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Hepatitis C virus (HCV) is a major global health concern, and though therapeutic options 
have improved, no vaccine is available despite decades of research. As HCV can 
rapidly mutate to evade the immune response, an effective HCV vaccine must rely on 
identification and characterization of sites critical for broad immune protection and viral 
neutralization. This knowledge depends on structural and mechanistic insights of the 
E1 and E2 envelope glycoproteins, which assemble as a heterodimer on the surface 
of the virion, engage coreceptors during host cell entry, and are the primary targets 
of antibodies. Due to the challenges in determining experimental structures, structural 
information on E1 and E2 and their interaction is relatively limited, providing opportunities 
to model the structures, interactions, and dynamics of these proteins. This review high-
lights efforts to model the E2 glycoprotein structure, the assembly of the functional E1E2 
heterodimer, the structure and binding of human coreceptors, and recognition by key 
neutralizing antibodies. We also discuss a comparison of recently described models of 
full E1E2 heterodimer structures, a simulation of the dynamics of key epitope sites, and 
modeling glycosylation. These modeling efforts provide useful mechanistic hypotheses 
for further experimental studies of HCV envelope assembly, recognition, and viral fitness, 
and underscore the benefit of combining experimental and computational modeling 
approaches to reveal new insights. Additionally, computational design approaches have 
produced promising candidates for epitope-based vaccine immunogens that specifically 
target key epitopes, providing a possible avenue to optimize HCV vaccines versus using 
native glycoproteins. Advancing knowledge of HCV envelope structure and immune rec-
ognition is highly applicable toward the development of an effective vaccine for HCV and 
can provide lessons and insights relevant to modeling and characterizing other viruses.
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iNTRODUCTiON

Hepatitis C virus (HCV) is estimated to have infected over 70 million globally, with millions of new 
cases every year (1). Chronic HCV infection can lead to cirrhosis and hepatocellular carcinoma 
(HCC) and deaths due to HCV are rising worldwide (1). In the United States, the yearly rate of 
deaths resulting from HCV infection has surpassed that of human immunodeficiency virus (HIV) 
and other infectious diseases (2). Direct-acting antivirals (DAA) for treatment of HCV infection 
have high cure rates, but face major issues: limited patient accessibility due to high costs of treatment 
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FiGURe 1 | Representative crystallographic and NMR structures of E1E2 regions. Hepatitis C virus (HCV) peptides and proteins in all structures are colored green. 
Antibody heavy chains are colored gray and light chains are colored light pink. PDB codes of representative structures are 4UOI (192–270), 4N0Y (314–324/
IGH526), 2KNU (314–342), 1EMZ (350–370), 4XVJ (412–423/HC33.1), 4DGY (412–423/HCV1), 4MWF (421–645/AR3C), 4JZN (435–446/HC84.1), 5NPJ (532–540/
DAO5), and 2KZQ (684–719). Residue ranges of the E1E2 sequence corresponding to specific sites are highlighted by colored bars for reference: H-111 epitope at 
N-terminus of E1 (aa 192–202, dark blue), E2 hypervariable region 1 (aa 384–410, gray), Domain E (aa 412–423, blue), Domain D/AR3 (aa 434–446, magenta), and 
Domain B/AR3 (aa 529–535, magenta). Other regions of E1 and E2 with corresponding structures are shown in black bars, and black dashed lines represent gaps 
in a crystal structure.
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(3), little to no awareness of infection in most HCV-positive 
individuals (4), and neither prevention of reinfection (5) nor 
elimination of HCC risk (6) in cleared HCV patients following 
DAA treatments. Thus, there is an ongoing major need for an 
effective prophylactic vaccine for HCV in order to greatly reduce 
global disease burden (4, 7).

A major barrier to vaccine and targeted therapeutic efforts is 
the high sequence variability of HCV, as exemplified by its seven 
confirmed genotypes, which are subdivided into 86 confirmed 
subtypes as of June 2017 (8) that can differ by greater than 15% 
in sequence (9). Furthermore, HCV rapidly mutates to form 
quasispecies within infected individuals, permitting active 
escape from neutralizing antibodies; this mechanism was clearly 
demonstrated in a clinical trial of monoclonal antibody HCV 
therapy followed by deep sequencing of HCV in patients (10, 11). 
Effective targeting of this diverse virus would be greatly facilitated 
by a detailed understanding of the molecular determinants of 
viral fitness, assembly, and function (12).

The envelope glycoproteins E1 and E2 are targets of anti-
HCV antibodies (13), and have been used in numerous B cell 
vaccine development efforts (14–18) and several clinical trials 
(19, 20) [reviewed by Fauvelle et  al. (21)]. Epitope mapping 
and other characterization efforts have classified E2 antibody 

epitopes into five antigenic domains (A–E) (22), a nomenclature 
that will be used in this review. Alternative definitions such as 
antigenic regions (antigenic regions 1–3) (23) and epitopes I–III 
(24) have been used to identify these regions on the E2 surface, 
in addition to epitopes on E1E2 (antigenic regions 4–5) (25). 
Despite advances from numerous epitope mapping studies, the 
overall structure of these glycoproteins and the structural basis 
of neutralizing antibody engagement of many key epitopes have 
yet to be determined experimentally. Some structures represent-
ing portions of these proteins have been determined to date, 
spanning a conserved “core” region of E2, portions of E1, and 
multiple mAb-bound E1 and E2 peptides (Figure 1; Table 1). 
In contrast, other highly variable viruses, such as HIV and 
influenza, have likewise been longstanding targets of vaccine 
design efforts, and the assembly of their envelope glycoproteins, 
hemagglutinin (HA), and Env have been determined at high 
resolution (26, 27). Additionally, there are many HA and Env 
neutralizing antibodies structurally characterized in complex 
with their epitopes (28–30), providing insights that enabled a 
number of successful structure-based vaccine design efforts 
(31–34). Given the relatively limited availability of HCV struc-
tural data, as well as the challenges for experimental structure 
determination presented by innate flexibility (22, 35, 36) and 
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TABLe 1 | Experimentally determined structures of E1, E2, and monoclonal 
antibodies.

Structure codea Hepatitis C 
virus (HCv) 

glycoproteinb

Residue rangec Antibody Reference

X-ray crystallography
4UOI E1 192–270 – (38)
4N0Y E1 314–324 IGH526 (39)
4GAG E2 411–424 AP33 (40)
4GAJ E2 412–423 AP33 (40)
4GAY E2 Unbound mAb AP33 (40)
4DGY, 4DGV E2 412–423 HCV1 (41)
4G6A E2 412–423 AP33 (42)
4HS6 E2 412–423 MRCT10.362 (43)
4HS8 E2 412–423 hu5B3.v3 (43)
4WHT, 4WHY E2 412–423 3/11 (35)
4XVJ E2 412–423 HC33.1 (44)
5FGB E2 417–421 HC33.4 (45)
5FGC E2 415–423 HC33.8 (45)
5EOC E2 412–422d C2 (16)
5KZP E2 412–423d HCV1 (17)
5VXR E2 412–423 MAb24 (46)
4MWF E2 421–645e AR3C (47)
4WEB E2 486–645 2A12 (48)
4Q0X E2 434–442 mAb#12 (49)
4HZL E2 430–442 mAb#8 (50)
4JZN E2 435–446 HC84.1 (51)
4JZO E2 436–446 HC84.27 (51)
5ERW E2 438–446 HC84.26 –f

5ESA E2 Unbound mAb HC84.26 –f

4Z0X E2 435–446 HC84.26.5D (52)
5NPH, 5NPI, 5NPJ E2 532–540 DAO5 (53)
3U6R E2 Unbound mAb 1:7 (54)
4JVP E2 Unbound 

nanobody
D03 (55)

Nuclear magnetic resonance
1EMZ E1 350–370 – (56)
2KNU E1 314–342 – (57)
2KZQ E2 684–719 – (58)

electron microscopyg

5759 E2 384–717 AR3A (47)
5760 E2 384–717 AR3A, AR2A (47)
5761 E2 384–717 AR2A, CD81 (47)
8338, 8339, 8340 E2 412–645 AR1B, AR2A, 

HCV1
(36)

aProtein Data Bank (59) or EMDataBank (60) codes shown. Multiple codes are shown 
in cases with multiple entries reported from same study containing the same residue 
range and binding partner(s), corresponding to different crystallographic symmetry 
forms, electron microscopy reconstructions, or HCV isolate sequences.
bIn the case of unbound antibody, glycoprotein target of antibody is given for reference.
cResidue numbering based on H77 isolate. For crystallographic structures, range 
reflects resolved residues present in coordinates.
dCyclic epitope-based designs are present in these structures.
eThis E2 core construct included engineered deletions of residues.
fThe coordinates for these X-ray structures have been released in the PDB (59) but 
have no publications associated with them.
gThese negative stain electron microscopy structures have resolutions of 16–30 Å, thus 
provide approximate envelopes for fitting high-resolution crystallographic or modeled 
structures.
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high glycosylation (37) of HCV glycoproteins, there is a major 
opportunity to bridge gaps in knowledge of current structural 
and mapping data through computational structural modeling, 
enabling a comprehensive view of glycoprotein structure, recog-
nition, and dynamics.

This review provides an overview of efforts to model HCV 
envelope structure and recognition, which have collectively 
yielded many valuable insights into this virus. These efforts 
include initial work to model the E2 structure, recent modeling of 
the full-length E1E2 heterodimer, and modeling focused on other 
aspects of HCV, such as the dynamics of epitopes and recognition 
of antibodies or coreceptors; a subset of these studies is summa-
rized in Table 2. Models and hypotheses from these studies can be 
used to inform future experimental and computational modeling 
efforts, as well as structure-based design of effective vaccines.

MODeLS OF THe e2 STRUCTURe

Prior to experimentally determined structures of the E2 glyco-
protein, computational models were developed to predict its 
tertiary and quaternary assembly. These efforts used structures 
of flavivirus and alphavirus class II fusion proteins as modeling 
templates (61, 62). A crystal structure of the E2 glycoprotein of 
tick-borne encephalitis virus (PDB code 1SVB) (68) served as the 
main template for the first of these modeling studies, which was 
reported over 15 years ago (61). The authors predicted that E2 
assembles into an elongated monomer and also described puta-
tive E2 homodimerization and a possible site of interaction with 
E1. Further analysis of this model found that the binding regions 
predicted for CD81 and multiple E2 mAbs were exposed epitopes 
on the modeled E2 surface. A more recent E2 modeling study 
was largely based on the structure of the Semliki Forest virus E1 
glycoprotein (PDB code 2ALA) (69), with particular emphasis 
on shared secondary structure elements, and incorporated nine 
experimentally determined E2 disulfide bonds as modeling 
constraints (62). The resulting model included three predicted 
domains for E2, with domain I (the first in order of amino acid 
sequence) corresponding to a β-sandwich positioned between the 
other two domains and forming a tightly packed CD81-binding 
site that roughly corresponds to antigenic domains B, D, and E. As 
noted by the authors of the latter modeling study (62), these two E2 
models are divergent in several regards, including their predicted 
disulfide bonds, predicted E2 oligomerization and degree of cov-
erage of the E2 glycoprotein. Subsequent X-ray crystallographic 
determination of two E2 core crystal structures revealed features 
distinct from structurally characterized class II fusion proteins 
(70, 71), including more compactness than the classical three 
domain organization of class II fusion proteins, despite retaining 
its immunoglobulin β-sandwich domain (47). Overall differences 
in architecture presented a likely impediment to template-based 
modeling, notwithstanding potentially accurate prediction of cer-
tain features and secondary structure elements. Regardless, these 
E2 modeling studies were important first steps in characterizing 
HCV glycoproteins, providing useful testable hypotheses in the 
absence of an experimentally determined E2 structure.

MODeLS OF e1e2 ASSeMBLY

Currently, no experimentally determined structure is available 
for the E1E2 complex, which has led to two recent studies that 
have presented structural models of this assembly (64, 65). For 
clarity, they will be referred to as E1E2-C and E1E2-F, after their 
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TABLe 2 | Representative modeling studies of hepatitis C virus envelope glycoproteins and receptors.

Target Model Methodsa Year Reference

E2 Structure Homology-based modeling 2000 (61)
E2 Structure Homology-based modeling, disulfide mapping 2010 (62)
E2-CD81 Complex structure Restraints-guided docking 2013 (47)
E2 Front layer dynamics Molecular dynamics simulation 2016 (36)
E1E2 transmembrane E1 trimerization, E1E2 heterohexamer Docking with restraints 2015 (63)
E1E2 Structure Evolutionary constraints-based structure prediction,  

homology-based modeling, experimental mapping residue constraints
2017 (64)

E1E2 Structure, high order assembly Homology-based modeling, ab initio structure prediction,  
experimental mapping residue constraints, docking

2017 (65)

SR-BI Structure Homology-based modeling 2013 (66)
CD81-Claudin Structure Homology-based modeling, docking 2012 (67)

aSummary of modeling methods used.
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respective first authors. A third E1E2 model has been proposed, 
but does not contain a complete heterodimer and, therefore, will 
not be discussed in detail (72). The E1E2-F and E1E2-C models 
were generated using distinct methodologies. The E1E2-C model 
was generated through mapping antibody epitopes with shotgun 
mutagenesis (73), residue contact prediction with evolutionary 
coupling analysis (74) supplemented by known contacts of the E2 
core crystal structure (47), as well as β-sheet pairing predictions 
using the bbcontacts algorithm (75). The final E1E2-C model of 
the heterodimer was generated using the CNS suite (76) and a 
distance geometry simulated annealing protocol. The E1E2-F 
model was likewise generated using a detailed computational 
pipeline, while also ensuring that the model corroborated 
previous experimental findings. Prediction of the E1 structure 
combined a partial crystal structure of E1 (38) with structural 
homolog phosphatidylcholine transfer protein (PDB code: 1LN2) 
(77) in the Molecular Operating Environment program (78). E2 
was modeled in the Robetta server (http://robetta.bakerlab.org/), 
which added missing loops and termini to the E2 core crystal 
structure. Following ab initio prediction and molecular dynamics 
(MD) simulations of E1 and E2 transmembrane regions (TMs), 
RosettaDock (79) was used to dock the E1 and E2 models to 
predict their heterodimeric assembly, followed by symmetric 
docking of the E1E2 model to form heterohexameric E1E2 mod-
els (trimers of E1E2).

Comparison of the E1E2-C and E1E2-F models reveals some 
similarities, but also major distinctions between them (Figure 2). 
Unsurprisingly, the E2 core region is mostly conserved between 
the two models, as both E1E2-C and E1E2-F incorporated resi-
due contacts from existing E2 core structures. This conservation 
includes the overall arrangement of antigenic domains B, D, and 
E. However, the quaternary structure of the two models display 
striking differences, with a dramatic change of E1 orientation 
relative to E2. One notable difference is an inter-chain disulfide 
bond at C272–C452, which is proposed by E1E2-C on the basis 
of their antibody epitope mapping data, but is not present in 
E1E2-F. Additionally, E2 residues 546–547, which are associated 
with antigenic domain C as well as E1E2 mAb binding based 
on global epitope mapping studies (80, 81), are located at the 
predicted interface with E1 in E1E2-F but not E1E2-C. This site 
has been associated with E1E2 assembly in a recent screening 
effort, which found that a peptide from JFH-1 (aa 546–560 based 

on H77 numbering) inhibited HCV entry and bound E1E2 (82). 
Finally, there are differences in model coverage of E1 and E2 
(E1E2-F represents the full glycoprotein sequences), as well as 
the conformations and orientations of the flexible region at the 
N-terminus of E2 (HVR1 and antigenic domain E). These models 
offer intriguing possible modes of E1E2 heterodimerization, pro-
viding an avenue to potentially design stabilized vaccines in the 
absence of an experimentally determined structure, and future 
studies can confirm (e.g., through structure-guided mutagenesis 
of predicted interface residues) or refine these models.

ReCeNT MODeLiNG STUDieS  
OF e1 AND e2

Other studies have used existing crystal structures to explore 
conformational flexibility and assembly, capturing the dynamic 
properties of E2. Flexibility of the CD81-binding site (CD81bs) 
has been examined in a recent study using MD simulations, 
hydrogen–deuterium exchange (HDX), and calorimetry (36). The 
MD simulations suggested that the helical region near residue 434 
displays a pronounced tendency to “drift” away from the E2 core, 
which is supported by crystallographic studies of multiple anti-
bodies bound to the corresponding epitope of the peptide (49). 
Mobility of these regions has also been examined using an E2 core 
crystal structure plus modeled domain E, finding a broad range 
of conformations that occasionally resembled those observed in 
X-ray structures of the antibody-domain E complex (83).

Studies focused on modeling E1E2 TM domains have pro-
vided insights into determinants of E1E2 heterodimerization 
and assembly. Following descriptions of SDS-resistant E1E2 
TM heterodimers and E1 trimers, a trimeric model of E1 TM 
domains was generated (63). This model was partially based on 
an experimentally determined structure of the monomeric E1 TM 
(PDB code: 1EMZ) (56) and also included constraints to enforce 
putative inter-helical interactions between G354xxxG358 residues, a 
motif essential for E1 TM assembly and conserved in other helix–
helix interactions (84). Critical charged and polar residues were 
exposed in the trimeric model, allowing E1 trimers to form key 
interactions with E2 such as the putative K370–D728 salt bridge, 
which was also observed in a separate study that performed MD 
simulations of the E1E2 TM heterodimer (85, 86). These studies 
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FiGURe 2 | Structural models of E1E2 heterodimeric assembly. (A) E1E2 model from Castelli et al. (E1E2-C) (64) in comparison with (B) E1E2 model from 
Freedman et al. (E1E2-F) (65), oriented in the same frame of reference based on E2 core regions. E1 and E2 glycoproteins are shown as tan and cyan cartoons, 
respectively, while key epitopes are colored and labeled, as in Figure 1: H-111 epitope at N-terminus of E1 (“H-111,” aa 192–202, dark blue), E2 hypervariable 
region 1 (HVR1, aa 384–410, gray), Domain E (aa 412–423, blue), Domain D/AR3 (aa 434–446, magenta), Domain B/AR3 (aa 529–535, magenta). Additionally, 
selected features of modeled E1E2 are highlighted: the predicted E1–E2 disulfide bond of E1E2-C (C272–C452), shown as yellow sticks, and E2 residues 
L546–G547, predicted to interact with E1 in E1E2-F model, are shown in spacefill on both models. C-terminal residues of E1 and E2 are also labeled for both 
models (H312, S711 for E1E2-C, A383, A746 for E1E2-F).
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and others (87, 88) have used modeling on this small yet critical 
region to gain a clearer picture of E1E2 association.

In combination with experimental mutagenesis data, mod-
eling has been used to explore how residue substitutions affect 
glycoprotein stability and structural integrity. Using the program 
Rosetta, in silico alanine mutagenesis of all E2 residues available 
in one of the E2 core crystal structures predicted changes in pro-
tein stability for each mutant (80). Alanine mutants with greatest 
predicted destabilizing effects on E2 corresponded to those with 
experimentally measured loss of binding for 14 conformationally 
sensitive HCV mAbs during global alanine scanning mutagenesis 
of E2. In the same study, alanine scanning data from each mAb 
was analyzed by hierarchical clustering to form groups of residues 
that delineated energetically linked regions on the E2 surface 
and core. These studies highlight how the incorporation of 
experimental mutagenesis data and other techniques (e.g., HDX) 
with modeling methods can reveal key aspects of glycoprotein 
flexibility and structural determinants.

MODeLiNG ANTiBODY ReCOGNiTiON

Modeling conserved epitopes of HCV glycoproteins has been 
valuable for elucidating the structural basis of broadly neutral-
izing antibody (bnAb) recognition. Crystal structures for the 
domain E peptide (E2 residues 412–423) bound to HCV1 (41), 
HC33.1 (44), 3/11 (35), and AP33 (40, 42) established different 

conformations of the same conserved epitope. Understanding the 
structural basis of these variable conformations was critical for 
determining why rare domain E mutations evaded neutralization 
by some of these antibodies, but not all (43, 89). Computational 
alanine scanning of antigenic domain E bound to HC33.1 pre-
dicted a decrease in antibody affinity when key binding residues 
were mutated, but no change in affinity when a “glycan shift” viral 
escape mutation was modeled (44). The program GlyProt (90) 
was used to model E2 glycosylation in the HCV1 and HC33.1 
complexes, showing that glycosylated N415 in domain E would 
be sterically unfavorable for binding by HCV1, which like AP33 
engages the β hairpin form of the epitope, but it would be per-
mitted at the exposed N415 residue in the extended conforma-
tion bound by HC33.1 (44). Additional modeling of domain E 
structures in the same study used the PEP-FOLD server (91) to 
generate ab initio peptide models that largely matched a β-hairpin 
conformation, suggesting that this folding pattern is preferred for 
domain E in the absence of antibody engagement and that this 
conformation can be disrupted by several domain E mAbs (35, 
44). Computational mutagenesis and modeling not only helped 
to delineate domain E antibody recognition, but also domain D 
recognition by an affinity-matured antibody (52). These tech-
niques can be used to build on structural knowledge of other 
antibody epitopes to E1, E2, or the E1E2 heterodimer, especially if 
similar crystal structures of antibody–antigen complexes provide 
informative comparisons.
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FiGURe 3 | Residues of E2 and coreceptors that influence hepatitis C virus 
(HCV) entry and infection. E2 and three receptors are depicted with the most 
complete crystal structure available, or with a crystal structure of a 
homologous receptor. Purple spacefill residues on E2 showed <20% binding 
to CD81 when substituted to alanine (81, 105); residues with the same color 
and representation on CD81 showed reduced or eliminated binding to 
soluble E2 during random mutagenesis (100). Orange spacefill residues on 
LIMP-2 showed reduced binding to soluble E2 when mutated to a 
non-synonymous coding variant or the corresponding residue for mouse 
SR-BI (106, 107). Binding determinants of E2 to SR-BI are present in HVR1 
(108), and are not present on the E2 crystal structure. Cyan spacefill residues 
on CD81 showed reduced association with CLDN1 when mutated to alanine 
(67), while cyan spacefill residues on CLDN1 showed either reduced binding 
to CD81 or decreased entry of HCVpp in alanine substitutions (67, 97, 109). 
PDB codes used are: 4MWF (E2), 5TCX (CD81), 4F7B (LIMP-2, representing 
SR-BI), and 4P79 (mouse claudin-15, representing claudin-1). SR-BI and 
CLDN1 have only moderate sequence identities to their structurally 
characterized homologs (LIMP-2 has 34% identity with SR-BI, mouse 
claudin-15 has 35% identity with human CLDN1), thus structures of these 
receptors may differ from the homologs shown.
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MODeLiNG ReCePTOR STRUCTURe AND 
ReCOGNiTiON

Although many E1E2 modeling efforts have focused on anti-
body–antigen interactions or heterodimerization, some studies 
have examined the structures of host entry receptors and their 
interactions. The tetraspanin CD81 (92), scavenger receptor 
class B type I (SR-BI) (93), and tight junction proteins claudin-1 
(CLDN1) (94) and occludin (OCLN) (95) represent the minimal 
set of HCV coreceptors and together are sufficient for HCV 
entry (96). Determinants of E1E2, glycoprotein–receptor, and 
receptor–receptor interactions are shown in Figure 3, summariz-
ing current knowledge through high resolution or homologous 
protein structures that may inform prospective modeling studies. 
CD81 and SR-BI bind directly to E2 (92, 93) and CLDN1 associ-
ates with CD81 to permit HCV entry (97), but the basis of OCLN 
viral engagement is unknown. CD81 has been characterized the 
most among these receptors, due to its critical role in HCV entry, 
infection, and cell-to-cell transmission (98). Kong et al. modeled 
the CD81–E2 interface using restraints-guided docking using 
restraints-guided docking (47) with the HADDOCK modeling 
program (99), which incorporated mutagenesis data into struc-
ture prediction. The model was corroborated by a negative stain 
electron microscopy structure containing E2 and CD81 large 
extracellular loop (LEL) reported in the same study; the interface 
contained the CD81-LEL C and D helices, which are implicated 
in E2 binding (100). To validate this model experimentally, the 
authors generated E2 mutants based on their docking model that 
disrupted CD81 binding. A subsequent study (101) concentrated 
on the interface between CD81-LEL and antigenic domain D, 
using PEP-FOLD (91) to model the peptide and the AutoDock 
Vina program (102) for docking to a CD81-LEL crystal structure. 
CD81 MD have also explored CD81-LEL flexibility, and several 
crystal structures found pH-dependent conformational changes in 
these loops (103). The CD81-E2 interface could soon be resolved 
in greater detail through additional modeling or experimental 
studies, given that new CD81 crystal structures are available (103, 
104) and that CD81 binding determinants on E1E2 have recently 
been fully delineated through global alanine scanning (81).

Although fewer modeling studies have focused on other HCV 
receptors, these provide important insights into the structure and 
recognition of these molecules. SR-BI does not have a reported 
X-ray structure, making its interactions with E2 relatively 
challenging to model with protein docking methods. However, 
the crystal structure of the closely related LIMP-2 (PDB code: 
4F7B) led to a homology model of SR-BI, which was then used 
to elucidate the structural basis of its role in cholesterol uptake 
(66). Related scavenger receptor CD36 also has a crystal structure 
available (PDB code: 5LGD) (110), and was recently proposed as 
an additional coreceptor that binds E1 (111). Several studies have 
examined the structural determinants of the CLDN1–CD81 inter-
face (97, 112, 113). In silico mutagenesis of this interface revealed 
key binding residues (67), and MD simulations of CLDN1 point 
mutations showed disruptions of receptor structure thought to 
diminish HCV entry (114). There is no reported X-ray crystal 
structure of CLDN1, but several claudin family members have 
solved structures (115, 116).

DiSCUSSiON

Given the numerous unknown aspects of the structural basis of 
HCV envelope glycoprotein assembly, as well as uncertainties 
regarding antibody and receptor recognition, there is a unique 
opportunity to leverage modern computational modeling and 
design algorithms to provide insights and testable mechanistic 
hypotheses for this system. Based on the challenges inherent in 
modeling this unique and dynamic viral envelope, future studies 
can utilize iterative experimental, and modeling approaches, 
where data-driven modeling is validated through experiments 
suggested by a model or sets of models. This paradigm has been 
utilized in previous studies to select and confirm models of anti-
body–antigen complexes (117, 118), as well as a modeled coiled 
coil assembly (119).

One additional area of recent interest has been the use of com-
putational structure-based methods to design optimized protein 
and epitope-based immunogens for vaccines to better engage and 
elicit neutralizing antibodies, also known as “reverse vaccinology” 
(120). As seen for modeling, recent work has shown that iterative 
computational and experimental approaches are quite effective for 
vaccine design (121). Some have noted that HCV is a promising 
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potential target for structure-based vaccine design (122), and 
early efforts have shown promise (15–17). Such work includes 
the design of scaffolded constructs based on the β hairpin form of 
antigenic domain E and an epitope from E1 (aa 314–324), and the 
display of these designs on protein nanoparticles, which showed 
maintained binding to the epitope-specific antibodies HCV1 
and IGH526. In another study, a cyclic peptide design based on 
antigenic domain E, stabilized with a disulfide bond, was found 
to be immunogenic in mice; the X-ray structure of an induced 
murine antibody in complex with this design was determined 
(16), but no neutralizing antibodies were detected. A more recent 
vaccine design study reported two other cyclic antigenic domain 
E peptide designs, as well as a design of E2 with two copies of the 
antigenic domain E epitope based on structural similarity of a 
site on the E2 back layer to the β hairpin domain E structure (17). 
These designs elicited neutralizing antibodies in mice, but varied 
in H77 neutralization potency and showed limited response to 
the two non-H77 isolates tested (17). Follow-up studies as well as 
additional novel designs are needed to demonstrate the potential 
of rational vaccine design approaches for this virus. Furthermore, 
though cellular immunology is outside the scope of this review, 
fine mapping and molecular characterization of T cell epitopes 
may provide useful information to optimize vaccine constructs 
that will enhance or focus cellular immune responses, possibly 
in the context of a B-cell-based vaccine. The recently described 
structure of a T  cell receptor engaging an immunodominant 
epitope from the HCV NS3 protein (123) is a compelling example 
for such a strategy.

The increasing application of powerful computational struc-
tural modeling techniques has led to a number of insights into 
HCV and its envelope glycoproteins. With the rapidly growing 

amount of data, including epitope mapping, structural charac-
terization, and immune repertoire sequencing (124), there will 
be many opportunities to utilize these methods, to contribute fur-
ther to the understanding of HCV immunogens, and to design an 
HCV vaccine. Centralized and up-to-date databases, resources, 
and standards for those focused on HCV research should facilitate 
these efforts. Effective resources may be analogous to a database 
developed for HIV bnAbs (125) or an existing database on HCV 
sequences and immunology (126). These resources will in turn 
permit the development of improved algorithms, more accurate 
models, and additional collaborative efforts focused on elucidat-
ing the native assembly and key features of the HCV envelope and 
eradicating HCV through an effective vaccine.
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