
Journal of

Clinical Medicine

Article

An Artificial Intelligence Approach to Bloodstream
Infections Prediction

Kai-Chih Pai 1 , Min-Shian Wang 2, Yun-Feng Chen 3, Chien-Hao Tseng 4 , Po-Yu Liu 4 , Lun-Chi Chen 1 ,
Ruey-Kai Sheu 5 and Chieh-Liang Wu 2,*

����������
�������

Citation: Pai, K.-C.; Wang, M.-S.;

Chen, Y.-F.; Tseng, C.-H.; Liu, P.-Y.;

Chen, L.-C.; Sheu, R.-K.; Wu, C.-L. An

Artificial Intelligence Approach to

Bloodstream Infections Prediction. J.

Clin. Med. 2021, 10, 2901. https://

doi.org/10.3390/jcm10132901

Academic Editor: Hideo Wada

Received: 20 May 2021

Accepted: 28 June 2021

Published: 29 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Engineering, Tunghai University, Taichung City 407224, Taiwan; kcpai@thu.edu.tw (K.-C.P.);
lunchi@thu.edu.tw (L.-C.C.)

2 Department of Critical Care Medicine, Taichung Veterans General Hospital, Taichung City 40705, Taiwan;
minnshyan@vghtc.gov.tw

3 Center for Infection Control, Taichung Veterans General Hospital, Taichung City 40705, Taiwan;
funnytako@vghtc.gov.tw

4 Department of Infectious Diseases, Taichung Veterans General Hospital, Taichung City 40705, Taiwan;
tedi3tedi3@hotmail.com (C.-H.T.); liupoyu@gmail.com (P.-Y.L.)

5 Department of Computer Science, Tunghai University, Taichung City 407224, Taiwan; rickysheu@thu.edu.tw
* Correspondence: cljeff.wu@gmail.com

Abstract: This study aimed to develop an early prediction model for identifying patients with
bloodstream infections. The data resource was taken from 2015 to 2019 at Taichung Veterans General
Hospital, and a total of 1647 bloodstream infection episodes and 3552 non-bloodstream infection
episodes in the intensive care unit (ICU) were included in the model development and evaluation.
During the data analysis, 30 clinical variables were selected, including patients’ basic characteristics,
vital signs, laboratory data, and clinical information. Five machine learning algorithms were applied
to examine the prediction model performance. The findings indicated that the area under the receiver
operating characteristic curve (AUROC) of the prediction performance of the XGBoost model was
0.825 for the validation dataset and 0.821 for the testing dataset. The random forest model also
presented higher values for the AUROC on the validation dataset and testing dataset, which were
0.855 and 0.851, respectively. The tree-based ensemble learning model enabled high detection ability
for patients with bloodstream infections in the ICU. Additionally, the analysis of importance of
features revealed that alkaline phosphatase (ALKP) and the period of the central venous catheter
are the most important predictors for bloodstream infections. We further explored the relationship
between features and the risk of bloodstream infection by using the Shapley Additive exPlanations
(SHAP) visualized method. The results showed that a higher prothrombin time is more prominent in
a bloodstream infection. Additionally, the impact of a lower platelet count and albumin was more
prominent in a bloodstream infection. Our results provide additional clinical information for cut-off
laboratory values to assist clinical decision-making in bloodstream infection diagnostics.

Keywords: bloodstream infection; artificial intelligence; machine learning; model interpretation

1. Introduction

Bloodstream infections (BSIs) are one of the leading causes of death. Patients diag-
nosed with BSIs have high morbidity worldwide, with an estimated overall crude mortality
rate of 15–30% [1]. Early recognition and initiation of treatment is the key to successful
treatment of bloodstream infection. In general, pathogens have been identified through
blood culture, which is a time-consuming procedure due to the multiple steps required for
identification [2]. Furthermore, delays in administering effective antibiotics could increase
the risk of death [3]. Attempts have been made to develop effective biomarkers to detect
BSIs. However, most laboratory-based methods fail in the early diagnosis of BSI [4,5].

Medical innovations powered by artificial intelligence are increasingly developing into
clinically practical solutions. Machine learning or deep learning algorithms can effectively

J. Clin. Med. 2021, 10, 2901. https://doi.org/10.3390/jcm10132901 https://www.mdpi.com/journal/jcm

https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-4379-1186
https://orcid.org/0000-0003-2098-8872
https://orcid.org/0000-0001-8006-4917
https://orcid.org/0000-0002-8449-7872
https://orcid.org/0000-0002-3014-8095
https://doi.org/10.3390/jcm10132901
https://doi.org/10.3390/jcm10132901
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jcm10132901
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm10132901?type=check_update&version=1


J. Clin. Med. 2021, 10, 2901 2 of 13

process the growing amount of data produced in various fields of medicine. Artificial
intelligence can aid in the development of infection surveillance aimed at better recognizing
risk factors, improving patient risk reduction, and detecting infections in a timely manner.
Previous studies have developed different prediction models for bloodstream infections
using various algorithms [6–11]. These studies collected data from different cohorts, such as
general wards, intensive care units (ICUs), and surgical in-patients. Furthermore, different
machine learning or deep learning algorithms were employed in these studies, with varying
data collection windows. These studies examined the performance of a prediction model
for BSI. Some studies presented excellent model performance [6,7], while others presented
poor performance for identifying BSIs due to a data imbalance [8]. The Supplementary
Table S1 presents different prediction models, data cohorts, data collection windows, and
model evaluations for the studies.

However, the data cohorts were different. There is scant evidence of AI and machine
learning implementation in the field of BSI, and no consistent trend of effect has emerged,
especially in the ICU. Additionally, fewer studies have explored model interpretation based
on clinical features.

In this study, we aimed to develop an interpretable model to predict BSI in an Asian
population. We used different approaches to evaluate which prediction performance
of the model is better. Moreover, we tried to explain the relationship between clinical
features and bloodstream infections using the Shapley Additive exPlanations (SHAP)
visualized method.

2. Materials and Methods
2.1. Definition of Bloodstream Infection

We defined BSI as the growth of a clinically important pathogen in at least one blood
culture. Contaminant microorganisms were classified as negative under the Clinical and
Laboratory Standards Institute guidelines. The Supplementary Table S2 presents the
distribution of pathogens among the BSIs.

2.2. Data Acquisition

In this retrospective study, 4275 patients who were admitted to the Taichung Vet-
erans General Hospital ICU were included. Between August 2015 and December 2019,
12,090 blood culture episodes were collected from these patients, with a total of 1680 BSI
episodes and 10,410 non-BSI episodes. We found that most of the patients had two blood
culture sampling episodes at the same time or the interval between two individual blood
culture sampling episodes was less than 24 h. To avoid data sample noise, these episodes
were randomly selected from only one episode for the data analysis. Additionally, we
removed episodes in which the proportions of missing data for the clinical characteristics
were more than 40%.

Finally, a total of 1478 bloodstream infections and 3597 non-bloodstream infections
from blood culture tests were analyzed in our study. Figure 1 presents the flowchart of
the study population selection. Table 1 reports the main characteristics of the overall
population, and the Supplementary Table S3 reports the patient characteristics in the
training, validation, and test sets. The results of the t-test and analysis of variance (ANOVA)
summary table for these data indicate that there were no statistically significant main or
interaction effects.
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   Sex (male) 3354 (65.15%) 1040 (70.37%) 2314 (66.68%) <0.001 
   Charlson comorbidity index 2.23 ± 1.43 2.35 ± 1.41 2.19 ± 1.43 <0.001 
   APACHE II score 25.73 ± 6.13 26.47 ± 6.11 25.42 ± 6.12 <0.001 
Divisions    <0.001 
   MICU 2024 (40.24%) 615 (41.61%) 1409 (39.67%)  
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      NS 821 (16.32%) 97 (6.56%) 724 (20.38%)  
The etiology for ICU admission    <0.001 
   Scheduled surgery 241 (5.09%) 49 (3.49%) 192 (5.76%)  
   Emergency surgery 113 (2.39%) 31 (2.20%) 82 (2.46%)  
   NS surgery, scheduled 50 (1.06%) 4 (0.28%) 46 (1.38%)  
   NS surgery, emergency 318 (6.71%) 22 (1.56%) 296 (8.89%)  
   Acute respiratory failure 1130 (23.85%) 325 (23.12%) 805 (24.17%)  
   Pneumonia 327 (6.90%) 92 (6.54%) 235 (7.05%)  
   Sepsis, non-pneumonia 308 (6.50%) 125 (8.89%) 183 (5.49%)  
   Acute cardiac conditions 544 (11.48%) 164 (11.66%) 380 (11.41%)  
   Acute neurological conditions 170 (3.59%) 29 (2.06%) 141 (4.23%)  
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   Acute renal conditions 58 (1.22%) 14 (1.00%) 44 (1.32%)  
   Acute GI condition 688 (14.52%) 276 (19.63%) 412 (12.37%)  
   Post-PCI 22 (0.46%) 6 (0.43%) 16 (0.48%)  
   OHCA/INCA 39 (0.82%) 12 (0.85%) 27 (0.81%)  

Figure 1. Data cohort workflow.

Table 1. Patient demographics of the overall study population.

All
(n = 5030)

BSI
(n = 1478)

Non-BSI
(n = 3552) p-Value

Basic characteristics
Age, years 66.36 ± 15.83 67.50 ± 14.74 65.89 ± 16.23 <0.001
Sex (male) 3354 (65.15%) 1040 (70.37%) 2314 (66.68%) <0.001
Charlson comorbidity index 2.23 ± 1.43 2.35 ± 1.41 2.19 ± 1.43 <0.001
APACHE II score 25.73 ± 6.13 26.47 ± 6.11 25.42 ± 6.12 <0.001

Divisions <0.001
MICU 2024 (40.24%) 615 (41.61%) 1409 (39.67%)
SICU 1292 (25.69%) 489 (33.09%) 803 (22.61%)
CCU 727 (14.45%) 252 (17.05%) 475 (13.37%)

CV 404 (8.03%) 115 (7.78%) 289 (8.14%)
CVS 323 (6.42%) 137 (9.27%) 186 (5.24%)

NICU 987 (19.62%) 122 (8.25%) 865 (24.35%)
NEURO 166 (3.30%) 25 (1.69%) 141 (3.97%)
NS 821 (16.32%) 97 (6.56%) 724 (20.38%)

The etiology for ICU admission <0.001
Scheduled surgery 241 (5.09%) 49 (3.49%) 192 (5.76%)
Emergency surgery 113 (2.39%) 31 (2.20%) 82 (2.46%)
NS surgery, scheduled 50 (1.06%) 4 (0.28%) 46 (1.38%)
NS surgery, emergency 318 (6.71%) 22 (1.56%) 296 (8.89%)
Acute respiratory failure 1130 (23.85%) 325 (23.12%) 805 (24.17%)
Pneumonia 327 (6.90%) 92 (6.54%) 235 (7.05%)
Sepsis, non-pneumonia 308 (6.50%) 125 (8.89%) 183 (5.49%)
Acute cardiac conditions 544 (11.48%) 164 (11.66%) 380 (11.41%)
Acute neurological conditions 170 (3.59%) 29 (2.06%) 141 (4.23%)
Pulmonary embolism 0 (0%) 0 (0%) 0 (0%)
Acute renal conditions 58 (1.22%) 14 (1.00%) 44 (1.32%)
Acute GI condition 688 (14.52%) 276 (19.63%) 412 (12.37%)
Post-PCI 22 (0.46%) 6 (0.43%) 16 (0.48%)
OHCA/INCA 39 (0.82%) 12 (0.85%) 27 (0.81%)
Others 729 (15.39%) 257 (18.28%) 472 (14.17%)

Outcomes
ICU stay, days 25.65 ± 20.05 34.10 ± 25.39 22.13 ± 16.09 <0.001
Hospital stay, days 49.12 ± 40.57 58.37 ± 39.95 45.27 ± 40.21 <0.001
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2.3. Data Outcome and Prediction Window

The main objective of this study was to develop the early prediction of BSIs as a
binary classification task. The prediction targets or the primary outcome of this study
assessed bloodstream infections within a patient’s stay at the ICU. Figure 2 presents the
BSI prediction task using 72 h of data to forecast the one set of blood culture tests after
24 h, which we designed as a 24-h prediction window after the feature window of 72 h.
All vital signs data were collected between 96–24 h before blood culture was measured.
The laboratory data were collected within one week to 24 h prior to the blood culture
test because the data were measured infrequently. We used the mean of vital signs and
laboratory tests as the feature values. Moreover, previous studies have indicated that the
use of central venous catheters (CVC) increases the risk of BSIs. Therefore, the present
study calculated the time of using CVC from ICU admission to 24 h prior to the blood test
as a predictive feature. We also analyzed the period from ICU admission to 24 h prior to
the blood culture measure in terms of the number of days.
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2.4. Clinical Features Selection

This study is a retrospective analysis of the clinical data. The feature selection was
reviewed based on the diagnostic criteria for sepsis and the risk factors of BSIs in the
ICU [12,13]. Considering the available data from our electronic health record and the
opinions of our expert domain, we collected thirty-two clinical variables as predictors of
bloodstream infections, including patients’ basic characteristics, vital signs, laboratory data,
and clinical information.

Vital signs were recorded every two hours in the ICU, including body temperature,
respiratory rate, pulse rate, oximetry, systolic blood pressure (SBP), diastolic blood pressure
(DBP), and Glasgow Coma Scale (GCS). Seventeen laboratory features were measured
based on patients’ condition. Moreover, the usage time of central venous catheters (CVC),
mechanical ventilation via endotracheal tube (ENDO), and Foley catheters were also
included. Finally, we included the stay time of the patients’ ICU admission prior to the
blood culture test. The feature characteristics are presented in Table 2. The difference
between BSIs and non-BSIs was measured using a Student’s t-test for continuous variables.
Additionally, a logistic regression analysis for crude and adjusted odds’ ratios is reported
in Supplementary Table S4.

Table 2. The clinical characteristics of the BSI and non-BSI groups.

Clinical Variable BSI (n = 1478) Non-BSI (n = 3552) p-Value Standard Cut-off

Vital sign
Temperature (◦C) 36.62 ± 0.49 36.66 ± 0.48 0.007

SBP (mmHg) 121.40 ± 14.95 123.78 ± 15.31 <0.001
DBP (mmHg) 66.46 ± 10.50 67.95 ± 10.79 <0.001

GCS 7.37 ± 3.20 7.56 ± 3.53 0.065
Heart rate (bpm) 93.36 ± 15.57 90.28 ± 15.58 <0.001

Respiratory rate (breath/min) 19.03 ± 3.53 18.65 ± 3.61 <0.001

Laboratory
Albumin (g/dL) 2.64 ± 0.55 2.84 ± 0.59 <0.001 3.5–5

Alkaline phosphatase (U/L) 211.00 ± 181.11 191.23 ± 220.81 0.015 50–190
BUN (mg/dL) 53.81 ± 37.91 42.31 ± 33.90 <0.001 5–25

Creatinine (mg/dL) 2.26 ± 1.90 1.94 ± 1.99 <0.001 0.5–1.4
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Table 2. Cont.

Clinical Variable BSI (n = 1478) Non-BSI (n = 3552) p-Value Standard Cut-off

CRP (mg/dL) 11.09 ± 8.99 9.93 ± 9.80 0.016 <0.3
Glucose (mg/dL) 180.08 ± 91.35 182.99 ± 103.07 0.574 70–200

HCO3-A (mmol/L) 23.38 ± 5.16 24.40 ± 5.24 <0.001 22–26
Hematocrit (%) 27.42 ± 4.78 29.26 ± 5.79 <0.001 37–52

Hemoglobin (g/dL) 9.13 ± 1.46 9.76 ± 1.79 <0.001 12–17.5
Potassium(K) (mEq/L) 3.90 ± 0.67 3.95 ± 0.67 0.011 3.5–5.3

Na (mEq/L) 140.26 ± 7.41 140.76 ± 7.01 0.024 137–153
pH (blood gas) 7.43 ± 0.07 7.43 ± 0.07 0.83 7.35–7.45

Platelet count (/UL) 140.39 ± 107.39 196.45 ± 125.71 <0.001 150–400
PO2-A (mmHg) 122.80 ± 49.18 124.50 ± 62.55 0.414 80–100

Prothrombin time (PT) (s) 13.98 ± 6.68 12.77 ± 5.48 <0.001 9.5–11.7
WBC (/UL) 11.81 ± 7.55 12.22 ± 7.13 0.066 3.5–11

Lactate (mg/dL) 18.32 ± 17.01 16.08 ± 14.54 <0.001 3.0–12

Clinical information
ICU day to blood culture, days 19.70 ± 17.53 8.99 ± 4.86 <0.001

Central venous catheter (h 1233.57 ± 2965.12 698.78 ± 3261.02 <0.001
ENDO (h) 2927.38 ± 5080.96 1600.29 ± 3972.20 <0.001
FOLEY (h) 528.04 ± 536.07 325.87 ± 632.31 <0.001

Abbreviations: BSI, bloodstream infections; Non-BSI, non-bloodstream infections; SBP, systolic blood pressure; DBP, diastolic blood
pressure; GCS, Glasgow Coma Scale; BUN, blood urea nitrogen; CRP, C-reactive protein; WBC, white blood cell.

2.5. Study Design and Model Training

Figure 3 presents an overview of the predictive model’s established procedures, includ-
ing the data pre-processing, model training, and model evaluation. Data pre-processing is
an important issue in data analytics, including the removal of the outliers, missing value
imputation, and data transformation. Moreover, some variables should be transformed
because of different units, such as the white blood cell (WBC) count. For instance, the
WBC count could be converted from 10ˆ3/uL to K/uL. For removal of the outliers, we
visualized all variables by using boxplots and discussed them with clinicians to identify the
outliers, especially in vital sign records. We considered the plausible value as the inclusion
criteria for vital signs by clinical expertise. The Supplementary Table S5 presents the vital
sign plausible values. The vital sign values that did not fall within the specific range were
treated as outliers and excluded. For missing pre-processing values, we found that some
lab tests, such as C-reactive protein (CRP) and glucose, were missing over 40% of their
values/information (see Supplementary Table S6). The lab tests were not included in the
final data analysis. We input the missing data by calculating the mean of the non-missing
values in each column. Finally, a total of thirty features were used as predictors of BSIs.
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For model development, the dataset was divided into a training set (60%), validation
set (20%), and testing set (20%) after completing the data pre-processing. The validation
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dataset was evaluated to determine the model fit for the training dataset when tuning
the hyperparameters and data preparation. The testing dataset was used to provide an
unbiased evaluation of the final model fit on the training dataset [14]. To help examine the
performance of the model, each model was evaluated by sensitivity, specificity, and the
area under the receiver operating characteristic (AUROC) curve. An AUROC of 0.7 to 0.8 is
considered acceptable, 0.8 to 0.9 is considered excellent, and greater than 0.9 is considered
outstanding [15].

2.6. Data Analysis

The present study used conventional statistical approaches to analyze the data cohorts.
For continuous variables, the difference between positive results and negative results by
using an independent t-test were examined. For model training, five machine learning
algorithms were used in this study, including logistic regression (LR), support vector
machine (SVM), multi-layer perceptron (MLP), random forest (RF), and eXtreme Gradient
Boosting (XGBoost). The logistic regression model was chosen as the representative linear
model [16]. The SVM was chosen as the representative non-probabilistic binary linear
classifier [17]. The MLP was based on an artificial neural network [18]. The RF and XGBoost
models were chosen as representative ensemble learning and tree-based methods [19,20].

The main objective of this study was to develop an early prediction model of BSIs
that could correctly identify positive BSIs. The predictive output of the machine learn-
ing model is represented as a probability, which should convert the value to the target
class so that different threshold settings will perform and identify different numbers of
BSI classes. The present study compared the different thresholds to examine the model
prediction performance and attempted to find a trade-off between the classification of a
BSI and non-BSI.

Additionally, we explored the features’ importance in the proposed prediction model.
The ensembles of decision tree methods, such as RF and XGBoost, can provide estimates
of feature importance from a trained predictive model based on Gini importance. Some
studies have explored interpretable machine learning by using SHAP, a game theoretic
approach, to explain the output of any machine learning model [21]. Furthermore, the
SHAP value plot could present the positive and negative relationships of the predictors
with the target variable. In this paper, the SHAP method was used to explore the importance
of clinical features and their relationship to BSI events for the XGBoost model.

3. Results
3.1. Evaluation of Different Models

The present study compared five different algorithms to evaluate which performance
was suitable for our dataset. Table 3 and Figure 4 present the prediction performance of
BSI. The predictive result of the machine learning algorithm represents a risk probability of
BSI. The default value is set 0.5, which means if the threshold of the model exceeds 0.5, the
model will determine that the patient has BSI. Comparing the sensitivity and specificity, the
XGBoost showed the highest sensitivity on the validation and testing datasets (0.724 and
0.706, respectively). Additionally, the RF showed the highest specificity on the validation
dataset and testing dataset (0.927 and 0.940, respectively). A lower sensitivity was found
for the SVM, RF, and MLP models. The sensitivity of the validation and testing datasets
were determined for SVM (0.578 and 0.566, respectively), RF (0.565 and 0.577, respectively),
and MLP (0.494 and 0.406, respectively).
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Table 3. Prediction performance of BSI using different algorithms.

Dataset Algorithms 1 AUROC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Brier Score

Validation dataset

LR 0.709 (0.679–0.737) 0.679 (0.624–0.728) 0.660 (0.625–0.695) 0.218
SVM 0.728 (0.699–0.756) 0.578 (0.522–0.632) 0.779 (0.747–0.809) 0.195
MLP 0.735 (0.707–0.761) 0.494 (0.438–0.549) 0.832 (0.803–0.858) 0.231

XGBoost 0.825 (0.802–0.849) 0.724 (0.672–0.771) 0.777 (0.744–0.806) 0.165
RF 0.855 (0.832–0.877) 0.565 (0.509–0.619) 0.927 (0.905–0.944) 0.139

Testing dataset

LR 0.685 (0.653–0.715) 0.615 (0.558–0.670) 0.644 (0.609–0.679) 0.223
SVM 0.704 (0.673–0.733) 0.566 (0.508–0.623) 0.756 (0.723–0.786) 0.199
MLP 0.668 (0.633–0.698) 0.406 (0.350–0.463) 0.811 (0.781–0.838) 0.254

XGBoost 0.821 (0.795–0.843) 0.706 (0.651–0.756) 0.775 (0.743–0.804) 0.163
RF 0.851 (0.824–0.872) 0.577 (0.519–0.633) 0.940 (0.921–0.955) 0.134

1 LR: logistic regression, SVM: support vector machine, MLP: multi-layer perceptron, XGBoost: eXtreme Gradient Boosting,
RF: random forest.
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In terms of specificity, the RF model performed with the highest specificity, which was
over 0.9 on the validation and testing datasets. The LR model performed with the lowest
specificity, scoring 0.660 on the validation dataset and 0.644 on the testing dataset.

The prediction performance was further assessed based on the AUROC from the
validation data and testing data. According to the AUROC results, the RF model performed
the highest AUROC in the validation and testing datasets (0.855 and 0.851, respectively).
The XGBoost algorithm also performed a relatively high AUROC for the validating and
testing datasets of 0.825 and 0.821, respectively. In contrast, the LR and MLP models had
the lowest AUROC values in the test dataset (0.685, 0.667, respectively).

According to the results, the XGBoost and RF machine learning methods present
better prediction performance of BSI. The AUROC results are over 0.8, which means that
the model is considered excellent for predicting BSI. The Brier score is measured from the
model fit; the lower the brier score, the better the performance of the model. The XGBoost
and RF models yielded acceptable Brier scores. However, the LR model performed the
lowest in predicting BSI.
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3.2. Evaluation of Different Cut-Off Thresholds

According to machine learning techniques, the predicted results were represented as
a probability. This probability is a value that ranges from zero and one and represents the
input that belongs to the target class, which means the value can be converted to a class.
For binary classification, the default cut-off threshold value is 0.5. This means that if a
model’s predicted results have a probability greater than 0.5, they predict a BSI. However,
the default cut-off threshold may not have the best model prediction. When the threshold
was changed, the results of sensitivity and specificity also changed. This allowed us to
explore the trade-off between sensitivity and specificity.

The present study compared the different cut-off thresholds to evaluate the perfor-
mance of the model in identifying BSIs. The purpose of the present study was to correctly
identify patients with BSIs, so the focus was on finding the highest the proportion of
positives that were correctly identified. The present study analyzed the different cut-off
thresholds to determine the trade-off threshold for the BSI prediction model. According
to the results of the model evaluation, the RF and XGBoost models had the best predic-
tion performance for BSI. The two models further examined the evaluation of different
cut-off thresholds.

Figure 5 shows the performance statistics for BSI event prediction in the testing dataset.
Here, the x-axis represents the probability of identifying patients with BSI events, and
the y-axis is the number of patients. We found that most of the patients with BSI events
presented a higher predictive probability, and the patients with no BSI events indicated
that most of the patients’ predictive probability is relatively low. In changing the threshold
to 0.41, the sensitivity received a better score (80.8%) and acceptable specificity (67.0%)
for the XGBoost model (Table 4). On the other hand, when the cut-off threshold was set
to 0.4, it presented a higher sensitivity (85.8%) and acceptable specificity (69.9%) for the
RF model. Moreover, a cut-off threshold set to 0.3 also presented a similar result (Table 4).
According to the results, there could be a trade-off for the threshold based on sensitivity
and specificity. This is particularly desirable if the experts want to identify patients with
BSI events correctly by using both sensitivity and acceptable specificity. The results of other
algorithms presented in the Supplementary Table S7 and Figure S1.
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Table 4. The model performance of different cut-off thresholds in the test dataset.

Algorithms Cut-Off
Threshold Sensitivity Specificity Precision True

Positive
True

Negative
False

Positive
False

Negative

RF

0.3 82.9% 69.2% 51.6% 237 (23.6%) 498 (49.5%) 222 (22.1%) 49 (4.9%)

0.4 69.9% 85.8% 66.2% 200 (19.9%) 618 (61.4%) 102 (10.1%) 86 (8.6%)

0.41 68.2% 86.0% 65.9% 195 (19.4%) 619 (61.5%) 101 (10.0%) 91 (9.1%)

0.5 57.7% 94.0% 79.3% 165 (16.4%) 677 (67.3%) 43 (4.3%) 121 (12.0%)

0.53 51.0% 96.5% 85.4% 146 (14.5%) 695 (69.1%) 25 (2.5%) 140 (13.9%)

0.6 38.8% 98.2% 89.5% 111 (11.0%) 707 (70.3%) 13 (1.3%) 175 (17.4%)

0.7 21.3% 99.6% 95.3% 61 (6.1%) 717 (71.3%) 3 (0.3%) 225 (22.3%)

XGBoost

0.3 89.9% 48.8% 41.1% 257 (25.5%) 351 (34.9%) 369 (36.7%) 29 (2.9%)

0.4 82.2% 64.3% 47.8% 235 (23.4%) 463 (46.0%) 257 (25.5%) 51 (5.1%)

0.41 80.8% 67.0% 49.4% 231 (23.0%) 483 (48.0%) 237 (23.6%) 55 (5.4%)

0.5 70.6% 77.5% 55.5% 202 (20.1%) 558 (55.5%) 162 (16.1%) 84 (8.3%)

0.53 67.1% 81.0% 58.4% 192 (19.1%) 583 (58.0%) 137 (13.6%) 94 (9.3%)

0.6 53.5% 90.7% 69.5% 153 (15.2%) 653 (64.9%) 67 (6.7%) 133 (13.2%)

0.7 33.2% 97.9% 86.3% 60 (5.9%) 693 (68.9%) 5 (0.5%) 248 (24.7%)

XGBoost: eXtreme Gradient Boosting, RF: random forest.

3.3. Clinical Features Importance and Visualization

Regarding the interpretability of the machine learning model, SHAP values were used
to visualize and explain how these features affect BSI events within the XGBoost model.
The SHAP values can explain and explore the results of the machine learning model by
using a theoretic game approach. The method provides an overview of important features
and visualizes the values of each feature for every data point (sample) [18].

Figure 6a presents the feature importance as the strongest predictor to effect BSIs.
For the top 20 important features, there are 2 patient characteristics, 4 vital sign features,
12 laboratory features, 2 types of catheters (CVC and Foley), and an ICU-stay up to 24 h
prior to the performance of a blood culture test. The results revealed that alkaline phos-
phatase (ALKP) and the use time of the central venous catheter (TOTAL_CVC) were associ-
ated with a higher risk of BSI events. Moreover, prothrombin time (PT) and platelet (PLT)
were the third and fourth most important features. Additionally, we found that Apache II
score and age seemed to be important features in predicting bloodstream infection.

Figure 6b summarizes the SHAP value plot by combining feature importance with
feature effects. The y-axis is defined by the feature and the x-axis is defined by the Shapley
value. The plot describes the features’ overall influence on the model prediction. Each
point in each feature represents an individual case, with colors ranging from blue (low
feature value) to red (high feature value). The data points further to the right represent
the features that contribute to the higher risk of BSI for a given individual case. The data
points to the left represent the features that contribute to the lower risk of BSI. The vertical
line in the middle represents no change in risk. We found that the data points (individual
cases) with higher ALKP values had a higher risk of BSI. Furthermore, some points with
lower ALKP values also had a higher risk of bloodstream infection. In terms of the total
usage time of a central venous catheter (TOTAL_CVC), the results reveal that the longer
the usage time of the central venous catheter, the higher risk of BSI. The PT also revealed
similar results. However, in contrast to PT, the data points with a lower PLT had a high
risk of BSI. Additionally, most of patients with higher Apache II scores were correlated
with an increased risk of BSI.
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bloodstream infection.

Furthermore, the lab tests were used as the continuous variable in our prediction
model. The present study examined the marginal effect of laboratory tests on the predicted
outcome of a machine learning model using a SHAP dependence plot [22]. Figure 7
shows the dependence plot for PT, PLT, and albumin (ALB). The results showed that the
value of prothrombin time over approximately 12.3 s were associated with a higher risk
of BSI. Patients had a high risk of BSI when their PLT value was below approximately
120 K/uL. Consistent with the trend of PLT, ALB levels less than approximately 2.73 g/dL
increased the risk of BSI. According to the dependence plot in Figure 7, we found cut-off
values of laboratory features that provided additional clinical information to predict BSI
for clinicians.
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4. Discussion

In the present study, we used multiple machine learning algorithm approaches to
develop an early prediction model for bloodstream infections. The prediction model
achieved good performance in the validation dataset and testing dataset by using RF and
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XGBoost algorithms (AUROCs ranging from 0.821 to 0.855). The results demonstrated a
good model fit for the tree-based ensemble methods. Compared to previous studies, the
logistic regression model showed a range of AUROC values between 0.6 and 0.83 [23].
Lee et al. developed an early detection of bacteremia model using an artificial neural
network approach. The AUROC results achieved 0.727 (95% CI, 0.713–0.727) and had
a higher sensitivity (0.810) [6]. Ebrahim Mahmoud et al. also developed a prediction
model for BSI among hospitalized patients [9]. However, these population studies were
not conducted on critically ill patients. Roimi et al. developed an early diagnosis of BSI
using machine learning for ICU patients. The study presented excellent AUROCs in two
medical centers (0.89 ± 0.01 and 0.92 ± 0.02) [7].

We further identified the cut-off threshold for a trade-off between sensitivity and
specificity. Some studies have compared the different cut-off thresholds to examine the
model performance. In BSI predictive implementation, the evaluation of model perfor-
mance focused on detecting patients with BSIs correctly [8]. The results showed that the
trend of sensitivity and specificity of different cut-off thresholds was consistent, which is
important for future research.

In terms of the features’ importance, the results showed that the ALKP laboratory
test is the most important feature in predicting BSIs. Furthermore, it is consistent with a
previous study. Lee et al. identified ALKP as one of the most influential features for BSI. We
found that some patients with low ALKP were associated with high risk of BSI. It seems that
there may be a sub-group of patients where low ALKP is actually a very important predictor
of BSI, even if previous studies indicated that the high ALKP is positively associated with
BSI. Further studies could consider the sensitivity analysis that excludes this sub-group
of patients and explores the relationship between other clinical characteristics and BSI in
this group. We also identified the total duration of CVC as an important risk factor, which
has been observed in many studies [6,24]. Hence, our model effectively identified the
risk factors associated with the development of BSIs. We also found that some laboratory
features, such PT, PLT, and ALB, are important in the development of BSIs, as confirmed
by other studies [6,9,11]. According to the analysis of the dependence plot of the laboratory
features, we could observe the cut-off values of the features with higher risk of BSI. The
results provided helpful laboratory tests information for identifying the risk of BSI. We also
found that the length of an ICU stay until the blood culture test plays an important role in
the development of BSIs. A retrospective cohort study using data from 113,893 admissions
revealed an association between the length of a hospital stay and an increased risk of
BSIs [25]. Other studies have also indicated that the hospital-to-blood culture period has
a positive effect on BSIs [6,26]. Overall, most of the studies present similar results, even
though they are sampled from different populations, such as the United States, Israel, Saudi
Arabia, and South Korea. We discovered some consistent features regarding the important
risks of BSIs in these studies.

However, the present study has some limitations. First, the data were collected from a
single medical center, and external validation is required, even though the independent
validation process was implemented in our study. Second, the model was developed based
on 72 h data and a 24 h prediction window, and patients who stayed in the ICU for less
than 96 h were excluded. Third, the time-to-event features (CVC, Foley, and ENDO) were
not evaluated using an alternative binary classification in our model; we did not compare
the different types of features to find the best predictors. Lastly, the data was slightly
imbalanced, which means the precision of the model training was relatively low because of
the lower number of BSI events.

5. Conclusions

The present study developed a machine learning model for the early identification of
patients with a high risk of BSIs in the ICU. The performance of the prediction was found to
be compatible with previous studies. We explored how different cut-off thresholds affected
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the prediction performance. Moreover, we used the SHAP method to explain the results of
the prediction model.

In general, our data highlight the importance of prediction models powered by artifi-
cial intelligence. Further studies are needed to validate this model through conventional
clinical trials.
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.3390/jcm10132901/s1, Table S1: The relevant studies in predicting BSIs, Table S2: The distribution
of pathogens among the BSIs, Table S3: Patient demographics of the study population in each
dataset, Table S4: Logistic regression analysis for crude and adjusted odds ratio, Table S5. Vital
signs values assumed to be plausible, Table S6: The missing values of features, Table S7: The LR,
SVM, and MLP models performances of different cut-off thresholds. Figure S1: Model performance
statistics for the (a) logistic regression model, (b) multi-layer perceptron model, and (c) support vector
machine model.
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