several studies have revealed the positive effect of B
cells in the tumor microenvironment, showing that the presence of
B cells and tertiary lymphoid structures in tumors was associated
with favorable outcomes for immunotherapy (23-25, 37, 38). The
concise subsets and function of B cells in GC progression and the
correlation with immunotherapy need to be clarified in the future.
Notably, we also identified distinct deficiency in antigen-presenting
cell subsets that resided in GC tumor lesions across all GC patients.

A key finding of this study is the dynamic major changes in
two major populations of T cells and TAMs, which were dictated
by the stage of GC. Interestingly, T lymphocytes are abundant in
tumor tissues compared to adjacent tissues in the earlier-stage
GC, whereas immunosuppressive TAMs dominate the immune
landscape of later-stage GC. These results showed that the
immune landscape was shaped by tumor progression of gastric
cancer and suggested that for later-stage GC patients,
overcoming the immunosuppression of TAMs might be a
promising therapeutic strategy as the remarkable accumulation
of TAMs plays a major role in limiting effective antitumor T-cell
immunity in later-stage GC lesions (17, 39, 40). The current
armamentarium to treat advanced GC patients is highly
deficient. The extensive finding revealed by our study will
tailor precision immunological therapies for patients with
advanced GC. Moreover, in early-stage GC tumor lesions, a
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relatively higher amount of PD-1 molecules on CD8+ T cells was
found, which indicated that current PD-1 inhibitor ICB might
benefit early-stage GC patients. Recently, in a phase 3
randomized clinical trial, ICB immunotherapy showed a
favorable benefit-to-risk profile in patients with advanced G/
GEJ cancer with a PD-L1-combined positive score (CPS) of 1 or
greater in the first-line setting (41). This treatment strategy of
PD-1 inhibitor ICB for early-stage cancer patients was
successfully incorporated in non-small cell lung cancer
(NSCLC) (42), and our study warranted the potential of this
strategy for early-stage GC patients.

Additionally, our study further comprehensively characterizes
certain genomic and transcriptomic features of GC tumors
underlying the tumor-specific immune landscape of TIME
across the tumor progression of GC patients. We identified the
specific tumor features of GC that are positively selected due to
their interaction with the immune infiltrate. In this regard, GCs
with a highly T cell-dominant immunophenotype would be at
their early stages and equipped with IFN and inflammatory
signaling activation to restrain a robust immune pressure. They
would then progressively evolve to conquer the neighboring
tissues while their immunophenotype swings toward a more
immunosuppressive TAM infiltration pattern with metabolism
signaling pathway enrichment in GC tumors. Tumors with
enriched TAMs infiltrate would represent advanced stages of
GC in full progression and be virtually resistant to the host’s
immune system. A number of previous studies have explored the
immune microenvironment of gastric cancer through TCGA and
GEO databases, showing a similar trend to our results, which
validate our CyTOF data well (43, 44). Other studies identified
several prognosis-related genes and further constructed a
prognostic model of gastric cancer patients based on public
databases (45-49). Elucidating the detailed mechanism
underlying the tumor-specific immune landscape of GC remains
a future challenge to be tackled in the fields of tumor biology and
immunology. In our study, the dynamic properties of diverse
immune cell types revealed by combined CyTOF,
immunohistochemistry, and bioinformatic analysis not only add
new dimensions to the immune landscape of GC but also guide
the appropriate combinational immunotherapy dependent on the
immune signature of GC patients.

It should be noted that our study has limitations. Cell
phenotype correlations and associations with tumor
progression are based on a cohort of limited few GC patients.
Larger and independent cohorts need to be analyzed to yield
statistical power sufficient to identify relationships between
additional immune phenotypes and clinical outcome of GC.
Moreover, due to the limited number of channels of CyTOF, it
is hard for us to cover all of immune-related markers for more
specific subsets such as functional analysis of T cells, B cells, and
more immune checkpoints. Even with a limited number of cases,
we still found some obvious trends of the change and we have
further proved the results using bioinformatic analysis as well.
Based on the above, the results remain clinically useful and
extensive. We hope, in the future, we can confirm our study by
further enlarging the sample size and extending it to more

subgroup analyses such as the comparison between intestinal
and diffuse form, as well as a deeper analysis of various functional
phenotypes such as the exhausted T-cell phenotype.

In summary, we conducted an in-depth and comprehensive
analysis of gastric cancer TIME. By drawing an immune
panoramic map, we analyzed the composition and functional
status of immune cells in gastric cancer TIME, thus showing the
connection between immune cells and their relations to tumor
progression. This study is of great value for the discovery of early
diagnosis, efficacy prediction, and prognosis evaluation of gastric
cancer, providing a basis for the discovery of synergistic gastric
cancer immunotherapy and new therapeutic targets for
gastric cancer.

MATERIALS AND METHODS

Collection of Human Samples and

Clinical Characteristics

Cancer tissues, adjacent tissues, and blood were obtained from
GC patients with radical resection (all patients did not undergo
radiotherapy, chemotherapy, and immunotherapy before
surgery) at the National Cancer Center/Cancer Hospital,
Chinese Academy of Medical Sciences, and Peking Union
Medical College or Beijing Friendship hospital, Capital Medical
University from January 2018 to January 2019.

A total of 49 cases were collected, among which 39 cases were
rejected due to disqualification. Finally, 10 patients were eligible
for sample collection of paired gastric cancer tissues and adjacent
tissue tissues, among which eight had the matched peripheral
blood samples. Baseline information such as clinical data of
patients (history of helicobacter pylori infection, smoking
history, drinking history, family history of cancer,
accompanied diseases, etc.) and pathological data (type, grade,
stage, pathological classification, degree of differentiation, the
expression of c-MET, EGFR, HER2, etc.) was collected at the
same time.

Preoperative peripheral blood was collected within 4 h before
surgery. Cancer and adjacent tissues were obtained during
surgical removal. Cancer tissues with good vitality were cut
out, and adjacent tissues were taken 2 centimeters (cm) away
from cancer. The specimen was 1 cm in diameter and weighed
100-200 milligrams (mg). After resection, tissues were reserved
in RPMI 1640 on ice and transported to the laboratory for
immediate processing.

Tissue Digestion and PBMC Isolation

Samples were respectively prepared for single-cell suspension
within 2 h for mass cytometry. The samples were washed with
sterile saline and mechanically digested into 1-mm3 fragments;
homogenized twice with gentleMACS Dissociator B-01 mode in
HBSS containing 0.03% type IV collagenase, 0.01% DNase I, and
10% fetal bovine serum and then digested at 37°C for 45 min.
Then, 10 ml MACS was added to neutralize the digestive
enzymes. Tissues were filtered through 50 mesh and 70 mesh
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filters, respectively, rinsed with MACS, and centrifuged at 300g
for 4 min to collect the sediment; MACS suspension cells were
single cells of gastric cancer/adjacent tissues.

The PBMCs were collected via Ficoll. PBMCs were washed
and resuspended in cell staining buffer (CSB) to create a single-
cell suspension. Single-cell samples were suspended in
phosphate-buffered saline (PBS) and stained with 0.5 uM
cisplatin at room temperature. CSB was added to stop staining.
Samples were then centrifuged at 500g for 5 min at room
temperature. Cells were resuspended, and 3.2% PFA was added
to fix the samples. DMSO was applied for cryopreservation.

Antibody Staining and Data Acquisition

for CyTOF

Most of the antibodies in the study were commercially pre-
conjugated. Others were conjugated using Maxpar Multimetal
Labeling Kits according to the manufacturer’s protocol. Briefly,
purified antibodies were exchanged with a buffer using 50-kDa
ultrafiltration columns and partially reduced with 4 mM TCEP
(Thermo Scientific, Waltham, MA, USA) and then conjugated to
their respective lanthanide-loaded polymers and washed. The
final conjugated antibodies were diluted to a final concentration
of 0.5 mg/ml in the antibody stabilization buffer containing
0.05% sodium azide and stored at 4°C before staining.

Frozen cells were washed and recovered with CSB. An
extracellular antibody cocktail was added to stain the antigens
on the cell surface. After the CSB washing, nuclear antigen
staining buffer was used to break the cell membrane. Washed
by nuclear antigen staining perm, an intracellular antibody
cocktail was applied to stain intracellular antigens. After PBS
washing, cells were resuspended in cell intercalation solution
to incubate overnight. Incubated samples were washed with
CSB and ddH20O and then prepared with 10% EQ beads
for loading.

Mass cytometry data were finally acquired on the Helios'
mass cytometer (Fluidigm) in the Beijing Institute of Hepatology.
Experimental consumables and reagents were summarized in
Supplementary Table S1.

Clustering and Dimension Reduction
Randomization, bead normalization, and bead removal of data
collection were performed on CyTOF software (Fluidigm) v6.7.
Files (.fcs) were uploaded into Cytobank (https://www.cytobank.
org/), and populations of interest were gated. Debarcoding was
carried out by manual gating as well. Events of interest were
CD45+ cells, and each individual sample was exported as a
separate.fcs file for the subsequent analysis.

R 3.6.1 (https://www.R-project.org) was applied for further
data analysis. CyTOF data were visualized using viSNE, a
dimensionality reduction method that uses the Barnes-Hut
acceleration of the t-distributed stochastic neighbor embedding
(t-SNE) algorithm (50). The Phenograph algorithm was applied
for cluster analysis by the expression patterns of single cells (51).
To identify the major immune lineages, manual reorganization
based on the cluster was conducted.

CyTOF Statistical Analysis

T cells, B cells, NK cells, myeloid cells, and their subgroups were
classified to analyze the internal relationship between immune
cells. Paired sample t-test was applied to describe the differences
among cancer, adjacent tissue, and PBMCs of the same patient.
The relationship between immune cells and clinicopathological
characteristics was performed using a t-test. Values in the figures
are shown as mean + SEM, with P < 0.05 as the significant
difference standard. Statistical calculations were performed using
GraphPad Prism 8.0.2 (GraphPad Software Inc., La Jolla,
CA, USA).

Immunohistochemistry

Tissue sections were dewaxed and hydrated, and antigens were
repaired with endogenous catalase blocked. Diluted antibodies
(anti-CD3, anti-CD4, anti-CD8) were added in the wet box at 4°
C overnight, followed by addition of biotin-conjugated
secondary antibodies. After laying in wet box at 37°C for
20 min, streptavidin-horseradish peroxidase was added to
show colors. Counterstaining, dehydration, transparency, and
sealing were done afterward.

Bioinformatic Analysis

The transcriptome expression profiles and corresponding
clinical information of gastric adenocarcinomas were
downloaded from the Genomic Data Commons Data Portal
of TCGA (https://cancergenome.nih.gov/) and GEO. The
Cibersort algorithm was used to analyze the immune cell
components of all samples (52), resulting in 22 immune cell
subtypes being defined. Only cases with a Cibersort p < 0.05
were included in the subsequent analysis. The differential
infiltrations of the 22 immune cell types were evaluated by
the Wilcoxon test. Correlations among different immune cells
were tested by the corrplot R package. Wilcoxon test was
performed to analyze correlations between filtered immune
cells and stage.

Upregulated pathways were identified among tumors of the
two immunophenotypes by gene set enrichment analysis (GSEA)
(pathways for which |[NES| >1 and NOM p < 0.05 were chosen to
be shown). The gene sets selected for enrichment analysis
included GO (BP, MF), KEGG, Hallmark, and Reactome.
TIMER (Tumor Immune Estimation Resource) was used to
conduct Kaplan-Meier analysis for survival grouped by
immune cells.

All bioinformatics analyses were conducted using R 3.6.1
(https://www.R-project.org), GSEA software (http://software.
broadinstitute.org/gsea/doc/GSEAUserGuideFrame.html?
Interpreting GSEA), and TIMER2.0 (https://cistrome.shinyapps.
io/timer/).

Study Approval

The study was approved by the Ethics Committee of Beijing
Friendship Hospital, Capital Medical University. All patients had
signed informed consent for sample collection and clinical
data collection.
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