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The prevalence and severity of hypertension-induced cognitive impairment

increase with the prolonging of hypertension. The mechanisms of cognitive

impairment induced by hypertension primarily include cerebral blood

flow perfusion imbalance, white and gray matter injury with blood–

brain barrier disruption, neuroinflammation and amyloid-beta deposition,

genetic polymorphisms and variants, and instability of blood pressure. High

homocysteine (HHcy) is an independent risk factor for hypertension that also

increases the risk of developing early cognitive impairment. Homocysteine

(Hcy) levels increase in patients with cognitive impairment induced by

hypertension. This review summarizes a new mechanism whereby HHcy-

mediated aberrant DNA methylation and exacerbate hypertension. It involves

changes in Hcy-dependent DNA methylation products, such as methionine

adenosyltransferase, DNA methyltransferases, S-adenosylmethionine,

S-adenosylhomocysteine, and methylenetetrahydrofolate reductase

(MTHFR). The mechanism also involves DNA methylation changes in the

genes of hypertension patients, such as brain-derived neurotrophic factor,

apolipoprotein E4, and estrogen receptor alpha, which contribute to

learning, memory, and attention deficits. Studies have shown that methionine

(Met) induces hypertension in mice. Moreover, DNA hypermethylation

leads to cognitive behavioral changes alongside oligodendroglial and/or

myelin deficits in Met-induced mice. Taken together, these studies

demonstrate that DNA methylation regulates cognitive dysfunction in

patients with hypertension. A better understanding of the function and

mechanism underlying the effect of Hcy-dependent DNA methylation

on hypertension-induced cognitive impairment will be valuable for early

diagnosis, interventions, and prevention of further cognitive defects induced

by hypertension.
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Introduction

The prevalence of hypertension is increasing rapidly
worldwide. More than 1.5 billion individuals currently
experience hypertension (1). Hypertension not only affects the
cerebral vasculature, parenchyma, and metabolism but is also
related to an increased risk of cognitive decline and vascular
cognitive impairment (1–3). Moreover, hypertension has been
shown to induce cognitive decline and accelerate mild cognitive
impairment (MCI), progressive deterioration, and dementia
(4–7).

Hypertension-induced cognitive decline includes attention,
memory, and decision-making impairments across all age
groups from young individuals, middle-aged adults, and
older adults (1, 8–11). Young hypertensive individuals can
experience cognitive capacity-related changes (8). Cross-
sectional studies in older adults have shown that hypertension
contributes to cognitive decline, including simple attention,
executive function, and psychomotor speed (11, 12). In older
adults, hypertension, as a marker of cognitive impairment,
affects cognitive performance (13, 14). Furthermore, studies
have shown a relationship between blood pressure (BP)
and cognitive function (15). Having an optimal BP range
is associated with the maintenance of cognitive function
(16). White coat hypertension and borderline hypertension
groups exhibited poorer cognitive ability than the normal
BP group (17). In addition, antihypertensive medications,
such as calcium channel blockers, induce a protective effect
against cognitive impairment in patients with hypertension (11,
18, 19).

Neuroimaging results have demonstrated that hypertension
results in cognitive decline and neurostructural changes (20).
The brains of hypertensive patients have higher amounts
of amyloid-beta (Aβ) plaques, atrophy, and neurofibrillary
tangles than healthy controls. Moreover, positron emission
tomography (PET) studies have shown that hypertension
is a risk factor for Aβ deposits and glucose metabolism
disorders. Furthermore, numerous studies have used diffusion
tensor imaging to show that hypertensive patients with
small vessel disease have white matter changes (20–23).

Abbreviations: ACE, angiotensin-converting enzyme; AD, Alzheimer’s
disease; ApoE4, apolipoprotein E4; AT2R, angiotensin II type 2 receptor;
Aβ, amyloid beta; BBB, blood–brain barrier; BDNF, brain-derived
neurotrophic factor; BP, blood pressure; Dnmts, DNA methyltransferase;
EH, essential hypertension; ER-α, estrogen receptor alpha; Hcy,
homocysteine; HHcy, high homocysteine; MAT1A, methionine
adenosyltransferase 1a; 5mC, 5-methylcytosine; MCI, mild cognitive
impairment; MeCP2, methyl-CpG binding protein 2; Met, methionine;
MRI, magnetic resonance imaging; MTHFD1, methylenetetrahydrofolate
dehydrogenase 1; MTHFR, methylenetetrahydrofolate reductase; PET,
positron emission tomography; RAAS, renin-angiotensin-aldosterone
system; RAGE, receptor for advanced glycation end products; SAM,
S-adenosyl methionine; SAH, S-adenosylhomocysteine; SOX10, sex
determining region of the Y-chromosome (SRY)-related HMG-box 10;
VCI, vascular cognitive impairment; WMLs, white matter lesions.

Hypertension is also related to cerebral microbleeds as
demonstrated using brain magnetic resonance imaging (MRI)
(24). A fluorodeoxyglucose-PET imaging study in older adult
hypertensive patients revealed that high white matter signal
is associated with low metabolism in gray matter, which
may explain the memory impairment exhibited by these
patients (25).

The renin–angiotensin–aldosterone system (RAAS) is
central to BP regulation and plays an important role in
the central nervous system. Inhibition of the RAAS can
reduce the rate of cognitive decline in patients with MCI
and dementia (26, 27). Angiotensin-converting enzyme
(ACE) influences the metabolism of angiotensin in the
RAAS system, and ACE inhibitors suppress microglial
activation and preserve dendritic integrity and cognitive
function (28).

Angiotensin II-treated mice exhibit short-term memory
impairment and greater blood–brain barrier (BBB) leakage,
microglial activation, and myelin loss than control adult
mice (29). In addition, gradual induction of angiotensin
II-dependent hypertension has been shown to produce
significant spatial learning impairments in middle-aged
cytochrome P450 family 1, subfamily A polypeptide 1
(Cyp1a1)-Ren2 transgenic rats (30). Furthermore, increased
plasma aldosterone impairs cognitive function, whereas
spironolactone and eplerenone, mineral corticoid receptor
blockers, protect against cardiovascular mortality and
cognitive impairment (31, 32). The activity of cytochrome
c oxidase in various brain regions in mice with portal
hypertension has been confirmed experimentally and has
demonstrated that high pressure affects brain metabolic
activity and spatial memory in varying degrees (33).
Studies have also shown that the time of stimulus input
in hippocampal slices of hypertensive mice correlates with
decreased mRNA expression of several genes, such as brain-
derived neurotrophic factor (BDNF), Homer1, and disks large
homolog 4 (34).

Cognitive decline induced by
hypertension

The supply of nutrients to the brain depends on
dynamic blood flow. BP instability and abnormal blood
flow and metabolism in patients with hypertension can
damage neurons and impair cognitive function (35). There
have been several advances in our understanding of the
mechanisms underlying hypertension-induced cognitive
decline, which include cerebral blood flow perfusion imbalance
in response to cognitive and metabolic challenges, gray
matter injury as reflected by changes in gray matter volume,
cortical thinning, BBB dysfunction, Aβ accumulation,
white matter injury, and genetic factors (7, 36). High
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homocysteine (HHcy) is one of the independent risk factors
for hypertension that increases the risk of developing cognitive
impairment (37).

Cerebral blood flow perfusion
imbalance

In hypertensive patients, the cerebral blood supply can
become damaged due to the destruction of the structural
and functional integrity of the cerebral microcirculation,
which results in greater sparsity of the microvasculature,
endothelial dysfunction, and neurovascular uncoupling (7,
38, 39). Studies have suggested that disturbances in cerebral
perfusion are one mechanism by which hypertension impacts
cognitive decline. In the temporal and occipital lobes of
hypertensive patients, both cerebral perfusion and total and
local cortical thicknesses are decreased (39, 40). Elevated BP
(both acute and sustained) results in the extravasation of
fluid and damage to cerebral blood vessels (38). Moreover,
endothelial dysfunction and abnormal cerebral microcirculation
cause cognitive impairment in patients with hypertension
(41). Furthermore, hypertension is associated with elevated
levels of circulating endothelial microvesicles that contribute
to BP-related endothelial dysfunction, which may serve as
a biomarker for hypertension-induced cognitive impairment
(41, 42).

Disruptions in neurovascular coupling, which forms
the basis for the relationships among neuronal activity,
hemodynamic factors, and cell-to-cell signaling, may lead
to a decrease in vascular reserve capacity and cognitive
decline in patients with either hyper- or hypotension
(43). Elevated BP in hypertensive patients causes vascular
dysfunction, which affects cerebrovascular blood regulation
(especially microvascular circulation) and leads to cognitive
decline (41). Hypertension can accelerate cerebral blood
flow, reduce metabolism, and decrease glucose utilization
(44). Accordingly, the interplay between functional
blood flow reorganization and vascular brain damage
results in hypertension-related cognitive decline. Indeed,
microvascular dysfunction has been shown to be responsible
for deficits in memory and processing speed and cognitive
decline (45).

Gray matter injury

Gray matter disruptions are directly associated with
cognitive impairment. Hypertension not only impairs the
cardiovascular–renal axis but also impairs learning and
memory (29). Spatial memory and cognition rely on the
hippocampus, which is significantly smaller in hypertensive
mice than in healthy mice (46). Hippocampal atrophy has

been shown to be associated with hypertension; moreover,
reduced dentate gyrus volume is associated with hypertension-
induced cognitive impairment (47, 48). Hypertension impairs
hippocampal neurogenesis in adult mice, affecting CA1
neurons, dendritic arborization, and long-term memory, which
may be related to the down-regulation of the BDNF signaling
pathway (49).

Hypertension damages the major arteries and capillaries
in the brain, which, in turn, destroys the BBB and increases
vascular permeability and accumulation of Aβ in the brain
parenchyma (50, 51). Numerous studies have shown that
MCI patients have accelerated destruction of the BBB and
that blood vessel leakage accelerates hippocampal atrophy
and neuronal loss, which leads to the onset of Alzheimer’s
disease (AD) (52). A recent study showed that individuals
with early cognitive impairment have brain capillary injuries.
BBB destruction is an early biomarker of cognitive impairment
that does not depend on Aβ or tau. Vascular contributions
to cognitive impairment are increasingly being recognized
(53, 54). Moreover, several angiodynamic changes can lead
to cognitive decline. Studies in mice with cerebral venous
congestion and BBB destruction have shown exacerbation of
the neuroinflammatory response (51–54). Aβ promotes the
overproduction of free radicals in endothelial cells, which
results in neuronal cell necrosis. A study that explored the
association between hypertension and AD using a hypertensive
model of transverse aortic contraction found that the receptor
for advanced cerebrovascular glycation end product activation
is a key factor in the pathogenesis of AD. However, AD
can be effectively suppressed by inhibiting this target, which
offers potential as a new therapeutic option (50, 55). Another
study showed that angiotensin II infusion causes learning
and spatial memory deficits and anxiety, from the third week
of perfusion, with Aβ deposition occurring in the fourth
week (56).

White matter injury

In white matter, oligodendrocytes wrap the axons of
neurons to form the myelin sheath to maintain appropriate
nerve impulse conduction, which plays an important role in
cognitive function (57). Endothelial cells or the permeability
of brain cells produces change, which results in cerebral
vascular injury or structural changes in the arterioles of
white matter. In hypertensive patients, decreased cerebral
blood flow is often followed by ischemic infarction, white
matter damage, and brain atrophy (58–60). White matter
lesions (WMLs), including subcortical and/or periventricular
white matter loosening, are present in 85% of hypertensive
patients (61).

A significant positive correlation exists between BP and
white matter abnormalities in patients with hypertension.

Frontiers in Cardiovascular Medicine 03 frontiersin.org

https://doi.org/10.3389/fcvm.2022.928701
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


fcvm-09-928701 October 18, 2022 Time: 13:54 # 4

Wan et al. 10.3389/fcvm.2022.928701

BP at baseline is closely related to WML volume, which
is also associated with hypertension in most brain
regions (62). Furthermore, white matter damage destroys
cortical and subcortical connections, which leads to the
disconnection of various functional areas, affecting the
cognitive function of hypertensive patients (63). In a long-
term study on white matter signal intensity and cognitive
function in older adult hypertensive patients, white matter
intensity was also positively correlated with cognitive
function (64).

Genetic polymorphisms and variants

Studies on genetic polymorphisms and variants have
helped improve our understanding of the relationship between
hypertension and cognitive decline. High serum levels of the
ACE, which regulates BP, may play an important role in
the incidence of amnestic MCI (aMCI) (65, 66). Middle-
aged and older adult patients with aMCI who carry the
allele coding for the high-activity variant (D) of ACE
show greater cognitive impairment, whereas those who
carry the low-activity allele (I) have an increased risk of
dementia (67–69). Furthermore, angiotensin II type 1 receptor
polymorphisms play an important role in BP regulation and are
related to reductions in prefrontal and hippocampal volumes,
hippocampal volume over time, and memory loss in older adults
(70, 71).

The methylenetetrahydrofolate reductase (MTHFR)
C677T polymorphism has been reported to be associated
with hypertension (72). Studies have shown that riboflavin,
a cofactor of MTHFR, induces hypertension by regulating
the methylation level of homozygous genes (73). The
regulators of the G protein signaling 2 1891-1892del TC
and cytochrome P450 family 4 subfamily A member 11
T8590C polymorphisms increased the risk of hypertension (74).
Another study showed that hypertensive patients with cognitive
impairment carry a copy of the apolipoprotein E4 (ApoE4)
gene (75).

High homocysteine-induced cognitive
decline in patients with hypertension

High homocysteine level promotes the occurrence of
essential hypertension (EH) and cognitive impairment
(76–78). It has been shown that the incidence of cognitive
dysfunction increases as the concentration of homocysteine
(Hcy) increases (79). Increased Hcy is likely to lead to
vascular dementia, AD, and other pathological changes (78–
80). Moreover, HHcy-stimulated vascular smooth muscle
cell proliferation has been found to cause endothelial cell
injury (81). The increase in Hcy leads to the oxidation

of the vascular endothelium, which reduces vascular
elasticity and increases susceptibility to hypertension
(73, 79).

Cerebrovascular injury and neurotoxicity accelerate
cognitive impairment. Hcy neurotoxicity manifests via
the promotion of neuronal apoptosis, which affects nerve
conduction and impairs cognitive function (79, 80, 82, 83).
The connection between HHcy and cognitive decline can be
explained by several mechanisms. HHcy, as a neurotoxin,
promotes neurodegeneration via apoptosis and DNA breakage
(82). Indeed, studies have shown that HHcy contributes
to cognitive decline (83, 84). Additionally, recent studies
have demonstrated that hypertensive patients with HHcy
exhibit white matter hyperintensity and gray matter loss due
to damaged cerebral vessels, which reflect the neurotoxic
effects of HHcy (85). In mice, the Hcy level has been
shown to affect the excitability of neurons and impair
cognitive function. Moreover, long-term exposure to Hcy can
induce changes in spatial learning, hippocampal signaling,
and synaptic plasticity (84). Folic acid, vitamin B6, and
vitamin B12 supplementation for 14 weeks significantly
reduced the total serum Hcy level and improved cognitive
function in middle-aged and older adult patients with HHcy
(79, 86).

Mechanism of the mediation of
cognitive decline induced by
hypertension via high
homocysteine-dependent DNA
methylation

Homocysteine regulates the expression of genes related to
cognitive function by interfering with methyl group metabolism
and epigenetic regulation. HHcy mediates hypomethylation,
which is caused by impaired DNA transmethylation, resulting
in cognitive decline (82).

Homocysteine is an intermediate in the
DNA methylation pathway

Methionine (Met) is a methyl donor that participates
in the methylation of substrates, such as phospholipids,
myelin, nucleic acids, choline, and catecholamine (79).
Hcy is an intermediate product of the Met metabolism
pathway. Met is converted into adenosylmethionine (SAM),
which is catalyzed into S-adenosylhomocysteine (SAH)
by methyltransferase. Subsequently, SAH is hydrolyzed
to Hcy. Hcy can be remethylated into Met, and this
reaction is dependent on folate as a substrate and vitamin
B12 as a cofactor, as shown in Figure 1. Serum folate,
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FIGURE 1

Homocysteine (Hcy)-dependent DNA methylation mediates
cognitive decline induced by hypertension. In the cytoplasm,
folate, from the serum as a substrate, and vitamin B12, as a
cofactor, provide methyl for the conversion of homocysteine
(Hcy) to methionine (Met). Met is converted into
adenosylmethionine (SAM) by the catalysis of the Met
adenosyltransferase (MAT). SAM is catalyzed into
S-adenosylhomocysteine (SAH) by methyltransferase, and SAH is
subsequently hydrolyzed into Hcy. Hcy is remethylated to form
Met, and this step is dependent on methylenetetrahydrofolate
reductase (MTHFR), folate, and vitamin B12. In hypertensive
patients, folate and vitamin B12 deficiency, MTHFR deficiency,
and/or MAT I/III deficiency, which are caused by MAT1A gene
mutations, can increase the level of Hcy and promote the
formation of the DNA methylation complex. The methylation
complex is formed by methyl-CpG binding protein 2 (MeCP2),
which recruits histone deacetylase (HDACs) and Sin3
transcription regulator family member A (Sin3A) under the
catalysis of DNA methyltransferase (DNMT). The complex
induces hypermethylation of apolipoprotein E4 (ApoE4),
brain-derived neurotrophic factor (BDNF), estrogen receptor
alpha (ER-α), and SOX10 genes, which is in accord with the
lower expression levels of these factors and cognitive decline.

Vitamin B12, and Hcy levels have been shown to correlate
with cognitive function (79, 86). Moreover, HHcy is
positively correlated with the prevalence of cognitive
impairment and is considered a predictor of cognitive
change (87, 88).

Homocysteine remethylation disorders are rare inherited
disorders caused by deficient activity of the enzymes involved

in the remethylation of Hcy to Met (89). Polymorphisms of the
MTHFR gene are strongly associated with hypertension, and
Met synthase 2756A > G and 5-methyltetrahydrofolate-
homocysteine methyltransferase reductase 66A > G
polymorphisms related to folate metabolism may serve as
genetic markers for hypertension risk (90, 91). Patients
with MTHFR deficiency exhibit cognitive deficits and
psychiatric symptoms. In one study, the methylation
rate of the methylenetetrahydrofolate dehydrogenase 1
(MTHFD1) promoter in patients with hypertension was
shown to be significantly higher than that in the control
group (92).

Homocysteine is a neurotoxic amino acid that induces
calcium influx. Hcy-induced N-methyl-D-aspartic acid receptor
channel activation can eventually lead to neuronal degeneration
via glutamate excitotoxicity (93). HHcy reduces the cellular
level of SAM, and co-treatment with SAM can antagonize
apoptosis, which suggests that methylation mediates apoptosis
(94). HHcy damages cerebral blood vessels via its neurotoxic
effects and promotes the development of cognitive impairment
and dementia. Some drug interventions for HHcy may improve
and delay the progression of cognitive dysfunction and
dementia. Patients with a folic acid deficiency with a normal
Met level show impairments in spatial memory and learning.
However, such deficits can be prevented by supplementation
with Met in individuals with a folate-deficient diet (95).
Furthermore, an increased serum Hcy level proportionally
increases the risk of cognitive decline, whereas high levels
of folic acid and B12 inhibit Hcy and serve as a protective
factor for cognitive impairment. These findings suggest that
increasing daily folic acid and vitamin B12 intake may
normalize the Met cycle and methylation and protect the
brain from functional damage (96). However, several studies
have shown that vitamin supplements do not provide any
benefit to patients with cognitive impairment (97). Thus,
further investigations are necessary before interventions to
reduce plasma Hcy levels are used to improve cognitive
function.

Aberrant DNA methylation in neurons
is involved in hypertension-related
cognitive decline

The estrogen receptor alpha (ER-α) gene promoter is
hypermethylated in EH patients and is positively correlated
with plasma Hcy level (98). Increased plasma Hcy levels
in EH patients occur via the hypermethylation of the ER-
α gene promoter region. A plausible mechanism for this
process is that high levels of plasma Hcy in EH patients
increases the metabolite SAM, which provides more methyl
groups for DNA methylation and increases the activity of DNA
methyltransferase (DNMT). This leads to hypermethylation
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TABLE 1 Genes related to cognitive decline induced by hypertension.

Genes Cognitive function Exposure Correlation with hypertension References

Hcy Cognitive impairment Hypertension Hcy promotes the occurrence of essential
hypertension

(84–86, 88, 130)

AT2 Cognitive decline Chronic intermittent
hypoxia-induced
hypertension

Activation of RAAS contributed to
hypertension

(101)

AR Cognitive impairment Vascular cognitive
impairment (VCI)

Androgens induce hypertension, the
polymorphic CAG repeat in androgen
receptor is associated with hypertension

(103)

Genes in the hippocampus Spatial learning and memory Aldosterone Activation of RAAS system contributed to
the development of hypertension

(104)

ACE ACE inhibitors suppress
cognitive function

Hypertension ACE influences the metabolism of
angiotensin in the RAAS system

(28)

ER-α-A gene Cognitive impairment White matter hyperintensity Correlated with plasma HHcy level (100)

ApoE4 Cognitive impairment Hypertension Hypertension is associated with cognitive
deficits in individuals who possess a copy
of ApoE4 gene

(75)

RAAS, renin-angiotensin-aldosterone system; ACE, angiotensin-converting enzyme; AR, androgen receptor; AT2, angiotensin II; ApoE4, apolipoprotein E4.

of the ER-α promoter region (98). In atheromatosis patients,
the ER-α gene promoter is hypermethylated and is positively
correlated to plasma Hcy levels (99). Moreover, the ER-
α-A gene promoter has a high methylation rate in white
matter-hyperintense patients with cognitive impairment and
is associated with plasma Hcy levels. Methylation of the ER-
α-A gene is a significant determining factor for cognitive
impairment and is also significantly correlated with serum
Hcy levels and white matter hyperintensity. In addition, ER-
α-A gene promoter methylation is higher in patients with
cognitive dysfunction and is also related to high plasma Hcy
levels (100).

When the RAAS system is activated, angiotensin II
plays an important role in cognitive decline resulting
from chronic intermittent hypoxia-induced hypertension
(101). Promoter methylation inhibits the expression of the
angiotensin II type 2 receptor (AT2R) gene, which is related
to increased cerebral hypoxic-ischemic injury caused by
perinatal stress in neonatal rats (102). It has been shown that
hypermethylation of CpG islands in the promoter region
of the androgen receptor gene is significantly correlated
with the level of HHcy in patients with vascular cognitive
impairment (103).

The hippocampus plays a crucial role in spatial learning
and memory. Hypertension impairs adult hippocampal
neurogenesis, CA1 neuron dendritic arborization, and long-
term memory. Aldosterone levels are increased in patients
with hypertension, and it has been shown that aldosterone
treatment significantly decreases DNA methylation and
BDNF expression in the hippocampus (104). Demethylation
of the BDNF exon IV promoter causes phosphorylation of

methyl-CpG binding protein 2 (MeCP2), which can activate
the transcription of BDNF in the rat hippocampus (105).
Furthermore, elevated methylation of the BDNF promoter
predicts conversion from aMCI to AD (106). However, the
methylation rate of the BDNF promoter has been reported
to vary among Xinjiang Uygur and Han populations with
MCI (107).

The role of neurotrophic factors in the regulation of
hippocampal long-term potentiation (LTP), which is the
sustained increase in excitatory synaptic strength that
is fundamental to learning and memory, has received
considerable attention. Hypobaric hypoxia exposure
increases the expression of DNMT1 and DNMT3b and
significantly decreases the levels of pMeCP2 and BDNF
(108). DNMT1 and DNMT3a affect learning and memory
by regulating DNA methylation and neuronal gene
expression (109).

Simulation experiments in zebrafish have shown that
long-term exposure to Met significantly increases the activity
of acetylcholinesterase, which is an enzyme that indirectly
negatively impacts cognitive performance and contributes to
the occurrence of neurodegenerative diseases (110). When
Met is administrated to mice, the levels of Hcy and the
induction of DNA hypermethylation increase, which leads
to the down-regulation of several gamma-aminobutyric
acidergic neuronal markers, such as reelin and glutamic
acid decarboxylase 67 (GAD67); moreover, correlates
with the onset of cognitive decline and schizophrenia-like
behaviors (111). Met-induced hypermethylation of the
reelin and GAD67 gene promoters is effectively reversed
by valproate, histone deacetylase inhibitors, clozapine, and
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TABLE 2 DNA methylation in cognitive decline and/or hypertension related diseases.

Genes with greatest association Exposure Methylation status Types References

Inter-mediate product of
met conversion to Hcy

Hcy Hypertension Hcy increase Human (84–86, 88, 130)

SAM
SAH

Met SAM increase
SAH decrease

Folate-deficient rats (95)

5mC Met 5mC increase Mice (119)

MAT I/III Hypermethioninemia Methionine adenosyltransferase
deficiency

MAT I/III deficiency
mice

(118)

DNMT1 Fear conditioning DNA methylation maintenance Mice (109)

DNMT3A Dnmt3a–/– NSCs Methylation changes of MBP, PLP1,
Olig1, Id2/4

Mice (131)

AR Vascular cognitive
impairment (VCI)

Methylation status of CpG islands in the
promoter region of AR gene

Human (103)

AT2R Perinatal stress and hypoxic
ischemic encephalopathy

CpG methylation at AT2R gene promoter Neonate rats (102)

Genes in the hippocampus Aldosterone Aldosterone treatment significantly
decreased global DNA methylation in the
hippocampus

Mice (104)

ACE Hypertension The hypermethylation of ACE II gene was
associated with hypertension

Human (132, 133)

ER-α Hypertension Hypermethylation Human (98)

Atheromatosis
(AS)

The CpG island of ER-α gene promoter
region was highly methylated,correlated
with blood Hcy concentration in AS
patients

Human (134)

ER-α-A gene White matter hyperintensity
(WMH)

Methylation status of CpG islands in
ERsmall a, Cyrillic-A gene promoter was
analyzed by nested methylation-specific
PCR

Human (100)

BDNF Valproic acid BDNF DNA demethylation in the
hippocampus of valproic acid-treated
group

Rat (104)

Amnestic mild cognitive
impairment
(aMCI)

DNA methylation levels of in promoter I,
promoter IV of BDNF gene were
significantly higher in the aMCI group

Human (106)

Exercise Demethylation of the BDNF exon IV
promoter caused an increase in BDNF
mRNA and protein in the hippocampus

Rat (105)

Epilepsy Met increases DNA methylation in
promoter IV and exon IV of BDNF gene

Rat (135)

ApoE4 Mild cognitive impairment
(MCI)

Methylation of CpGs 165, 190, and 198
were high risk factors, higher CpG-227
methylation correlated with a lower risk
for MCI

Human (125)

HIP1, LMAN2, MOBP Multiple system atrophy
(MSA)

Illumina methylation EPIC arrays results
showed DNA methylation changes with
157 CpG sites and 79 genomic regions.
HIP1, LMAN2 and MOBP were amongst
the most differentially methylated loci.

Mice (123)

Met, methionine; SAM, adenosylmethionine; SAH, S-adenosylhomocysteine; MTHFD1, methylenetetrahydrofolate dehydrogenase 1; ACE-Is, angiotensin-converting enzyme inhibitors;
AR, androgen receptor.

sulpiride (111–113). In addition, during fear conditioning,
the synaptic plasticity gene reelin is demethylated and
activated, and the memory suppressor gene protein
phosphatase 1 is hypermethylated and inhibited (114).

Studies have also shown that DNA activity-dependent
methylation and demethylation are important substrates
for reward-related experience-driven behavior and neuronal
plasticity (115).
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Homocysteine-dependent DNA
methylation in oligodendroglial and/or
myelin deficits

Genetic defects in enzymes involved in Hcy metabolism
and folic acid, vitamin B6, or B12 deficiency elevate plasma
Hcy levels, which increases the incidence of cardiovascular
diseases (77, 79). The Met adenosyltransferase (MAT) 1a
(MAT1A) gene, which encodes the major hepatic forms of
the MAT protein, MATI and III, has been found to be
strongly associated with hypertension (116). Patients with
hypermethioninemia, which is caused by a MAT1A mutation,
show neurological dysfunctions, cognitive impairment, learning
impairment, and memory loss (117). MATI/III deficiency in
mice due to a MAT1A gene mutation is characterized by high
plasma Hcy levels and demyelination in the nervous system
(118). The products of MAT and SAM are major methyl
donors for myelin phospholipids, phosphatidylcholine, and
sphingomyelin. Brain MRI studies have revealed periventricular
hyperintensity and delayed or impaired myelination. Moreover,
sural nerve biopsy studies have shown myelinated fiber loss
(116–118).

Met is involved in the formation of the myelin sheath,
which plays an important role in cognitive function. We
found that Met-induced global DNA hypermethylation
leads to oligodendroglial and/or myelin deficits and
hypermethylation of the sex-determining region of the
Y-chromosome (SRY)-related HMG-box 10 (SOX10) gene,
which is an important factor for terminal differentiation
of oligodendrocytes and cognitive behavioral changes
(119). In addition, studies have demonstrated that Met
can induce hypertension in mice (91, 120, 121). These
findings suggest that DNA methylation may enable the
regulation of cognitive dysfunction in patients with
hypertension, although additional studies are needed
to confirm this.

Hypertension induces cognitive decline and cerebral
small vessel diseases, such as white matter hyperintensities,
lacunar infarcts, and microhemorrhages. In white matter,
DNA methylation deregulates ApoE4, huntingtin interacting
protein 1, lectin mannose-binging 2, and myelin-associated
oligodendrocytic basic protein (122, 123). DNA methylation
of the SOX10 gene affects the gene expression of
oligodendrocytes, which has become an epigenetic marker
for schizophrenia (124).

The ApoE4 gene is associated with both hypertension
and cognitive impairment induced by WMLs (75).
MCI is part of the progression from normal aging
to AD, and plasma Hcy and the ApoE4 gene are
sensitive biomarkers for MCI in AD patients. Reduced
ApoE methylation increases plasma ApoE levels,
and increases in CPG165, CPG190, and CPG198
methylation are risk factors for MCI. Furthermore,

increased CPG227 methylation decreases plasma
ApoE levels, which results in a decreased risk of
MCI (125).

Conclusion and future
perspectives

Previous studies have established that hypertension
induces cognitive decline via cerebral blood flow perfusion
imbalance, white and gray matter injury with BBB disruption,
neuroinflammation, and Aβ deposition. In addition,
HHcy is an independent risk factor for hypertension-
induced early cognitive impairment (126). However,
the exact molecular mechanism underlying the effect of
HHcy on cognitive impairment induced by hypertension
remains unknown.

This review described changes in Hcy-dependent DNA
methylation products, such as MAT, SAM, SAH, and
MTHFR. Aldosterone treatment significantly decreases
global DNA methylation, ER-α and ER-α-A gene promoter
hypermethylation in EH patients, and white matter
hyperintensity in patients with cognitive impairment,
Furthermore, BDNF and ApoE methylation are involved
in the MCI and AT2R receptor gene hypermethylation in the
developing brain (98, 109). Met induces hypertension in mice,
and we previously showed that DNA hypermethylation leads
to cognitive behavioral changes with oligodendroglial and/or
myelin deficits in Met-induced mice. These findings are shown
in Tables 1, 2.

Widespread aberrant DNA methylation is present in
patients with hypertension, and the level of 5-methylcytosine
(5mC) and DNMTs, methylation of the MTHFD1
promoter, RAAS such as the ACE, angiotensin type 1
receptors AT1a and AT1b, endothelin-converting enzyme-
1, adducin 1, the renal sodium retention system(e.g., 11
beta-hydroxysteroid dehydrogenase 2, and sodium-potassium-
chloride cotransporter 1), the sympathetic nervous system(e.g.,
norepinephrine transporter), fatty acid binding protein
3, and glucokinase gene methylation are affected (92,
127). Moreover, DNA methylation mediates the process
of cognitive decline. Furthermore, changes in DNMT1,
DNMT3a2, DNMT3b, MeCP2, and 5mC correlate with
cognitive decline (128).

Methylation regulates the expression of genes involved
in the pathogenesis of hypertension (92, 127), some
of which also mediate cognitive impairment (108, 128,
129). However, few studies have directly demonstrated
that methylation regulates cognitive dysfunctions in
patients with hypertension, such as learning, memory
formation, and behavioral plasticity deficits. Methylation
of numerous related genes, such as ACE, AT1a and
AT1b in the RAAS, and SOX10, has positive effects on
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cognitive decline and provides a focus for future research
on cognitive decline in patients with hypertension
caused by DNA methylation. Furthermore, products
of the Met metabolism pathway, such as SAM,
SAH, Met, Hcy, folate, and vitamin B12, may be
studied further in regard to cognitive decline induced
by hypertension.
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