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Differential regulation of gene transcription contributes to cancer metastasis. We
investigated the involvement of a Rho GTPase (RhoJ) in breast cancer metastasis
focusing on the mechanism underlying RhoJ trans-activation by pro-metastatic cues.
We report that expression of RhoJ was up-regulated in malignant breast cancer cells
compared to more benign ones. Higher RhoJ expression was also detected in human
breast cancer biopsy specimens of advanced stages. RhoJ depletion attenuated breast
cancer cell migration and invasion in vitro and metastasis in vivo. The pro-metastatic
stimulus TGF-β activated RhoJ via megakaryocytic leukemia 1 (MKL1). MKL1 interacted
with and was recruited by ETS-related gene 1 (ERG1) to the RhoJ promoter to activate
transcription. In conclusion, our data delineate a novel transcriptional pathway that
contributes to breast cancer metastasis. Targeting the ERG1-MKL1-RhoJ axis may be
considered as a reasonable approach to treat malignant breast cancer.
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INTRODUCTION

Breast cancer is the most commonly diagnosed cancer in women worldwide. The growth in the
understanding of its molecular pathogenesis notwithstanding, breast cancer remains the leading
cause of cancer-related deaths in female patients claiming over 600,000 lives each year (Bray et al.,
2018). The development and application of sophisticated screening techniques and personalized
chemotherapies have significantly reduced the mortality rates in breast cancer patients but the
long-term prognosis for those diagnosed with an advanced-stage and thus highly malignant
type of breast cancer is disproportionally poor (Esteva et al., 2019). Metastatic breast cancers
are characterized by aggressive behaviors of proliferation, migration, and invasion, resistance
to cytotoxic chemotherapeutic drugs, and evasion of immune surveillance. Elucidation of the
mechanisms whereby breast cancer cells acquire these malignant traits holds the key to novel
therapeutic solutions against this malicious disease.

Accompanying the transition of a benign breast cancer cell to a more malignant one is the
alteration of its transcriptome (Kwa et al., 2017). For instance, breast cancer cells, stimulated by
a pro-metastatic cue (e.g., transforming growth factor), shed the expression of epithelial signature
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genes (e.g., CDH1 encoding E-Cadherin) and simultaneously
gain the expression of mesenchymal-specific genes (e.g.,
VIM encoding Vimentin) in a process known as epithelial-
mesenchymal transition (EMT) to facilitate migration and
invasion (Bill and Christofori, 2015). In addition, transcriptional
activation of pro-angiogenic factors (e.g., VEGF encoding
vascular endothelial growth factor) in breast cancer cells
promotes the formation of new capillaries to sustain malignant
growth (Tomar et al., 2019). On the other hand, simultaneous
up-regulation of anti-apoptotic genes (e.g., PD-1 encoding
programmed cell death protein 1) and down-regulation
of immunity priming genes (e.g., MHC II encoding major
histocompatibility complex II) help breast cancers escape
detection and execution by the patrolling immune cells
(Wang et al., 2017).

Megakaryocytic leukemia 1 (MKL1), also known as myocardin
related transcription factor A (MRTF-A), is a transcriptional
modulator initially identified as a co-factor for serum response
factor (SRF) responsible for activating the expression of muscle
lineage-specific genes that contain the conserved CArG box
within their promoters (Miano, 2015). MKL1 knockout mice
are born at Mendelian ratios and exhibit no overt phenotype
under physiological conditions except for a minor deficiency
in mammary epithelium that renders the females unable to
eject milk to nurse their offsprings (Li et al., 2006; Sun
et al., 2006). Recent investigations demonstrate that MKL1
plays versatile roles in the pathogenesis of human diseases,
including cardiovascular diseases, liver diseases, kidney diseases,
and cancers, by regulating specific transcriptional events. For
instance, Brandt et al. have shown that MKL1, in cooperation
with SRF, activates integrin beta 1 (ITGB1) transcription to
promote breast cancer cell dissemination (Brandt et al., 2009).
Cheng et al. (2015) have reported that MKL1 mediates the trans-
activation of metalloproteinase 9 (MMP9) in lung cancer cells to
facilitate metastasis.

RhoJ belongs to the Ras superfamily of small GTP-
binding proteins that exert diverse effects in a wide range
of pathophysiological processes (Leszczynska et al., 2011). Of
note, mounting evidence suggests that RhoJ activity is positively
correlated with cell mobility (Kaur et al., 2011; Hou et al., 2013;
Wilson et al., 2014; Liu et al., 2017). RhoJ transcription can be
regulated by the transcription factor ERG1 in endothelial cells
(Yuan et al., 2011). It remains obscure how RhoJ expression is
modulated during breast cancer metastasis. Here we report that
MKL1 interacts with ERG1 to activate RhoJ transcription and
promote breast cancer metastasis. Therefore, targeting the ERG1-
MKL1-RhoJ axis may be considered as a viable solution to treat
malignant breast cancer.

MATERIALS AND METHODS

Cell Culture and Treatment
Human breast cancer cells (MCF-7, MDA-231, MDA-468, T47D,
and Hs578T) were obtained from and authenticated by the
Chinese Academy of Sciences Type Culture Collection Cell Bank
and were maintained in DMEM (Invitrogen). The cells were

re-authenticated using a fingerprint method every 6 months in
the laboratory. The last time the cells were authenticated was
September 2019. Human recombinant TGF-β was purchased
from R&D. Stable cells were made as previously described (Sun
et al., 2013). Briefly, the cells were infected with lentivirus
carrying a specific targeting siRNA or scrambled siRNA (SCR)
at an MOI of 50. 48 h after infection, the cells were selected with
puromycin (2.5 mg/ml) for 2 weeks.

Plasmids and Transient Transfection
RhoJ promoter constructs and expression constructs for RhoJ,
MKL1, and ERG1 have been have been previously described
(Kaur et al., 2011; Yuan et al., 2011; Shi et al., 2014; Cheng et al.,
2015). Small interfering RNAs were purchased from Dharmacon.
Transient transfections were performed with Lipofectamine 2000
(Invitrogen). Luciferase activities were assayed 24–48 h after
transfection using a luciferase reporter assay system (Promega) as
previously described (Li et al., 2019d,e; Liu et al., 2019; Lu et al.,
2019). Briefly, cells were plated in 12-well culture dishes (∼60,000
cells/well). The next day, equal amounts (0.1 µg) of reporter
construct and effector construct were transfected into each well.
DNA content was normalized by the addition of an empty
vector (pcDNA3). For monitoring transfection efficiency and for
normalizing luciferase activity, 0.02 µg of GFP construct was
transfected into each well. Experiments were routinely performed
in triplicate wells and repeated at least three times.

Protein Extraction,
Co-immunoprecipitation, and Western
Whole cell protein extraction and nuclear protein extraction
were essentially performed as previously described (Shao et al.,
2019; Weng et al., 2019; Yang et al., 2019a,b; Zhao et al.,
2019). Specific antibodies or pre-immune IgGs (P.I.I.) were
added to and incubated with cell lysates overnight before being
absorbed by Protein A/G-plus Agarose beads (Santa Cruz).
Precipitated immune complex was released by boiling with 1X
SDS electrophoresis sample buffer. Western blot analyses were
performed with commercially available antibodies: anti-RhoJ
(Abcam, ab105311), anti-MKL1 (Santa Cruz, sc-32909), anti-
ERG1 (Santa Cruz, sc-353), anti-FLAG (Sigma, F3165), anti-
GFP (Proteintech, 50430-2), and anti-µ-actin (Sigma, A2228).
Image J software was used for densitometrical quantification and
densities of target proteins were normalized to those of µ-actin.
Data are expressed as relative protein levels compared to the
control group which is arbitrarily set as 1. All experiments were
repeated at least three times.

DNA Affinity Pull-Down
Nuclear proteins (∼100 µg) were incubated with biotin-labeled
RhoJ DNA probe at room temperature for 1 h in 1× binding
buffer (20 mM HEPESpH7.9, 0.1 mM EDTA, 4% glycerol, and
2 mM DTT) supplemented with BSA (50 µg per reaction),
poly-dIdC, and sonicated salmon sperm DNA (100 µg per
reaction). DNA-protein complexes formed were then captured by
incubating with the streptavidin beads (Promega) for 1 h at 4◦C
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on a shaking platform. Ternary complex (biotin-labeled DNA-
protein-streptavidin) was washed three times with 1× binding
buffer supplemented with 0.01% Triton X and 100 mM KCl
for 10 min each wash. The bound proteins were eluted with
1× SDS electrophoresis sample buffer by incubating at 90◦C for
10 min and analyzed by SDS-PAGE gel electrophoresis followed
by Western. Experiments were repeated at least three times.

Human Tumor Samples
Breast cancer tissues were collected, under informed consent,
from surgical resection specimens of patients who had not
undergone radiotherapy or chemotherapy in the First
Affiliated Hospital of Nanjing Medical University following
the guidelines of the intramural Committee on Human
Studies as previously described (Sun et al., 2013). Tumor
differentiation was graded using the Edmondson grading system.
For Immunohistochemical staining, paraffin sections were
dewaxed and heated in EDTA repairing buffer (pH 9.0) for
15 min for antigen retrieval. The sections then were blocked
with 5% BSA and incubated with anti-RhoJ (1:100, Sigma,
HPA003050) overnight at 4◦C. The next day, the slides were
incubated with an HRP-conjugated secondary antibody for
30 min and developed for 5 min using diaminobenzidine (DAB)
as the substrate. Images were visualized and captured by an
Olympus IX-70 microscope. Scoring (high vs. low staining) was
performed by two pathologists in a blinded fashion.

RNA Extraction, and Real-Time PCR
RNA was extracted with the RNeasy RNA isolation kit
(Qiagen). Reverse transcriptase reactions were performed using
a SuperScript First-strand Synthesis System (Invitrogen). Real-
time PCR reactions were performed on an ABI Prism Stepone
Plus system. Ct values of target genes were normalized to the
Ct values of 18rRNA using the 11Ct method and expressed as
relative mRNA expression levels compared to the control group
which is arbitrarily set as 1.

Chromatin Immunoprecipitation (ChIP)
and Re-ChIP
Chromatin immunoprecipitation assays were performed
essentially as described before (Li et al., 2018a,b,c,d,e, 2019a,b,c;
Liu et al., 2018; Yang et al., 2018; Zeng et al., 2018; Zhang
et al., 2018a,b; Fan et al., 2019; Kong et al., 2019a,b). Briefly,
chromatin was cross-linked with 1% formaldehyde for 8 min
room temperature, and then sequentially washed with ice-cold
phosphate-buffered saline, Solution I (10 mM HEPES, pH
7.5, 10 mM EDTA, 0.5 mM EGTA, 0.75% Triton X-100), and
Solution II (10 mM HEPES, pH 7.5, 200 mM NaCl, 1 mM EDTA,
0.5 mM EGTA). Cells were incubated in lysis buffer (150 mM
NaCl, 25 mM Tris pH 7.5, 1% Triton X-100, 0.1% SDS, 0.5%
deoxycholate) supplemented with protease inhibitor tablet.
DNA was fragmented into 500 bp pieces using a Branson 250
sonicator. Aliquots of lysates containing 100 µg of protein were
used for each immunoprecipitation reaction with the following
antibodies: anti-MKL1 (Santa Cruz, sc-32909), anti-ERG1 (Santa
Cruz, sc-353), or pre-immune IgG followed by adsorption to

protein A/G PLUS-agarose beads (Santa Cruz Biotechnology).
Precipitated DNA-protein complexes were washed sequentially
with RIPA buffer (50 mM Tris, pH 8.0, 150 mM NaCl, 0.1%
SDS, 0.5% deoxycholate, 1% Nonidet P-40, 1 mM EDTA),
high salt buffer (50 mM Tris, pH 8.0, 500 mM NaCl, 0.1%
SDS, 0.5% deoxycholate, 1% Nonidet P-40, 1 mM EDTA), LiCl
buffer (50 mM Tris, pH 8.0, 250 mM LiCl, 0.1% SDS, 0.5%
deoxycholate, 1% Nonidet P-40, 1 mM EDTA), and TE buffer
(10 mM Tris, 1 mM EDTA pH 8.0), respectively. DNA-protein
cross-link was reversed by heating the samples to 65◦C overnight.
Proteins were digested with proteinase K (Sigma), and DNA was
phenol/chloroform-extracted and precipitated by 100% ethanol.
Precipitated genomic DNA was amplified by real-time PCR with
primers spanning the human RhoJ gene promoters. A total of
10% of the starting material is also included as the input. Data
are then normalized to the input and expressed as fold changes
compared to the control group.

Scratch-Wound Healing/Migration Assay
Cell migration assay has been described previously (Yang et al.,
2019a). Cells were re-suspended in serum-free media. When the
cells reached confluence, scratch wound was created by using a
sterile micropipette tip. Cell migration was calculated by Image
Pro. Data were expressed as % migration compared to control
arbitrarily set as 100%.

Boyden Chamber Assay
24-well inserts (Costar) with 10 µg/ml Matrigel (Sigma) were
used for invasion assays (for migration assay, no matrigel was
added). Cells were re-suspended in serum-free media with or
without TGF-β and plated into the upper chamber with the
lower chamber filled with complete media. Following exposure
to TGF-β, the cells on the upper chamber were removed. Invaded
cells were stained with 0.1% crystal violet and counted at 200×
magnification in 10 different fields. Experiments were repeated
three times. Data were expressed as relative migration/invasion
compared to control arbitrarily set as 100%.

Heterotopic Xenographt
All animal studies were performed under the guidelines of the
Nanjing Medical University Intramural Ethic Committee on
Humane Treatment of Experimental Animals. Anesthetized 6-
to 8-week-old SCID mice were injected subcutaneously via the
flank with, per mouse, 5 × 106 cells in phosphate-buffered
saline. The mice were sacrificed 3 weeks after implantation
and tumors were dissected from the mice and weighed. Tumor
volume was calculated according to the following formula:
0.5× length× width2.

In vivo Metastasis
Anesthetized 6- to 8-week-old SCID mice were randomly divided
into different groups and injected via tail vein with MCF cells
(1 × 106 per mouse, via tail vein). 25 days following injection,
mice were sacrificed and metastasized nodules in the lungs were
counted. All animal experiments were performed double-blindly.
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Statistical Analysis
Two-sided T-test (for experiments involving two groups) or one-
way ANOVA with post hoc Scheffe analyses (for experiments
involving with at least three groups) were performed using
an SPSS package. p-values smaller than 0.05 were considered
statistically significant (∗).

RESULTS

RhoJ Expression Is Up-Regulated in
Malignant Types of Breast Cancers
We first compared the levels of RhoJ among normal mammary
epithelial cells (MCF-10A) and breast cancer cells of varying
malignancies (three with strong metastatic capability, MDA-231,
MDA-468, and Hs578T, and two with lesser aggressive behavior,
MCF-7 and T47D). RhoJ expression was progressively up-
regulated, at both mRNA (Figure 1A) and protein (Figure 1B)
levels, as normal mammary epithelial cells transitioned to breast
cancer cells. To define a broad role for RhoJ in breast cancer
metastasis, we then examined the expression levels of different
Rho GTPases in different breast cancer cell lines. Out of 19
different Rho GTPases tested, RhoJ expression showed the
most significant correlation with breast cancer cell malignancy
(Supplementary Figure S1). In addition, we observed in
patients with advanced stages of breast cancer elevated RhoJ
mRNA expression compared to patients with a less malignant
phenotype (Figure 1C).

Next, we assessed RhoJ expression levels in response
to different pro-malignancy stimuli. Treatment with TGF-β
significantly increased RhoJ expression in a time course-
dependent manner (Figures 1D,E) in both MCF-7 and
T47D cells. By comparison, activation of the canonical Wnt
signaling pathway, achieved by the addition of either a
CK1 inhibitor (Supplementary Figure S2A) or a GSK3
inhibitor (Supplementary Figure S2B) or over-expression of
a constitutively active β-catenin (Supplementary Figure S2C),
failed to augment RhoJ expression (the β-catenin target Axin2
was included as a positive control).

We then attempted to correlate RhoJ expression with breast
cancer malignancies and prognosis using the datasets disposed
in the database1. Kaplan–Meier analysis revealed that high RhoJ
expression was associated with poorer survival in breast cancer
patients (Figure 1F). Together, these data suggest that RhoJ
expression is intimately associated with breast cancer malignancy
in vitro and in vivo.

RhoJ Potentiates Breast Cancer Cell
Migration and Invasion
We next evaluated the effect of RhoJ on breast cancer cell
migration and invasion. To this end, breast cancer cells
were infected with lentivirus carrying siRNA targeting RhoJ or
scrambled siRNA (SCR) and selected with puromycin for 2 weeks
to knock down endogenous RhoJ (Supplementary Figure S3

1http://gepia.cancer-pku.cn/

for knockdown efficiencies). RhoJ knockdown significantly
dampened TGF-β induced migration and invasion of MCF-7
(Figures 2A,B) and T47D (Supplementary Figures S4A,B)
cells, as assessed by wound healing assay and Boyden
chamber transwell assay, respectively. RhoJ knockdown
also suppressed basal levels of migration and invasion in
highly malignant MDA-231 (Supplementary Figures S4C,D),
Hs578T (Supplementary Figures S4E,F), and MDA-468
(Supplementary Figures S4G,H) cells.

Next, two different animal models were exploited to
evaluate the effect of RhoJ knockdown on breast cancer cell
migration/invasion in vivo. In the first model, stable MCF-7 cells
were inoculated subcutaneously into the nude mice. As shown
in Figure 2C, although the amplification of tumor volume was
not altered by RhoJ knockdown at earlier points (15 and 20 days)
following the inoculation, it was significantly slowed toward the
end (25 and 30 days). Consistently, when the mice were sacrificed
it was discovered that tumor weight was significantly smaller
in mice receiving the inoculation of RhoJ-depleted cells than
the control cells (Figure 2D). In the second model, the cells
were injected into the tail veins and the mice were sacrificed
5 weeks later to evaluate the formation of tumorous nodules
in the lungs. RhoJ silencing again significantly suppressed the
metastatic abilities of breast cancer cells (Figures 2E,F).

MKL1 Activates RhoJ Expression in
Breast Cancer Cells
The transcriptional modulator MKL1 has been shown to promote
breast cancer metastasis (Brandt et al., 2009). A microarray-
based screen, which was unrelated to the current report and
aimed to identify novel MKL1 target genes in cardiomyocyte,
revealed that RhoJ expression might be regulated by MKL1 (Xu
Y, unpublished data). To this end, MKL1 was stably knocked
down using a similar strategy as RhoJ. Depletion of MKL1
decreased basal RhoJ mRNA levels in highly metastatic cells
MDA-231 (Figures 3A,B). By comparison, the loss of MKL1
did not significantly alter the levels of other Rho GTPases
(Supplementary Figure S5). MKL1 knockdown also abolished
TGF-β induced RhoJ expression in poorly metastatic cells MCF-7
(Figures 3C,D) and T47D (Figures 3E,F). Of note, there was a
significant correlation between MKL1 and RhoJ expression levels
in human breast cancer tissues (Figure 3G). Enhanced migration
and invasion (Figures 3H,I and Supplementary Figures S6A,B)
of MCF-7 cells driven by MKL1 over-expression was blunted
by RhoJ silencing. Congruently, RhoJ over-expression partially
rescued the loss of migratory (Supplementary Figure S6C) and
invasive (Supplementary Figure S6D) abilities of MDA-231 cells
following MKL1 depletion. Together, these data suggest that
MKL1 might contribute to breast cancer cell migration/invasion
by modulating RhoJ expression.

MKL1 Directly Regulates RhoJ
Transcription in Breast Cancer Cells
MKL1 over-expression augmented the activity of a RhoJ
promoter (−1184/+142) construct in a dose-dependent manner
(Figure 4A), suggesting that activation of RhoJ by MKL1
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FIGURE 1 | RhoJ expression correlates with breast cancer malignancy. (A,B) Expression of Rho family members in different breast cancer cell lines was assessed by
qPCR (A) and Western blotting (B). (C) Human breast tumor samples were processed as described in Section “Materials and Methods.” RhoJ expression was
examined by immunohistochemistry. (D,E) MCF-7 and T47D cells were treated with TGF-β (2 ng/ml) and harvested at indicated time points. Expression levels of
RhoJ were examined by qPCR (D) and Western (E). (F) Kaplan–Meier plot of overall survival in patients with high and low RhoJ expression (median RhoJ expression
as the cut-off). Asterisk indicates p value smaller than 0.05.

likely occurred at the transcription level. MKL1 over-expression
also amplified the induction of RhoJ transcription by TGF-β
(Figure 4B). Of note, MKL2, a closely related family member
of MKL1, failed to activate RhoJ transcription in reporter

assays (Supplementary Figure S7A). Interference of MKL1
activity by either shRNA (Supplementary Figure S7B) or
dominant negative (DN) mutation (Supplementary Figure S7C)
or treatment with a small-molecule MKL1 inhibitor CCG-1423
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FIGURE 2 | RhoJ potentiates breast cancer cell migration and invasion. (A,B) Stable MCF-7 cells were treated with TGF-β (2 ng/ml) for 48 h. Cell migration (A) and
invasion (B) were evaluated as described under Section “Materials and Methods.” (C,D) Heterotopic xenographt assay was performed as described in Section
“Materials and Methods.” N = 10 mice for each group. (E,F) In vivo metastasis was performed as described in Section “Materials and Methods.” N = 8 mice for each
group. Asterisk indicates p value smaller than 0.05.

(Supplementary Figure S7D) abrogated the induction of RhoJ
transcription by TGF-β.

Next, serially deleted RhoJ promoter constructs were
transfected into cells with or without MKL1. As shown in
Figure 4C, over-expression of MKL1 activated the RhoJ
promoter construct even when deletion extended to −100
relative to the transcription start site. ChIP assays confirmed that
robust basal MKL1 binding on this region (−132/+25), but not a
distal region (−1018/−872), of the RhoJ promoter was detectable
in the highly malignant cells; MKL1 binding at basal conditions
was relatively weak in lesser malignant cells but could be strongly

stimulated by TGF-β treatment (Figure 4D). Together, these
data suggest that aggressive behavior of breast cancer cells
might be, at least in part, attributable to MKL1-mediated RhoJ
trans-activation.

MKL1 Is Recruited by ERG1 to Activate
RhoJ Transcription
Being a co-factor, MKL1 relies on the recruitment by sequence-
specific transcription factors to bind to DNA (Yu et al.,
2014; Fan et al., 2015; Weng et al., 2015; Li et al., 2018c).
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FIGURE 3 | MKL1 activates RhoJ expression in breast cancer cells. (A,B) Gene expression in stable MDA-MB-231 cells was examined by qPCR and Western.
(C,D) Stable MCF-7 cells were treated with or without TGF-β for 48 h. Gene expression was examined by qPCR and Western. (E,F) Stable T47D cells were treated
with or without TGF-β for 48 h. Gene expression was examined by qPCR and Western. (G) Expression data of MKL1 and RhoJ were extracted from the public
database to draw the scatter plot. Pearson correlation co-efficient was calculated. (H,I) MCF-7 cells were transfected with a constitutively active (CA) MKL1 or an
empty vector (EV) in the presence or absence of siRNA targeting RhoJ. Cell migration (H) and invasion (I) were evaluated as described under Section “Materials and
Methods” and quantified by Image Pro. Asterisk indicates p value smaller than 0.05.
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FIGURE 4 | MKL1 directly regulates RhoJ transcription in breast cancer cells. (A) A RhoJ promoter-luciferase construct was transfected into MCF-7 and T47D cells
with or without MKL1. Luciferase activities were normalized by protein concentration and GFP fluorescence. Data are expressed relative luciferase activities
compared to the control group. Inset, MKL1 expression levels in different groups were examined by Western blotting. (B) A RhoJ promoter-luciferase construct was
transfected into MCF-7 and T47D cells with or without MKL1 followed by treatment for TGF-β 48 h. Luciferase activities were normalized by protein concentration
and GFP fluorescence. Data are expressed relative luciferase activities compared to the control group. (C) RhoJ promoter-luciferase constructs of different lengths
were transfected into MCF-7 and T47D cells with or without MKL1. Luciferase activities were normalized by protein concentration and GFP fluorescence. Data are
expressed relative luciferase activities compared to the control group. (D) ChIP assays were performed with anti-MKL1 or IgG using nuclear lysates isolated from the
cells as indicated. Asterisk indicates p value smaller than 0.05.

The minimal RhoJ promoter construct (−100/+142) that
responds to MKL1 over-expression contains a conserved
motif for ETS-related gene 1 (ERG1) (Yuan et al., 2011);
mutation of this motif abrogated promoter activation by
MKL1 over-expression (Figure 5A). DNA affinity pull-down

experiments showed that MKL1 bound to the wild type,
but not the ERG1 site mutated, DNA probe containing the
proximal RhoJ promoter (Figure 5B). Co-immunoprecipitation
experiments confirmed an interaction between MKL1 and
ERG1 (Figures 5C,D). Further analyses revealed that the
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FIGURE 5 | MKL1 is recruited by ERG1 to activate RhoJ transcription. (A) Wild type or mutant RhoJ promoter construct was transfected into MCF-7 and T47D cells
with or without MKL1. Luciferase activities were normalized by protein concentration and GFP fluorescence. Data are expressed relative luciferase activities
compared to the control group. (B) MCF-7 cells were treated with or without TGF-β for 24 h. Nuclear proteins were extracted and DNA affinity pull-down assay was
performed. (C) HEK293 cells were transfected with tagged expression constructs. Immunoprecipitation was performed with indicated antibodies. (D) MCF-7 cells
were treated with TGF-β for 24 h. Nuclear lysates were extracted and immunoprecipitation was performed with indicated antibodies. (E,F) MCF-7 cells were
transfected with indicated siRNAs followed by treatment with TGF-β for 24 h. Nuclear proteins were extracted and DNA affinity pull-down assay and ChIP assay
were performed. (G) MCF-7 cells were treated with or without TGF-β for 24 h. Nuclear proteins were extracted and Re-ChIP assay was performed with indicated
antibodies. (H) Stable MKL1 KD MCF-7 and T47D cells were transfected with FLAG-tagged MKL1 expression constructs or an empty vector (EV) followed by
treatment with TGF-β for 24 h. Nuclear proteins were extracted and ChIP assay was performed. Asterisk indicates p value smaller than 0.05.
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N-terminal basic (B) domain of MRTF-A mediated its
interaction with ERG1 (Supplementary Figure S8A). Several
lines of evidence allude to a dynamic interplay between
MKL1 and ERG1 in regulating RhoJ transcription: (1) co-
expression of MKL1 and ERG1 synergistically activated
the RhoJ promoter (Supplementary Figure S8B) while
MKL1 DN (Supplementary Figure S8C) or CCG-1423
(Supplementary Figure S8D) treatment suppressed RhoJ
promoter activity in the presence of ERG1; (2) siRNA-mediated
silencing of ERG1 not only abrogated the recruitment of
MKL1 to the RhoJ promoter, as assessed by DNA affinity pull-
down assay (Figure 5E and Supplementary Figure S8E) and
ChIP assay (Figure 5F and Supplementary Figure S8F),
but blunted activation of the RhoJ promote by MKL1
(Supplementary Figure S8G); (3) TGF-β promoted the
formation of an ERG1-MKL1 complex on the same site
in MCF-7 and T47D cells as evidenced by Re-ChIP assay
(Figure 5G and Supplementary Figure S8H); (4) DNA affinity
pull-down (Supplementary Figure S8I) and ChIP (Figure 5H)
assays suggested that the MKL1 mutant that lacks the basic
domain and hence is unable to interact with ERG1 failed to be
recruited to the RhoJ promoter. Combined, these data suggest
that an ERG1-MKL1 complex activates RhoJ transcription in
breast cancer cells.

DISCUSSION

The ascendency of the transcriptomic era has not only greatly
broadened the understanding of cancer pathogenesis but enabled
identification of druggable targets to treat malignant cancer
(Brower, 2011; Dawson and Kouzarides, 2012). In the present
study we delineate a novel pathway wherein MKL1 regulates
breast cancer metastasis through activating RhoJ transcription.
Although MKL1 is dispensable for embryonic development,
recent studies have implicated MKL1 in the pathogenesis of
a host of human diseases. Specifically, MKL1 has been linked
to the oncogenesis of hepatocellular carcinoma (Muehlich
et al., 2012; Hermanns et al., 2017), lymphoma (Bjorkholm
et al., 2013), lung carcinoma (Cheng et al., 2015), ovarian
carcinoma (Xu et al., 2017), thyroid carcinoma (Cheng et al.,
2019), colorectal carcinoma (Werner et al., 2019), and breast
carcinoma (Brandt et al., 2009; Xiang et al., 2017). MKL1
executes its pro-oncogenic and pro-metastatic activities primarily
by orchestrating specific transcriptional events. For instance,
MKL1-mediated transcriptional activation of a slew of integrin
(ITGA) genes serves as an integral step in focal adhesion
kinase (FAK) signaling to facilitate cancer cell spreading (Kishi
et al., 2016). Alternatively, activation of metalloproteinase
(MMP) transcription by MKL1 contributes to degradation of the
extracellular matrix and cancer metastasis (Cheng et al., 2015,
2019; Xu et al., 2017). MKL1 can also activate the transcription of
deleted in liver cancer (DLC1) and myoferlin to defy oncogenic
senescence and preserve cancer cell viability (Hampl et al., 2013;
Hermanns et al., 2017). Samaeekia et al. (2017) have reported that
MKL1 may contribute to the maintenance of cancer cell stemness
by activating interleukin 11 (IL11) transcription. Whitson et al.
have recently reported that MKL1 directs a transcriptional

program downstream of the non-canonical Hedgehog pathway
in basal cell carcinoma to aid drug resistance (Whitson et al.,
2018). Our data add to the mountain of evidence that MKL1
integrates transcriptional events to skew cancer cell phenotype to
a more malignant type.

MKL1 is a co-factor relying on its interaction with sequence-
specific transcription factors to participate in transcriptional
regulation. ERG1 is one of the best characterized transcription
factors that regulate RhoJ transcription. First reported by Yuan
et al. (2011), ERG1 binds to the most proximal region (−30/−23
relative to the transcription start site) of RhoJ promoter and
activates RhoJ transcription in vascular endothelial cells. This
finding was further validated by a recent single-cell based
transcriptomic study in human hematoendothelial cells (Angelos
et al., 2018). Here we provide evidence to show that ERG1 is a
novel binding partner for MKL1. It remains to be determined
whether the functional interplay between MKL1 and ERG1
converges solely on RhoJ, but there is evidence to suggest
that there are potentially several oncogenesis-related events co-
regulated by MKL1 and ERG1. For instance, it has been reported
that both ERG1 (Zhang et al., 2020) and MKL1 (Bernard et al.,
2015) can skew cellular metabolism to favor glycolysis leading
to hyperproliferation of cells. MKL1 (Morita et al., 2007; Xiang
et al., 2017) and ERG1 (Kao et al., 2014; Mochmann et al., 2014)
can both regulate cancer cell metastasis by promoting epithelial-
mesenchymal transition (EMT). MKL1 (Evelyn et al., 2016) and
ERG1 (Sreenath et al., 2017) are separately involved in regulation
of ER stress-related transcription, a process key to oncogenesis.
These scattered pieces of evidence argue that there might be a
larger-than-expected overlap of target genes for ERG1 and MKL1
genome wide that contribute to breast cancer metastasis. Future
studies employing ChIP-seq techniques would help clarify this
lingering issue.

Despite the uncovering of a new transcriptional complex
(MKL1-ERG1) that mediates RhoJ transcription in breast cancer
cells, major limitations dampen the translational impact of
our study. First, we have used the subcutaneous implantation
model and the tail veil injection model to evaluate breast
cancer metastasis; neither model is ideal for the assessment
of how primary tumor cells migrate away and spread to
distal sites, a critical part of the metastatic process. Future
studies should exploit more clinically relevant metastatic
models (Holen et al., 2017) to determine whether this ERG1-
MKL1-RhoJ axis can contribute to breast cancer metastasis
in vivo. Second, pathobiological functions of RhoJ are not
only determined by its overall expression levels but its
activity. For instance, RhoJ activity, as measured by its GTP-
bound form and the phosphorylation of its downstream
kinases, is up-regulated during vascular morphogenesis (Yuan
et al., 2011). Of note, Gao et al. (2012) have reported that
MKL1 can regulate the expression of GEF-H1, a guanine
nucleotide exchange factor, to modulate RhoA activity in
megakaryocytes. Whether TGF-β stimulation could enhance
RhoJ activity, in addition to boosting its expression, and
whether MKL1 plays a role in regulating RhoJ activity
presumably by altering the expression of GEFs remain to
be investigated. Third, we examined the effect of RhoJ
expression on over-all survival, but not metastasis-free survival,
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for breast cancer patients. In addition, the human data are not
vigorously verified in multiple cohorts. Clearly, these limitations
severely compromise the conclusiveness of our study and need to
be addressed in future studies.

In summary, we provide evidence to implicate the ERG1-
MKL1 axis in RhoJ trans-activation and breast cancer metastasis.
Small-molecule compounds for some components of this axis are
available and proven effective in certain cell and animal models.
Based on our observation as reported here, these chemicals
hopefully can be considered as a potential treatment option for
the most malignant forms of breast cancer.
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