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Vectorized rooftop area data for  
90 cities in China
Zhixin Zhang   1,2,3, Zhen Qian   1,2,3, Teng Zhong1,2,3, Min Chen   1,2,3,4 ✉, Kai Zhang1,2,3, 
Yue Yang1,2,3, Rui Zhu5, Fan Zhang   6, Haoran Zhang7,8,9, Fangzhuo Zhou1,2,3, Jianing Yu1,2,3, 
Bingyue Zhang1,2,3, Guonian Lü1,2,3 & Jinyue Yan9,10

Reliable information on building rooftops is crucial for utilizing limited urban space effectively. In recent 
decades, the demand for accurate and up-to-date data on the areas of rooftops on a large-scale is 
increasing. However, obtaining these data is challenging due to the limited capability of conventional 
computer vision methods and the high cost of 3D modeling involving aerial photogrammetry. In this 
study, a geospatial artificial intelligence framework is presented to obtain data for rooftops using high-
resolution open-access remote sensing imagery. This framework is used to generate vectorized data for 
rooftops in 90 cities in China. The data was validated on test samples of 180 km2 across different regions 
with spatial resolution, overall accuracy, and F1 score of 1 m, 97.95%, and 83.11%, respectively. In 
addition, the generated rooftop area conforms to the urban morphological characteristics and reflects 
urbanization level. These results demonstrate that the generated dataset can be used for data support 
and decision-making that can facilitate sustainable urban development effectively.

Background & Summary
Rooftops of buildings have been intensively studied in fields such as sustainable urban development, building 
energy modeling, and urban planning and design in recent decades1–3. Owing to urbanization associated with 
the digital age, reliable information on rooftops is in increasing demand4–6. The rapid access to accurate rooftop 
information is important for the evaluation of urban and rural development trends. These trends are useful for 
formulating development strategies and protecting urban and rural ecosystems7–9. However, data on rooftop 
areas are unavailable in many developing countries because of resource constraints. Therefore, methods suitable 
for generating reliable data on rooftop areas of buildings at low cost are urgently needed10–12.

The automatic extraction of rooftop area data is gaining popularity in diverse fields, and studies involving 
varied data sources exist13. Three-dimensional (3D) spatial data, such as the Digital Surface Model (DSM) and 
Light Detection and Ranging (LiDAR), are exploited for reconstructing buildings, which includes the roof-
top area representation and geometric modeling13–16. However, the costs of acquiring 3D spatial data and of 
constructing the associated 3D models are costly, especially at the city scale. Due to the development of image 
processing algorithms, such as the edge detection and image segmentation, rooftops data can be extracted from 
high-resolution remote sensing imagery17,18. Conventional image process techniques, however, involve complex 
empirical rules and threshold settings, and thus, exhibit limitations when applied to high-resolution remote 
sensing imagery in large-scale14.

Open-access data from public service providers, such as Google Earth, Baidu Map, and OpenStreetMap, 
provide opportunities for the acquisition of urban information associated with broad coverage, fast updat-
ing speeds, and low cost19–21. However, although open-access data, for example, from a Google Earth Satellite 
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(GES) image are valuable for obtaining information on cities, conventional processing methods hardly discover 
in-depth semantic information and lack flexibility when examining large data involving complex features22.

In recent years, deep learning methods have been employed for efficient feature learning and urban informa-
tion acquisition23,24. In fact, deep learning-based image semantic segmentation methods have been applied for 
the extraction of rooftops data25,26. Nevertheless, regarding the optimization of rooftop data extraction applica-
tions, the data acquisition process requires the incorporation of geographic information27,28. In addition, public 
rooftop area datasets that are suitable for use as training dataset in machine learning are scant29. Further, naive 
deep learning models based on unbalanced and insufficient training samples exhibit unsatisfactory perfor-
mances30. Therefore, a robust high-performance rooftop extraction model remains elusive in China.

In the present study, the main objective is to extract accurate rooftop areas in China using high-resolution 
open-access remote sensing imagery based on a geospatial artificial intelligence (GeoAI) framework. The princi-
pal components of this framework are illustrated in Fig. 1. The following steps were employed for generating the 
rooftop area dataset: (1) data preparation through spatial stratified sampling involving geospatial prior knowl-
edge and data processing pipeline to augment the representativeness and number of samples; (2) creation of a 
deep learning segmentation model, which is based on an ensemble learning strategy and an improved prediction 
method to improve the rooftop extraction performance.

Based on the framework, we developed a national-scale vectorized rooftop area dataset involving 90 cities in 
China. The data was validated on test samples of 180 km2 across different regions with spatial resolution, overall 
accuracy, and F1 score of 1 m, 97.95%, and 83.11%, respectively.

Methods
Data collection.  GES imagery.  In the present study, open-access GES imagery served as the primary data 
source (Table 1). GES imagery is advantageous because of its high resolution and wide coverage. These images 
were downloaded in October 2020 using Python scripts in the open map service application program interface 
(Google Earth API) provided by Google. The spatial resolution of GES imagery varies according to its image level. 
The spatial resolution of the 18-level GES imagery was approximately 0.6 m/pixel in most developed countries, 
and this adequately displayed the geometry and structure of different rooftops. However, because the GES images 
originated from multiple sensors, differences in their performance induced variations in the resolution from 
region to region. For example, in China, images of major cities are usually obtained from the WorldView, and 
QuickBird satellites, and these involve an original resolution within 1 m. In contrast, images of remote areas are 
acquired from the SPOT series satellites, and the original resolution of which is within 5 m.

FROM-GLC30.  The spatial stratified sampling standard was based on a priori knowledge of the urban land 
cover from the global 30 m resolution land cover data (FROM-GLC30) created in 2017 (Table 1). These data 
include the following types: cultivated land, woodland, grassland, shrubland, wetland, waterbody, tundra, arti-
ficial surface, bare land, glacier, and permafrost. The overall accuracy of the FROM-GLC30 data is 72.43%31, 
which is based on a global all-season validation sample set from more than 36,000 locations.
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Fig. 1  The framework of obtaining rooftop area data in China.

Data Information Source

GES imagery high spatial resolution satellite imagery data https://www.google.com/earth

FROM-GLC30 30-m spatial resolution global land cover data http://data.ess.tsinghua.edu.cn

Table 1.  Data type, provided information, and the source used for accessing data involved in the present study.
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Site selection.  In the present study, we selected 90 cities in China (Table 2), and these were partitioned into 
four tiers based on the city administration hierarchy established by the government in China. Tier 1 involved 
municipalities with a central administration and regions linked to a special administration in China. Tier 2 com-
prised mainly sub-provincial cities, while Tier 3 involved provincial capitals and major prefecture-level cities. Tier 
4 contained ordinary prefecture-level cities, and the locations of these 90 cities are displayed in Fig. 2. These cities 
involve all provincial capitals and major administrative levels in China, and their distribution covers different 
climate regions, and thus, highlight the economics, political, and geographic adequacy. In terms of population, 
the 90 selected cities cover about 40% of the entire China.

Information about the characteristics of the 90 cities in each tier is presented in Table 3 (collated from 
national statistics32,33, no data available for Hong Kong and Macau). The administrative center bias in resource 
allocation makes cities with higher administrative rank more advantageous in terms of expansion. Therefore, 
the average size of population and built district shows an increasing trend from Tier 4 to Tier 1. Cities in Tier 
1 and Tier 2 are mostly the economic centers of provinces, with developed economies and high urbanization 
rates, and usually show a multi-core urban morphology. Cities in Tier 3 and Tier 4, on the other hand, usually 
have a single-core urban morphology. In addition, the shape of cities in each tier generally varies depending on 
the topography. Cities in the plains tend to have a clumped shape, while cities along rivers and valleys tend to 
have a striped shape.

Data preparation.  GES imagery preprocessing.  The quality of a GES image varies based on the imaging 
sensor, imaging time, and environmental factors (e.g., atmospheric condition and climate), all of which affect 
the model training and generalization. Therefore, standardization procedure for GES imagery is necessary, and 
in the present study, the Gamma Correction algorithm34 and Contrast Limited Adaptive Histogram Equalization 
algorithm35 were used to resolve brightness and sharpness issues.

Spatial stratified sampling strategy.  The study area involves several land cover types, and the proportion of 
unbuilt areas including water, cultivated land, and forest, exceeds that of built-up areas. Therefore, regular 
random sampling will create the imbalanced category problem, in which the proportion of negative samples 
(non-rooftop samples) significantly surpasses that of positive samples (rooftop samples). Therefore, the priori 
knowledge of the urban land cover was utilized to partition the study area into built-up and unbuilt areas based 
on the FROM-GLC30 data. The built-up area contains mainly artificial surfaces, which easily yield positive 
samples. In contrast, the unbuilt area comprises water bodies, wetlands, grasslands, bare lands, cultivated lands, 
shrublands, and forests, which commonly provide negative samples.

Tier 1 (Count: 6) Tier 2 (Count: 14) Tier 3 (Count: 24) Tier 4 (Count: 46)

Name Code Name Code Name Code Name Code Name Code

Macao 101 Chengdu 201 Anshan 301 Ankang 401 Bazhong 402

Beijing 102 Guangzhou 202 Baotou 302 Baiyin 403 Baise 404

Chongqing 103 Harbin 203 Datong 303 Changde 405 Chaozhou 406

Shanghai 104 Hangzhou 204 Fuzhou 304 Chifeng 407 Dali 408

Tianjin 105 Jinan 205 Guiyang 305 Datong 409 Dongguan 410

Hong Kong 106 Nanjing 206 Haikou 306 Ganzhou 411 Guigang 412

Ningbo 207 Hefei 307 Haidong 413 Heyuan 414

Qingdao 208 Hohhot 308 Hebi 415 Hengshui 416

Xiamen 209 Jilin 309 Jixi 417 Jining 418

Shenzhen 210 Kunming 310 Jiangmen 419 Jingmen 420

Shenyang 211 Lhasa 311 Jiujiang 421 Karamay 422

Wuhan 212 Lanzhou 312 Lijiang 423 Liupanshui 424

Xi’an 213 Nanchang 313 Nanchong 425 Nanping 426

Changchun 214 Nanning 314 Pingxiang 427 Qinzhou 428

Qiqihar 315 Rizhao 429 Sanya 430

Shijiazhuang 316 Shannan 431 Songyuan 432

Suzhou 317 Tongliao 433 Tongling 434

Taiyuan 318 Weifang 435 Wenzhou 436

Urumqi 319 Yan’an 437 Yancheng 438

Xining 320 Yichang 439 Yulin (Guangxi 
Province) 440

Yinchuan 321 Yuxi 441 Yuncheng 442

Changsha 322 Zhangye 443 Zhaotong 444

Zhengzhou 323 Zhongwei 445 Zigong 446

Zibo 324

Table 2.  Data for the 90 cities in China involved in the present study.
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However, based on empirical evidence from previous studies in unbuilt areas, we find farmlands, bare lands, 
and intersections of different land cover types can be misclassified by the rooftop extraction model. Therefore, in 
the present study, the unbuilt areas were manually filtered to determine confusing areas, and these areas supplied 
confusing negative samples.

Therefore, to obtain representative and balanced positive and negative samples, spatial stratified sampling 
was employed in the sample acquisition. The results of stratified sampling in the built-up and confusing areas are 
displayed in Fig. 3, and this approach was used to produce patches from the GES images.

Sample processing and division.  In the present study, sample images were correspondingly labeled positive and 
negative manually. Patches of the image samples and the corresponding masks were then divided into training 
samples (served as input for the rooftop extraction model training) and test samples (served as ground truth for 
the validation of rooftop area dataset).

During the rooftop extraction model training task, the built-up area covered by the image samples and their 
corresponding masks was 200 km2, while the confusing area was 160 km2, and thus, the total training samples 
covering 360 km2. According to previous deep learning studies, higher training data volume produce more 
robust models. However, in practice, available data are usually limited. To resolve this limitation, data augmen-
tation without changing the labeled categories was conducted, thereby enhancing the generalization potential of 
the model. Data augmentation operations used in the present study included the following: random cropping, 
image rotation, image flipping, image blurring, and noise addition.

Modelling.  Naive rooftop extraction model.  Rooftop areas of cities were extracted using the 
DeepLabV3+ model and GES images. The DeepLabV3+ is an open-source image semantic segmentation model 
that was launched by the Google R&D team36. In GES images, the rooftop areas exhibit varied sizes and shapes 
because of differences in architectural styles and dimensions37. Rooftop edges are sometimes difficult to accu-
rately identify because the GES image quality is affected by weather conditions38. DeepLabV3 + can perceive 

Fig. 2  The 90 selected cities in China organized in a hierarchical of four tiers.

Characteristics Tier 1 Tier 2 Tier 3 Tier 4

Area of administrative 
district (km2)

MIN 6,340.50 1,516.00 2,315.00 1,918.00

AVE 29,271.87 13,452.85 14,799.38 19,749.02

MAX 82,370.00 53,186.00 44,287.00 90,064.00

Area of built district (km2)

MIN 1,151.05 354.79 87.27 10.80

AVE 1,343.34 714.08 296.36 131.11

MAX 1,515.41 1,324.17 580.75 1,194.31

Permanent population 
(Ten thousand)

MIN 1,386.60 516.40 86.79 35.40

AVE 2,317.11 1,183.23 587.13 362.64

MAX 3,205.42 2,093.78 1,274.83 1,046.66

Table 3.  Characteristics information of the 90 cities in different tiers.

https://doi.org/10.1038/s41597-022-01168-x


5Scientific Data |            (2022) 9:66  | https://doi.org/10.1038/s41597-022-01168-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

features of different scales, thereby improving the recognition accuracy for multifarious rooftops. In addition, the 
DeepLabV3+ enables transformation of the feature map into a constant resolution map based on the encoder–
decoder structure, and this resolves the blurred edges of the rooftop area extraction issue39.

In the present study, the cross-entropy40 and dice loss functions41 were integrated to generate a composite 
loss function that can simultaneously handle the imbalance categories of samples problem and accelerate the 
convergence of training. These functions are expressed as follows:

α β∗ = ∗ ∗ + ∗ ∗L p p L p p L p p( , ) ( , ) ( , ) (1)i i dice i i bce i i

where pi denotes the predicted value of the ith sample, pi
∗ represents the ground truth value of the ith sample, 

Ldice(·) is the dice loss function, Lbce(·) stands for the cross-entropy loss function, and α and β are weight coeffi-
cients of the loss function, with corresponding values of 0.2 and 0.8 in the present study.

Expansion prediction.  To extract rooftop areas, standardized GES images served as input for the ensemble 
model. Considering that original GES images were significantly larger than the required dimension for model 
input, cropping into smaller patches was necessary for the prediction. However, this creates an uneven transi-
tion or stitched problem at the splicing gap of the prediction result of cropped smaller images42. The expansion 
prediction techniques are suitable for eliminating this uneven transition at the splicing gap.

Steps implemented in the expansion prediction (Fig. 4) include the following: (1) An n × n sliding window 
characterized by a step size of n was created. During movement, this window expanded to m × m, and the orig-
inal remote sensing image was then cropped into small patches. (2) The cropped images were concatenated into 
a tensor. (3) The ensemble rooftop extraction model was then used to predict the tensor obtained in step 2. (4) 
The central portion of each n x n tensor element was extracted and split into patches. (5) Patches obtained in step 
4 were stitched to produce a large predicted image, which was then cropped based on the original GES image.

Model training.  Overall network parameters were fine-tuned using the MS COCO dataset43 and pre-trained 
Xception backbone network44, while the AdamW optimizer45 and Cosine Annealing Warm Restarts algorithm46 
were employed for rapid convergence of the network. Four Tesla V100 GPUs were used to train the model using 
the mixed accuracy method, and the development was based on the Pytorch framework47. The hyperparameter 
settings are presented in Table 4.

After the model reaches convergence, rooftop areas were predicted using the snapshot48 based on union 
ensemble rule and expansion prediction techniques, the union ensemble rule is defined in Eq. 2. Considering 
the trade-off between the quality and speed of prediction, two local optimal models (in this work, checkpoints of 
the 29th and 55th epochs were chosen) were integrated into the ensemble rooftop extraction model. In addition, 
the TensorRT framework was used to accelerate the model calculation based on the FP16 accuracy. Accordingly, 
the prediction speed was increased approximately 5-fold without a significant loss in the accuracy, thereby 
reducing the prediction time from 100 to 20 days.

P P
(2)union ensemble

i

N

i
1

⋃=−
=

where Pi denotes the matrix of the prediction category, Punion ensemble−  represents the result of the union integra-
tion, and N is the number of sub models.

Fig. 3  Redundant information of stratified sampling in the study area.
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Data Records
Data file path.  The rooftop area dataset will be updated regularly corresponding to urbanization process of 
different cities in China. The dataset, metadata, and detailed documentation are freely available for all users at 
National Tibetan Plateau Data Center (https://doi.org/10.11888/Geogra.tpdc.271702)49.

Data file format.  The rooftop area dataset is arranged on the tier of cities, where rooftop area data of each 
city is ESRI Shapefile format50, which is composed of .shx, .shp, .prj, .dbf, and .cpg files. The dataset is divided into 
the original version and the simplified version. The original version is converted by prediction results from model 
directly, and on which simplified version is obtained by using the Douglas–Peucker algorithm51. The total sizes of 
two version dataset are 118 GB and 21.3 GB without compression.
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Fig. 4  Illustration of steps involved in the expansion prediction method.

Hyperparameter Value

Learning rate 0.02

Weight decay 0.0005

T0 2

Tmult 2

Output stride 16

Size of input image 384

Table 4.  Summary of data for hyperparameters utilized in the present study. The parameter T0 refers to number 
of iterations in the first restart, while Tmult denotes the increase factor in the Cosine Annealing Warm Restarts.

Field Format Definition Unit Geographic reference

Area double float Area of each rooftop feature Square meter CGCS 2000 Albers

X double float Longitude of the central point of 
each rooftop feature Decimal degree WGS 1984 Web Mercator Auxiliary Sphere

Y double float Latitude of the central point of each 
rooftop feature Decimal degree WGS 1984 Web Mercator Auxiliary Sphere

Table 5.  Field description for rooftop area dataset.
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City tier Accuracy (%) F1 score (%)
Producer accuracy/
Recall (%)

User accuracy/
Precision (%)

Omission 
error (%)

Commission 
error (%)

Tier 1 98.17 85.58 83.70 87.54 16.30 12.46

Tier 2 97.60 83.57 79.65 87.89 20.35 12.11

Tier 3 98.16 83.45 78.43 89.17 21.57 10.83

Tier 4 97.95 82.13 78.21 86.46 21.79 13.54

Overall 97.95 83.11 78.96 87.77 21.04 12.23

Table 6.  Summarized data from the evaluation of rooftop extraction results associated with different city tiers.
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Fig. 5  Images highlighting the evaluation of the rooftop area dataset for different city tiers and sampling areas, 
using different colors to visualize omission and commission errors.
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File structure.  The rooftop area data of each city contains three fields (area, X and Y), as presented in Table 5. 
All area fields are double float format, in square meters, calculated in CGCS 2000 Albers geographic coordinates. 
All X and Y fields are double float format, in decimal degrees, calculated in WGS 1984 Web Mercator Auxiliary  
Sphere geographic coordinates.

Technical Validation
Sampling design.  Based on the spatial stratified sampling method proposed in this study, the test samples 
used for the validation of the rooftop area dataset are obtained from GES images and manually labeled with the 
ground truth through visual interpretation. To better reflect the quality of the rooftop extraction results in each 
city tier, four tiers of 45 km2 were created, and these produced a test dataset covering 180 km2, in which the 
built-up and the confusing areas covered by the image samples and their corresponding masks were 100 and 80 
km2, respectively.

Analysis design.  Qualitative and quantitative evaluation criteria were utilized to validate the rooftop area 
dataset generated. Regarding the qualitative evaluation, morphological and topological characteristics of ground 
truth and extracted rooftop area data for various city tiers were compared. Conversely, for the quantitative 
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Fig. 6  Images highlighting the integrity of the rooftop area dataset for different city tiers, displaying results in 
both urban and rural space within city boundaries.
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evaluation, a testing dataset covering 180 km2 comprising four city tiers of 45 km2 was employed. In the present 
study, indicators calculated based on the confusion matrix52 include accuracy, precision, recall, and F1 score were 
used. The closer the values of these indicators are to 100%, the higher the quality of the rooftop extraction. It 
should be mentioned that precision is equivalent to user accuracy, which is a measure of exactness, and recall is 
equivalent to producer accuracy, which is a measure of completeness. Precision and recall can also be communi-
cated in terms of error, as either commission error (1-precision) or omission error (1-recall). In particular, the F1 
score, which is a weighted average of the recall and precision, is an important indicator for comprehensive evalu-
ation of rooftop extraction results. These data and indicators were then used to evaluate the relationship between 
the rooftop extraction results and the ground truth53.

Validation results.  The validation results for various city tiers are presented in Table 6. The overall accuracy 
for all city tiers is 97.95%, while the F1 score is 83.11%. However, the overall quality of the rooftop area dataset 
for high-tier cities is better than that of the lower-tier cities. Based on empirical exploration, we realized that the 
GES image quality for various cities varied according to the imaging sensor, imaging time, and environmental 
factors such as the atmospheric condition and climate. These image quality differences affect the model training 
and generalization. The quality of GES images for high-tier cities is better, so the results of the model extraction 
are generally better, which explains the quality difference between the rooftop area dataset for different city tiers. 
Therefore, in using this dataset for other applications, an evaluation of the impact of regional differences in quality 
on specific applications is necessary.

Beijing

Nanjing

Jilin

Hengshui

Fig. 7  Images for extracted rooftop areas in different cities, indicating the position offset on buildings of 
different heights.
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In addition, we validated the quality of the rooftop area dataset for different city tiers using two types of 
sampling areas, as shown in Fig. 5. Each submap corresponds to a ground extent of 1 km2 and the indicators 
for evaluating the rooftop extraction results are given below. In addition, we visualized the elements TN (True 
Negative), TP (True Positive), FN (False Negative) and FP (False Positive) in the confusion matrix. In this way 
the commission and omission errors in the extraction results can be clearly indicated by FP (in blue) and FN 
(in orange), respectively. It can be seen that the rooftop extraction in the built-up area is better than that in the 
confusing area, which explains why we use a stratified sampling strategy when collecting samples. In general, 
the extraction results adequately delineate characteristics of the rooftops, and these are consistent with the GES 
images. Our dataset also comprises small, sparsely distributed, and irregularly structured rooftops in confusing 
area, which highlights that the rooftop area dataset generated by the proposed framework has good performance 
in finding details and effectively avoids the interference of complex background information.

Examples of rooftop area dataset for different city tiers are shown in Fig. 6. The extracted rooftop areas 
exhibit clustering, and this is consistent with the spatial morphology and city boundaries. Therefore, the spatial 
distribution of rooftop areas is supportive for understanding the urbanization level and urban planning needs of 
cities. For example, Shanghai is a high-density mega-city in China, and its frank and vast plains and numerous 
waterways and ports provide advantages for the establishment of its polycentric urban spatial system. The con-
cept of intensive development has also resulted in a more compact urban space in Shanghai. However, the east-
ern and northern parts of Harbin are mountainous and hilly, and the expansion of the city is limited by natural 
conditions, so the urban space is loose and the urban area is mainly distributed in the central and western plains.

Specific details on the rooftop area dataset for different city tiers are displayed in Fig. 7 using Beijing, Nanjing, 
Jilin, and Hengshui as examples. Compared with the GES images, the rooftop extraction results display signifi-
cant details for various cities, with rooftops and complex backgrounds effectively distinguished. Moreover, dense 
and sparse spatial distribution areas are accurately extracted. In fact, the extraction results exhibit no sign of the 
stitched problem because of the application of the expansion prediction.

Meanwhile, Fig. 7 reveals that the GES image used in the present study was not adequately orthorectified, and 
this partially accounts for the offset in positions between the extracted rooftop area and the ground truth. This 
offset in positions is significant (approximately 20 m based on empirical survey) for a few high-rise buildings, 
but it is negligible for low- and medium-rise buildings. Therefore, if the rooftop area data are used for a major 
city- or country-scale estimation, such position offsets will minimally impact the results. Nevertheless, the roof-
top extraction results obtained in the present study provide high-quality details suitable for supporting many 
architecture-oriented applications.

The empirical evidence of our study in 90 Chinese cities shows that the proposed method can be quickly 
generalized at a large scale and shows strong robustness in regions with different characteristics. When it is to be 
extended to regions outside of China, we suggest fine-tuning the existing model by adding new feature samples, 
to enhance its applicability in the target region.

Code availability
The procedure of spatial sampling is executed in the ArcGIS Pro platform. The code of the deep learning model is 
available at https://github.com/ChanceQZ/RoofTopSegmatation. The program is described by Python3, packages 
of which are Pytroch, Numpy, and OpenCV mainly.
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