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Cholestasis is a common, chronic liver disease that may cause fibrosis

and cirrhosis. Tripterygium wilfordii Hook.f (TWHF) is a species in the

Euonymus family that is commonly used as a source of medicine and

food in Eastern and Southern China. Triptolide (TP) is an epoxy diterpene

lactone of TWHF, as well as the main active ingredient in TWHF. Here, we

used a mouse model of common bile duct ligation (BDL) cholestasis, along

with cultured human intrahepatic biliary epithelial cells, to explore whether

TP can relieve cholestasis. Compared with the control treatment, TP at a

dose of 70 or 140 µg/kg reduced the serum levels of the liver enzymes

alanine transaminase, aspartate aminotransferase, and alkaline phosphatase

in mice; hematoxylin and eosin staining also showed that TP reduced

necrosis in tissues. Both in vitro and in vivo analyses revealed that TP

inhibited cholangiocyte proliferation by reducing the expression of RelB.

Immunohistochemical staining of CK19 and Ki67, as well as measurement

of Ck19 mRNA levels in hepatic tissue, revealed that TP inhibited the BDL-

induced ductular reaction. Masson 3 and Sirius Red staining for hepatic

hydroxyproline showed that TP alleviated BDL-induced hepatic fibrosis.

Additionally, TP substantially inhibited BDL-induced hepatic inflammation. In

summary, TP inhibited the BDL-induced ductular reaction by reducing the

expression of RelB in cholangiocytes, thereby alleviating liver injury, fibrosis,

and inflammation.
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Introduction

Cholestasis can reflect either a functional defect in
bile formation at the hepatocyte level or impairment in
bile secretion/flow at the bile duct level (1). Cholestasis
manifests as the excessive accumulation of biliary
components (e.g., bile acid, cholesterol, and bilirubin) in
the liver and systemic circulation. The clinical symptoms
include liver injury, severe pruritus, jaundice, and fatigue;
severe cases can cause acute liver failure (2). Chronic
cholestasis may eventually lead to liver fibrosis and
cirrhosis (3).

Ursodeoxycholic acid and chenodeoxycholic acid are the
preferred drugs for treatment of cholestasis (4). However,
tolerance may develop (5). Recently, obeticholic acid (a 6-
ethyl derivative of chenodeoxycholic acid) was approved for
the treatment of primary biliary cirrhosis—in conjunction with
ursodeoxycholic acid—in patients with inadequate responses
to ursodeoxycholic acid; it was approved as monotherapy
for patients who are unable to tolerate ursodeoxycholic
acid (6–8). However, hepatic decompensation, liver failure,
and death have been reported in patients with Child-Pugh
B or C cirrhosis who receive doses of obeticholic acid
above the recommended level. Thus, the Food and Drug
Administration placed a black box warning on the obeticholic
acid label for patients with decompensated liver disease. New,
inexpensive therapeutic agents are needed for effective relief of
cholestasis symptoms.

Traditional Chinese medicine dietary supplements alleviate
various forms of liver injury including cholestasis (9–12).
Tripterygium wilfordii Hook.f (TWHF) is a species of
Tripterygium in the Euonymus family (13); the dried root
(“thunder god vine”) serves as a “bitter and cold” traditional
Chinese medicine (14) in Eastern and Southern China. The
root is also cooked in southern China. Triptolide (TP) is
an epoxy diterpene lactone of TWHF (15), as well as the
principal active ingredient in TWHF (13). TP exhibits potent
immunosuppressive and antiproliferative activities (16); it
effectively treats rheumatoid arthritis (17), diabetic kidney
disease (18), and prostate cancer (19, 20). A TP dietary
supplement reportedly alleviates senile osteoporosis (21),
reduces stress, and increases longevity (22). We previously
showed that TP was active against colon cancer (23, 24). The
NF-κB protein complex regulates cell survival (25), aging
(26), cytokine production (27), and obesity (28); NF-κB is the
principal target of TP. NF-κB transcriptional inhibition by TP
can suppress inflammation (29) and tumor growth (30). Thus
far, the effects of TP on cholestasis remain unknown. In this
study, we used a mouse model of common bile duct ligation
(BDL) to explore whether TP can effectively treat cholestasis.
Our findings provide a rationale for TP as complementary
medicine of the preferred drugs or alternative medicine
for cholestasis.

Materials and methods

Materials

Triptolide (CAS number 38748-32-2, purity > 98%) was
purchased from Sanling Biotech (Guilin, China). TNFSF14 Elisa
Kit (CSB-EL023991MO) was purchased from Cusabo (China).

Primary antibodies against RelB (10544), α-SMA (19245)
and F4/80 (70076) was purchased from Cell Signaling
Technology (USA). Primary antibody against CK19 (TROMA-
III) was purchased from DSHB (USA). Primary antibody against
GAPDH (60004-1-Ig) was purchased from Proteintech (China).
Primary antibody against Ki67 (ab16667) was purchased form
Abcam (USA). Primary antibody against Ly6g (4-5931-82)
was purchased from Thermofisher (USA). Rabbit and Mouse
secondary antibody (31460, 31430) were purchased from
Thermofisher (USA). Rat secondary antibody (GB23302) were
purchased from Servicbio (China).

Animal surgery procedure

Male C57BL/6J mice (6–8 weeks) were supplied by
Shanghai SLAC Laboratory Animal Co., Ltd (Shanghai,
China). The animal study was reviewed and approved by
the China Pharmaceutical University Experimental Animal
Ethics Committee. Mice were housed in conditions with
controlled light (12 h light/dark cycle), temperature (24 ± 2◦C),
and humidity (50–60%) and had adequate food and tap
water. Cholestasis was induced by common bile duct ligation
(BDL). Mice were anesthetized using 3% isoflurane and kept
under anesthesia using 2–3% isoflurane during the entire
infection procedure, where the abdominal cavity was opened
from the abdominal midline. All experiments on mice were
performed under the guidelines of Ethical Committee of China
Pharmaceutical University. Triptolide in powder was suspended
in 0.5% CMC-Na and administered to mice by gavage. The
doses selected for TP in animal experiments were 70 µg/kg
and 140 µg/kg (31). The common bile duct was ligated twice
with a 7-0 nylon suture. The sham operation group involved
the same operation, but the common bile duct was not ligated.
After one-week acclimatization, the mice were then randomly
separated into four groups (n = 6 per group): (1) Control mice
(sham operated); (2) BDL mice; (3) BDL with TP at 70 µg/kg
administration; (4) BDL with TP at 140 µg/kg administration.
BDL performed at three days after TP treatment. Mice in sham
and BDL group were given corresponding vehicle. After BDL the
mice still were treated with TP once a day. Seven days after BDL
surgery, mice were sacrificed (Figure 1A).

Serum alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) levels were measured using
kits from Whitman Biotech (Nanjing, China). Hepatic
hydroxyproline was measured using kits from Nanjing
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FIGURE 1

Triptolide alleviates liver injury induced by bile duct ligation. Male C57BL/6 mice were sacrificed at seven days after BDL or sham surgery. (A) The
diagrammatic experimental procedures. (B) Body weight of mice (each group n = 6). (C) Serum levels of ALT, AST and ALP in mice sacrificed at
7 days after BDL or sham surgery. (D) Representative images of H&E (The black dotted line indicates the necrotic area) from liver tissues.
Necrosis area statistics of H&E. Scale Bar: 100µm. Data are shown as the mean ± SD. Data represent at least 6 independent experiments with
triplicate measurements. Analysis of variance (one-way ANOVA) was used. p values represents significance different from BDL group.

Jiancheng Bioengineering Institute (Nanjing, China). All kits
were used according to the manufacturer’s protocols. Fragments
of mouse livers were fixed overnight in buffered formaldehyde

(10%) and embedded in paraffin for immunohistochemistry
(IHC), hematoxylin and eosin (H&E), Masson’s trichrome
and Sirius Red. H&E staining of liver tissue was carried out to
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FIGURE 2

Triptolide inhibits proliferation and RelB expression in HiBEC. (A) The growth curve of HiBEC after transfection of siRNA-Relb. (B) The protein
level of RelB in HiBEC after TP treatment. (C) The growth curve of HiBEC after TP treatment. (D) Double immunofluorescence staining for CK19
(green) and Ki67 (red) from HiBEC after TP treatment. Nuclei were counter-stained with DAPI (blue). (E) Relb, Tnfsf14 and Ltβ mRNA was
measured in HiBEC after TP treatment. Data are shown as the mean ± SD. Data represent at least 3 independent experiments with triplicate
measurements. Analysis of variance (one-way ANOVA) was used. p values represents significance different from control group.
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FIGURE 3

Triptolide inhibits BDL induced RelB and its downstream gene expression. (A) Western blot analysis of RelB in liver. (B) The serum TNFSF14 levels
(ELISA data) of mice. (C) The mRNA level of Relb, Tnfsf14 and Ltβ in liver tissues. Data are shown as the mean ± SD. Data represent at least 6
independent experiments with triplicate measurements. Analysis of variance (one-way ANOVA) was used. p values represents significance
different from BDL group.

observe pathological changes. All slides were scanned with a
NanoZoomer S60 (Hamamatsu, Japan).

Cell culture

Human intrahepatic biliary epithelial cells (HiBEC)
were purchased from ScienCell and cultured in a EpiCAM
(ScienCell) (Zhongqiaoxinzhou) containing 2% fetal bovine
serum (FBS), EpiCGs (ScienCell), 5 µg/mL insulin and
0.5 µM hydrocortisone.

Small interference RNAs (siRNA) were purchased
from GenePharma (Shanghai). The siRNA sequences
used in this study are as follows: RelB-1 siRNA
sense: 5′-GCCCGUCUAUGACAAGAAATT-3′; antisense:
5′-UUUCUUGUCAUAGACGGGCTT3′. RelB-2 siRNA
sense: 5′-GCACAGAUGAAUUGGAGAUTT-3′, antisense:
5′-AUCUCCAAUUCAUCUGUGCTT-3′, Negative control
siRNA: 5′-UUCUCCGAACGUGUCACGUTT-3′. HiBECs
were seeded in six-well plate one day before transfection.
HiBECs were transfected using Lipofectamine 3000 transfection
kit (thermofisher, USA) according to the manufacturer’s
instructions. Transfected cells were used for the subsequent
experiments 48 h after transfection.

The growth cure of HiBECs was measured with the cck-
8 kit (vazyme, China) assay. HiBEC were seeded in 96-well
plate (5000 cells per well). The plates were incubated in full
EpiCAM. Cck-8 working fluid were added in the plate 100 µL
per well at 24h, 48h, 72h, 96h. After 1 h incubation with cck8,

OD450 was detected using a spectrophotometer (Multiskan
MK3, Thermofisher, USA).

Quantitative real-time polymerase
chain reaction

RNA from tissues and cells was extracted with TRIzol
(vazyme, China). The RNA concentration was determined using
Nanodrop2000 Spectrophotometers (Thermo Scientific, USA).
cDNA was generated using BIO-RAD MyCyclerThermal Cycler
(BIO-RAD, USA) and the HighCapacity cDNA Reverse Kit.
qPCR was performed using StepOnePlus (Applied Biosystems,
USA) with specific primers (Table 1). Primers were purchased
from Genescipt (China). Results were normalized using
GAPDH as an internal control.

Immunoblot analysis

Protein content was analyzed by lysing tissues and cells with
RIPA buffer containing protease inhibitors and the Bradford
Protein Assay Kit. Western blot analysis was performed
following a previously described method (32). Protein bands
were detected with a Tanon 5200Muti (Tanon, China) using ECL
reagents. The gray density of the protein bands was determined
using ImageJ. All quantitative comparisons between samples
were on the same gels/blots.
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FIGURE 4

Triptolide relieves BDL-induced bile duct hyperplasia. (A) Representative images of IHC for CK19 and Ki67 (The black arrows indicate the
regenerated cholangiocytes) from liver tissues. Scale Bar: 100 µm. (B) Statistical analysis of immunohistochemically positive regions of (A). (C)
The mRNA level of Ck19 in liver tissues. Data are shown as the mean ± SD. Data represent at least 6 independent experiments with triplicate
measurements. Analysis of variance (one-way ANOVA) was used. p values represents significance different from BDL group.

TABLE 1 Primer sequences used for RT-PCR analysis.

Gene Forward primer (5′-3′) Reverse primer (5′-3′)

mouse Ccn2 GGGCCTCTTCTGCGATTTC ATCCAGGCAAGTGCATTGGTA

mouse Gapdh CTTTGGCATTGTGGAAGGGC CAGGGATGATGTTCTGGGCA

mouse Acta2 TGCTGACAGAGGCACCACTGAA CAGTTGTACGTCCAGAGGCATAG

mouse Col1a1 CCTCAGGGTATTGCTGGACAAC CAGAAGGACCTTGTTTGCCAGG

mouse Tgf-β1 GCCACTGCCCATCGTCTACT CACTTGCAGGAGCGCACAAT

mouse F4/80 CGTGTTGTTGGTGGCACTGTGA CCACATCAGTGTTCCAGGAGAC

mouse Il-1β TGGACCTTCCAGGATGAGGACA GTTCATCTCGGAGCCTGTAGTG

mouse Krt19 AATGGCGAGCTGGAGGTGAAGA CTTGGAGTTGTCAATGGTGGCAC

mouse Tnf- a GGTGCCTATGTCTCAGCCTCTT GCCATAGAACTGATGAGAGGGAG

mouse Relb GTTCTTGGACCACTTCCTGCCT TAGGCAAAGCCATCGTCCAGGA

mouse Tnfsf14 GGAGACATAGTAGCTCATCTGCC CCACCAATACCTATCAAGCTGGC

mouse Ltβ CCTGTTGTTGGCAGTGCCTATC GACGGTTTGCTGTCATCCAGTC

Human Relb TGTGGTGAGGATCTGCTTCCAG TCGGCAAATCCGCAGCTCTGAT

Human Tnfsf14 GGTCTCTTGCTGTTGCTGATGG TTGACCTCGTGAGACCTTCGCT

Human Ltβ GGTTTCAGAAGCTGCCAGAGGA CGTCAGAAACGCCTGTTCCTTC

Human Gapdh GTCTCCTCTGACTTCAACAGCG ACCACCCTGTTGCTGTAGCCAA
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FIGURE 5

Triptolide relieves BDL-induced liver fibrosis. (A) Representative images of Masson 3, Sirius Red, and IHC for α-SMA from liver tissues. Scale Bar:
100 µm. (B) Collagen positive area statistics of Masson3 and Sirius Red. (C) Hydroxyproline assay of liver tissues. (D) The mRNA levels of Acta2,
Col1a1, Ccn2, and Tgf-β1 from liver tissues. Data represent at least 6 independent experiments with triplicate measurements. Analysis of
variance (one-way ANOVA) was used. p values represents significance different from BDL group.
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Immunofluorescence

Cells on coverslips were fixed in 4% paraformaldehyde
for 15 min, washed with PBS, and permeabilized in PBS
with 1% Triton for 10 min. Cells were then incubated
with 5% goat serum in PBS for 1 h at room temperature
before being incubated with antibodies overnight at
4◦C. The next day, cells on a round coverslip were
washed three times with PBS and incubated for 1 h at
room temperature with secondary Alexa antibodies and
DAPI. Fluorescence images were scanned using a FV3000
(Olympus, Japan).

Statistical analysis

All data were shown as mean ± SD and at least three
replicate experiments were performed in vitro and in vivo. The
necrotic, Masson3 positive and Sirius Red positive area were
analyzed using Image J software. Statistical significance was
determined using one-way analysis of variance as appropriate
(GraphPad Prism 9, GraphPad Software Inc., CA).

Results

Triptolide alleviates bile duct
ligation-induced liver injury

To explore the effects of TP on cholestasis-induced liver
injury, we established a mouse model of BDL and administered
two TP doses by oral gavage; such doses were previously
reported to attenuate chronic kidney disease (31). A schematic
of the mouse model is depicted in Figure 1A. Figure 1B shows
that TP at a dose of 70 or 140 µg/kg attenuated the BDL-
induced weight loss. BDL increased the serum levels of the liver
enzymes alanine transaminase, aspartate aminotransferase, and
alkaline phosphatase. Either dose of TP substantially reduced
the levels of these enzymes (Figure 1C). Histopathological
staining revealed less necrosis around the portal tract when BDL
mice were treated with TP (Figure 1D). Thus, TP effectively
treated BDL-induced liver injury.

Triptolide inhibits proliferation and
RelB expression in human intrahepatic
biliary epithelial cells

Bile duct hyperplasia is common in patients with cholestasis;
cholangiocyte proliferation and a ductular reaction contribute
to the onset and progression of liver disease (32–34). Members
of the NF-κB family of transcription factors act through

a canonical pathway and a non-canonical pathway. Non-
canonical NF-κB signaling activates predominantly p100-
sequestered NF-kB proteins, the most important of which is
RelB (35). This protein is involved in the ductular reaction;
the bile ducts of patients with primary sclerosing cholangitis
and primary biliary cirrhosis exhibit increased levels of RelB.
RelB and its downstream target lymphotoxin β (LTβ) affect the
proliferation of bile duct epithelial cells (36). TP inhibits the
expression of NF-κB proteins (37). Here, we analyzed HiBECs
in vitro. We hypothesized that TP would reduce cholangiocyte
proliferation by inhibiting the expression of RelB.

Growth curve analyses showed that siRNA-mediated RelB
knockdown inhibited the growth of HiBECs (Figure 2A).
Western blotting revealed that TP (100 nM) significantly
inhibited the expression of RelB in HiBECs (Figure 2B).
TP at 50 and 100 nM inhibited the growth of HiBECs
(Figure 2C); this was confirmed (for TP at 100 nM) by
immunofluorescence staining of CK19 and Ki67 (proliferation
markers) (Figure 2D). Quantitative polymerase chain reaction
(qPCR) analysis demonstrated that TP significantly reduced the
mRNA expression levels of Relb and the downstream genes
Tnfsf14 and Ltβ (Figure 2E).

Triptolide inhibits bile duct
ligation-induced expression of RelB
and downstream genes

Western blotting revealed that the protein level of RelB
increased after BDL. Both TP doses substantially reduced the
level of RelB (Figure 3A). Enzyme-linked immunosorbent assay
analysis showed that BDL increased the expression of serum
tumor necrosis factor superfamily member 14 (TNFSF14),
whereas TP inhibited this increase (Figure 3B). qPCR analysis
of hepatic tissue showed that BDL upregulated the mRNA
expression levels of Relb, Tnfsf14, and Ltβ, but these increases
were inhibited by TP at a dose of 70 or 140 µg/kg (Figure 3C).

Triptolide relieves bile duct
ligation-induced bile duct hyperplasia

The above results indicated that TP inhibited the BDL-
induced upregulation of Relb and downstream genes (Tnfsf14
and Ltβ) in hepatic tissue. Increased levels of RelB lead to a
ductular reaction. Cytokeratin-19 (CK19) is solely expressed
by cholangiocytes. Immunohistochemical analysis of CK19
revealed that BDL induced prominent bile duct hyperplasia; TP
inhibited this process (Figures 4A,B). Immunohistochemical
analysis of Ki67 revealed many positive cells (black arrows) in
bile ducts after BDL; TP significantly reduced the numbers of
these cells (Figures 4A,B), indicating that TP alleviated bile duct
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FIGURE 6

Triptolide relieves BDL-induced liver inflammation. (A) Representative images of IHC of F4/80 and LY6G from liver tissues. Scale Bar: 100 µm. (B)
The liver mRNA levels of F4/80, IL-1β and Tnf-α from liver tissues. Data represent at least 6 independent experiments with triplicate
measurements. Analysis of variance (one-way ANOVA) was used. p values represents significance different from BDL group.

hyperplasia. qPCR analysis showed that TP significantly reduced
the BDL-induced upregulation of Ck19 (Figure 4C).

Triptolide relieves bile duct
ligation-induced liver fibrosis

TNFSF14, which acts downstream of RelB, promotes hepatic
stellate cell activation and exacerbates liver fibrosis (38). Staining
with Masson 3 and Sirius Red confirmed that TP decreased
collagen deposition around the portal fields in BDL mice
(Figures 5A,B). α-Smooth muscle actin [also known as actin
alpha 2 (ACTA2)] is a marker of hepatic stellate cell activation;
immunohistochemical staining of α-smooth muscle actin

decreased around the portal area (Figure 5A). Hydroxyproline
is a characteristic component of collagen; in BDL mice, the
hepatic levels of hydroxyproline were substantially lower after
treatment with TP at a dose of 70 or 140 µg/kg, compared
with those levels in the control group (Figure 5C). Next,
we examined the expression of liver fibrosis-related genes.
Col1a1 is an important collagen component, and its expression
significantly increases in fibrotic tissues. Connective tissue
growth factor [also known as cellular communication network
factor 2 (CTGF/CCN2)] and transforming growth factor beta-
1 (TGF-β1) are markers of liver fibrosis, and they both directly
activate hepatic stellate cells and promote collagen deposition;
BDL elevates the levels of both proteins (39, 40). The mRNA
expression levels of Acta2, Col1a1, Ccn2, and Tgf-β1 were
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FIGURE 7

TP inhibited the BDL-induced ductular reaction by reducing the expression of RelB in cholangiocytes, thereby alleviating liver injury, fibrosis, and
inflammation. Created with BioRender.com.

downregulated when BDL mice were treated with TP at a dose
of 70 or 140 µg/kg (Figure 5D).

Triptolide relieves bile duct
ligation-induced hepatic inflammation

Ductular reactions are often accompanied by inflammatory
infiltrates (33, 41). Therefore, we examined the effect of TP
on hepatic inflammation. For this purpose, we conducted
immunohistochemical staining of F4/80 (also known as mouse
EGF-like module-containing mucin-like hormone receptor-like
1), which is expressed by various mature macrophages including
Kupffer cells; we also performed immunohistochemical staining
of the lymphocyte antigen 6 complex locus G6D (LY6G),
a neutrophil-specific marker. BDL-induced enhancement of
F4/80 and LY6G staining was decreased by TP at a dose of 70 or
140 µg/kg; thus, TP reduced hepatic inflammatory infiltration
(Figure 6A). The mRNA expression levels of genes encoding the
inflammatory factors F4/80, interleukin-1β, and tumor necrosis
factor-α were significantly reduced when BDL mice received
TP at a dose of 70 or 140 µg/kg (Figure 6B). These findings

indicated that TP attenuated hepatic inflammatory infiltration
in BDL mice.

Discussion

We explored whether TP protected against liver injury
progression in a mouse model of common BDL. TP at a
dose of 70 or 140 µg/kg effectively treated BDL-induced liver
injury. Liver enzyme measurement and H&E staining revealed
that TP at a dose of 70 or 140 µg/kg significantly alleviated
liver damage. Analysis of the liver hydroxyproline content,
along with Masson 3 and Sirius Red staining, revealed that
TP inhibited BDL-induced liver fibrosis. qPCR analysis of
Ck19 transcripts, as well as immunohistochemical staining
of CK19 and Ki67, showed that TP significantly inhibited
the BDL-induced ductular reaction. TP substantially reduced
hepatic inflammatory infiltration after BDL, as revealed by
immunohistochemical staining of F4/80 and Ly6G, as well
as the mRNA expression levels of F4/80, Il-1β, and Tnf-
α in hepatic tissue. In vitro analysis demonstrated that
TP dramatically downregulated the protein and mRNA
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expression levels of RelB, as well as the downstream genes
Tnfsf14 and Ltβ, thereby slowing the growth of HiBECs.
Assessment of protein and mRNA expression levels in
hepatic tissue revealed that TP attenuated the BDL-induced
upregulation of RelB and downstream genes. The serum
TNFSF14 assay confirmed that TP alleviated the BDL-
induced upregulation of RelB. Graphic abstract was shown in
Figure 7.

Tripterygium wilfordii Hook.f (TWHF) exhibits anti-
inflammatory (41), anti-fertility (42), anti-colitis (43), and
anti-cancer activities (44). At present, the clinical medication
of TWHF is mainly used for rheumatoid arthritis, lupus
and purpuric nephritis, psoriasis, erythroderma and allergic
diseases. There are no clinical trials linking TWHF with
cholestatic disease. However, the therapeutic window
for TP is narrow; clinical applications are compromised
by severe toxicities, including hepatotoxicity (37). The
doses in this study were chosen because TP at a dose of
70 µg/kg substantially alleviated chronic kidney disease
(31); we also used a higher dose for comparison. In our
previous study, it was found that there was no obvious liver
toxicity and cholestasis symptoms when TP 250 µg/kg was
administered for 7 days (45). Therefore, we believe that
the TP dose used in this study is a safe dose. TP-induced
hepatotoxicity cannot be ignored. We previously found
that TP was hepatotoxic at a dose of 500 or 600 µg/kg
(46, 47). Evidently, TP at a dose of 70 or 140 µg/kg
significantly alleviated BDL-induced liver injury, liver
fibrosis, the ductular reaction, and hepatic inflammatory
infiltration. Therefore, the role of TP in cholestasis is
dose-dependent. The specific mechanism may be related
to the complex immune homeostasis in the liver, and the
specific mechanism will be carried out in future studies. The
above content shows that TP needs more research before
clinical treatment of cholestasis and may require structural
modification and more accurate individualized diagnosis and
treatment strategies.

Cholestasis can be caused by certain drugs, abnormal
hormone levels, hepatitis, and dietary habits, but the underlying
mechanism remains unknown (48). Recent studies have shown
that the ductular reaction plays an important role in cholestasis-
induced liver fibrosis and injury. The ductular reaction,
characterized by cholangiocyte hyperproliferation, is commonly
observed in patients with biliary disorders such as primary
biliary cirrhosis, primary sclerosing cholangitis, or biliary
atresia; this reaction is usually associated with liver fibrosis,
and the extent of fibrosis is often correlated with mortality (32,
34). We presume that the reaction reflects the intense local
inflammatory microenvironment present in cholangiocellular
cholestasis; damaged cholangiocytes proliferate to compensate
for reduced biliary cell function. The ductular reaction
exacerbates hepatic inflammation, inhibits liver regeneration,
and promotes fibrosis (41, 49–52). Previous studies showed that

inhibition of the ductular reaction alleviated cholestasis-induced
liver damage, inflammation, and fibrosis (53, 54).

Some authors reported that the level of RelB was
directly related to the extent of ductular reaction. RelB and
LTβ were highly expressed in cholangiocytes from patients
with chronic liver diseases (hepatitis C and hepatitis B
virus infections, alcoholic liver disease, non-alcoholic fatty
liver disease, and autoimmune hepatitis) or cholangiopathies
(primary biliary cirrhosis and primary sclerosing cholangitis)
(36). The activation of RelB in cholangiocytes and hepatocytes
induces the secretion of LTβ, which activates cholangiocyte
RelB in both an autocrine and paracrine manner through
the LTβ receptor, thereby stimulating bile duct proliferation.
Thus, RelB is essential for cholangiocyte proliferation and the
ductular reaction. But so far, there are no drugs targeting
RelB yet in clinical, therefore, the design of new drugs for
RelB has broad prospects. Accordingly, we first examined
the effect of TP on cholangiocyte proliferation in vitro. As
expected (37), TP (an NF-κB inhibitor) significantly reduced
cell proliferation, as well as the expression of RelB and its
downstream genes. In vivo analysis showed that TP significantly
alleviated the BDL-induced upregulation of RelB. This finding
suggested that TP reduces cholangiocyte expression of RelB,
thus suppressing cholangiocyte proliferation; alleviating the
BDL-induced ductular reaction; and reducing liver damage,
inflammation, and fibrosis.

RelB is frequently associated with liver fibrosis. In addition
to its presence in cholangiocytes, RelB is expressed in Kupffer
cells (55) and hepatocytes (36). RelB-regulated TNFSF14 is
presumed to promote hepatic stellate cell activation and the
resulting liver fibrosis (38). Our assays of serum TNFSF14 levels
indicated that TP reduced the BDL-induced increase in the
TNFSF14 level; this may partly explain why TP relieves hepatic
inflammation and fibrosis.

Finally, TP is a small-molecule drug and may thus act via
several mechanisms. We focused on RelB. More detailed clinical
and translational studies are needed to substantiate the potential
utility of TP as a cholestasis treatment. Careful dosing studies
are also essential.

Conclusion

Triptolide (TP) at certain doses improved cholestasis. TP
may be useful in the prevention or treatment of cholestasis-
induced liver injuries, fibrosis, and other inflammatory diseases.
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