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Developing Exposure/Response Models for Anticancer
Drug Treatment: Special Considerations
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Anticancer agents often have a narrow therapeutic index (TI), requiring precise dosing to ensure sufficient exposure for
clinical activity while minimizing toxicity. These agents frequently have complex pharmacology, and combination therapy may
cause schedule-specific effects and interactions. We review anticancer drug development, showing how integration of
modeling and simulation throughout development can inform anticancer dose selection, potentially improving the late-phase
success rate. This article has a companion article in Clinical Pharmacology & Therapeutics with practical examples.
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This tutorial provides guidance on various aspects of mod-
eling for anticancer drugs, and references the companion
article provided in CPT1 for examples demonstrating the
importance of this approach in anticancer drug develop-
ment. In this tutorial, examples are presented showing the
utility of translational modeling for rational dose selection
for first-in-human (FIH) studies and continued model-based
evaluations to refine dosing as well as determining drug
efficacy and safety.

The low approval rate of new therapeutic agents has
been reviewed previously. DiMasi et al.2 reported that anti-
cancer agents had an average success rate, but that nearly
half the anticancer/immunologic drugs moved from phase II
trials to more expensive phase III testing. After reaching
phase III, there was a 55% probability of a successful mar-
keting approval application, supporting the need for more
efficient, effective approaches to anticancer drug develop-
ment. The 2006 U.S. Food and Drug Administration Critical
Path Opportunities document supported modeling and sim-
ulation to evaluate clinical trial designs, as well as the use
of innovative trial designs.3 Model-based drug development
develops and utilizes models describing disease progres-
sion, pharmacokinetics (PK), and pharmacodynamics (PD)
to improve study designs and facilitate quantitative
decision-making. Among its key components are improved
and innovative trial designs, establishment of quantitative
decision criteria, and assessment of trial performance met-
rics relative to these criteria.4 However, owing to the com-
mon practice of dosing to a maximum tolerated dose,
model-based drug development is generally given less con-
sideration when making development decisions for anti-
cancer agents.

Modeling anticancer drugs often presents difficulties not
seen in other therapeutic areas. In particular, owing to prac-
tical considerations, many clinical trials have limited (or no)
PK sampling, resulting in poor understanding of the clinical
pharmacology necessary to better understand trial results.
Biomarkers of clinical benefit, such as tumor size, are often
ignored or oversimplified (e.g., RECIST5), or show high

between-subject variability (BSV), such as is seen with
evaluations of tumor growth.6 Given the high cost of phase
III failures, it is important to identify metrics predictive of
longer-term therapeutic success for use in proof-of-concept
studies.

PHARMACOKINETIC CONSIDERATIONS

PK evaluations are routinely carried out for anticancer
agents. However, many anticancer agents exhibit high
BSV, and PK evaluations in clinical trials are often sparse.
Thus, population-based approaches are often the best
option and can identify covariates that may be useful to
guide dose individualization. These agents can generally
be described using standard model-based approaches7 or
through application of physiologically based pharmacoki-
netic (PBPK) approaches. PBPK modeling requires an
iterative approach starting with model building based on in
vitro and in vivo data, followed by model verification. For
model verification, information on model plausibility
regarding physiology and drug absorption, distribution,
metabolism, and excretion is considered as important as
the demonstration of visual inspection of the simulation
results against observed data.8 Prediction of human PK is
important to reduce PK treatment failure and to assess
suitability of proposed dose regimens for novel com-
pounds. For small molecules, PBPK models have suc-
cessfully been used to predict human exposure and to
design phase I studies.9

In addition to identification and quantification of predictive
factors for PK, these models can be implemented in study
design optimization10 to minimize sampling necessary for
PK, to reduce the number of subjects needed to undergo
these evaluations, improving information obtained from clin-
ical trials. Because many oncology trials have limited sam-
pling or take samples from a limited patient population, the
use of optimal design methods, such as D-optimization,
would potentially improve trial informativeness.
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Pharmacokinetic drug interactions
Many anticancer agents are administered with other drugs
with similar toxicity; thus, relative contribution of a new
agent to dose-limiting toxicity needs to be estimated before
testing new combinations, and confirmed during clinical tri-
als. Combination therapy based on drug action synergy has
improved clinical outcomes, but results in more complex
issues for safety and efficacy assessments. Typically, when
two or more anticancer agents are first given concomitantly,
a dose escalation trial of the combined agents is con-
ducted.11 This is because of commonly identified schedule-
and sequence-dependence of pharmacological effects of
anticancer combination treatments. Sequence dependence
is well known for phase-specific drugs, such as taxanes,
where combination with different anticancer agents can
result in cytotoxic synergism or antagonism depending on
administration sequence of the drugs.12 Vigano et al.13 pro-
vides an excellent reference detailing sequence and sched-
ule interactions for taxanes.

Drug-drug interactions (DDIs) constitute a serious prob-
lem in oncology because of the narrow TI for most anti-
cancer drugs. DDIs can be attributed to PK or PD. Many
anticancer drugs are metabolized by cytochrome P450
(CYP). As some act as inducers or inhibitors of one or
more CYP isoenzymes, changes in concentrations of con-
comitant drugs are possible. Anticancer drugs can act not
only as victims but as perpetrators in DDI. For example, in
vitro inhibition of docetaxel clearance via CYP3A4 is seen
with concomitant administration of vinorelbine, vinblastine,
and doxorubicin.14 Even drugs used in premedication regi-
mens, such as dexamethasone and ketoconazole, should
be considered.

P-glycoprotein, an efflux transporter, can also be involved
in DDIs. Oral administration, which is becoming more com-
mon, increases the risk of DDIs because oral anticancer
drugs are usually administered daily, and can affect interac-
tions via the oral route that were not seen with parenteral
administration. A review of DDI prevalence with oral anti-
cancer agents15 found DDIs are very common with oral
cancer therapy (46% of patients had potential DDIs and
16% had a major DDI). Thus, altered PK or PD can affect
toxicity or efficacy. Investigation of underlying mechanisms
of DDIs is essential during development of novel agents,
and implementation of systems pharmacology models is an
important component.

Traditional designs to evaluate single DDIs are often not
feasible with anticancer agents. Thus, innovative
approaches are necessary to evaluate the pharmacology of
these agents. Model-based drug development provides
tools to evaluate data accumulated during drug develop-
ment, helping to identify appropriate dose metrics and
determining the risk/benefit of treatment with these agents.
Ethical issues and/or the difficulty of testing anticancer
agents in volunteers may preclude formal DDI studies.
However, modeling and simulation can be used to evaluate
the PK of various anticancer agents to evaluate the proba-
bility of DDIs.

PBPK modeling is increasingly used to evaluate DDIs by
integrating in vitro information, and is often included in sub-
mission documents to the health authorities.8,16 For exam-

ple, ibrutinib, developed for treatment of mantle cell
lymphoma and chronic lymphocytic lymphoma, is predomi-
nantly metabolized by CYP3A4. In healthy volunteers, ibru-
tinib exposure increased 30-fold with ketoconazole (strong
inhibitor) and was more than 10-fold reduced with rifampicin
(strong inducer). Dose adjustments for coadministration
with weak CYP3A4 inducers or inhibitors were justified with
PBPK predictions without conducting further DDI studies.17

Similarly, additional DDI studies were successfully avoided
for ceritinib (a time-dependent CYP3A4 inhibitor), which
was developed for treatment of patients with anaplastic
lymphoma kinase-positive, metastatic non-small cell lung
cancer.18 In both cases, PBPK modeling was successfully
applied to assess various untested clinical situations.

Pharmacodynamic modeling
During anticancer drug development, PD evaluations are
often conducted on a variety of efficacy or safety metrics.
PK-PD modeling of anticancer drugs involves a wide range
of approaches, including evaluation of continuous bio-
markers of response (including tumor growth), evaluation of
categorical responses, and time-to-event (TTE) modeling.
These evaluations are a part of model-based drug develop-
ment for anticancer agents.

Translational PK-PD modeling and early clinical
development
PK-PD modeling provides robust support to a drug develop-
ment program when implemented in early stage develop-
ment, and is conducted throughout all phases. In the
discovery phase, modeling provides insights into mecha-
nism of action, and enables selection of clinical candidate
molecules based on PK properties and the predicted
human TI. Translational PK-PD modeling can support the
design of FIH studies by providing estimates of efficacious
target exposures, associated dose regimens, and guidance
in selection of biomarker and optimal sampling time points
for exposure and biomarkers.19

Oncology phase 1 studies differ from other phase I stud-
ies in that they are mainly evaluated in patients whose dis-
ease condition is progressive and fatal. The Food and Drug
Administration guideline for anticancer pharmaceuticals
states “the goal of selecting a starting dose is to identify a
dose that is expected to have pharmacological effects and
is reasonably safe.” Preclinical PK-PD modeling helps pro-
ject the pharmacological response in humans by quantify-
ing the exposure–response relationship in nonclinical
species and subsequently accounting for the species differ-
ences. Moreover, profiling the TI in preclinical studies with
subsequent prediction to humans is a critical step, particu-
larly owing to the narrow TI of most anticancer drugs.
Translational PK-PD modeling offers a rational approach to
select the most favorable dose and dosing regimen in early
clinical development.

Translational PK-PD models are important tools to project
preclinical efficacy to human response. The in vivo evalua-
tion of anticancer drugs is mainly done in immune-deficient
mice (athymic nude or severe combined immunodeficient
mice) transplanted s.c. with human tumor cell lines or
patient-derived tumor material.20 In addition to xenograft
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models, syngeneic or genetically engineered mouse models
are used in anticancer drug development. During the trans-
lational process, it is important to remember the limitations
of the preclinical models in representing the pathophysio-
logical phenotype of patients with cancer, particularly
regarding immune competence, tumor heterogeneity, tumor
microenvironment, and stromal components.20

For translation to humans, models must account for spe-
cies differences between animals and humans, including
PK and drug tolerability.21 For biological agents, such as
monoclonal antibodies, cross-reactivity, target affinity, target
expression patterns between mouse and man, and the
interference by the mouse immune system (e.g., antibody-
dependent cell-mediated cytotoxicity, complement activa-
tion, and targeting of natural killer cells) are important
considerations and must be accounted for as far as possi-
ble.22 For many monoclonal antibodies, the interaction with
its target can impact PK. Thus, PK can be used to derive
important information on drug-target interaction. This phe-
nomenon, target-mediated drug disposition, leads to satura-
ble distribution and elimination kinetics, with substantial
BSV.23 Preclinical target-mediated drug disposition models
can explore potential impacts of disease-related target load
on PK variability24 or be scaled to humans to guide dose
selection of FIH.25 Dayd�e et al.24 conducted preclinical PK-
PD studies to better understand the clinically observed
interpatient variability of rituximab, a monoclonal antibody
targeting CD20. The impact of tumor burden on PK and
efficacy was tested in a murine syngeneic model of lym-
phoma expressing human CD20 sharing characteristics of
the human disease. PK-PD modeling suggested high tumor
burden increases rituximab clearance, reducing efficacy. In
another study, Tabrizi and Roskos25 approximated target
saturation of anti-mUC18 monoclonal antibody based on
the predicted nonlinear elimination and scaled it to humans.
For the FIH study, a minimal anticipated biological effect
level dose was justified based on the projected 10% target
saturation as well as a PK-based dose-escalation scheme25

illustrating the utility of target-mediated drug disposition
models to guide early clinical development. This approach
assumes that the target is highly accessible. For less
accessible targets, or targets with high turnover, the
approximation of target saturation from the clearance may
be misleading. Lammerts van Bueren et al.26 explored in
vitro and in vivo receptor-mediated elimination of an anti-
epidermal growth factor receptor antibody 2F8 in cynomol-
gus monkeys and tumor-bearing mice. They concluded that
epidermal growth factor receptor saturation in normal tissue
does not predict saturation in tumor tissue, as local drug
concentration may be more rapidly reduced without impact-
ing the PK. Grimm27 provided a theoretical explanation why
saturation of clearance can greatly underpredict receptor
occupancy of poorly accessible targets.

Multiscale PK-PD models to improve translation to
humans
Using biomarkers to drive tumor growth inhibition enables a
quantitative assessment of the relationship between bio-
marker and tumor growth inhibition, which may guide dose
regimen selection in the clinic if similar biomarker data can

be obtained. Multiscale PK-PD models can simultaneously
incorporate different processes to bridge multiple temporal
and spatial scales that are relevant in cancer (Figure 1).
These models allow the modeler to quantitatively relate
events on the molecular level to events on cellular and/or
tissue levels. The additional value of multiscale models is in
biomarker selection to monitor drug response and to
improve translatability of the nonclinical PK-PD relationship
to humans (Figure 1). Such models relate the biomarker
profile to efficacy, which also promotes identification of
adequate tissue exposure.

Figure 1 illustrates how multiscale information can be
exploited to increase confidence in human projections and
improve the interpretive value of early phase I clinical data.
This approach was applied to everolimus, a mammalian tar-
get of rapamycin inhibitor.28,29 The mammalian target of
rapamycin regulates mRNA translation via serine/threonine
kinase p70S6 kinase (S6K), which subsequently regulates
protein translation through phosphorylation of ribosomal
protein S6. Everolimus blocks the mammalian target of
rapamycin pathway and inhibits the downstream signal
S6K1. The preclinical PK-PD model described the relation-
ship between inhibition of S6K1 and antitumor effects of dif-
ferent concentrations of everolimus in tumor-bearing rats.
Once corrected for interspecies PK differences, the model
provided indication of which dose and regimens should be
investigated in a phase I dose escalation trial. The preclini-
cal model predicted a priori that, in humans, everolimus
doses of 5 or 10 mg/day would demonstrate a more pro-
found and sustained effect on S6K1 inhibition than weekly
doses of 20, 30, 50, or 70 mg. The authors found that 20–
30 mg would be the minimal weekly dose for efficacy based
on mammalian target of rapamycin inhibition, but increasing
the weekly dosage to 50 or 70 mg/wk would not increase
the durability of S6K1 inhibition. It also showed the kinetics
of downstream effects in peripheral blood mononuclear
cells correlated well with antitumor effect. This supported
incorporation of PD measurements collected in peripheral
blood mononuclear cells and has the potential to predict
the optimal dosing schedule.29 In line with this simulation, a
subsequent phase III trial in renal cell carcinoma showed
that progression-free survival and overall survival (OS)
were significantly improved (P < 0.001) with daily 10 mg
dosing.30

MODELING TUMOR GROWTH

The most common marker of response in oncology is tumor
growth, which can be evaluated in numerous ways. Meas-
urements of tumor volume and other tumor-related bio-
markers have been used to describe the progression of
disease and the response to treatment. Tumor growth mod-
els used to describe the time course of tumor growth inhibi-
tion typically utilize ordinary differential equations, and the
conceptual framework has recently been summarized.6 Fre-
quently, a temporal delay is observed between PK and
response, which requires a mathematical model similar to
an indirect response model to account for this delay. Table 1
provides examples of the application of PK-PD modeling to
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tumor growth inhibition for a range of targets and
xenografts.

Changes in tumor volume over time can be represented
by terms describing net growth and drug-induced tumor
shrinkage, as shown in the following equation:

dTV
dt

5net growth-drug induced shrinkage: (1)

Because of the semimechanistic nature of these models, they
can be useful to characterize PK-PD properties of anticancer
drug treatments in preclinical models. This approach has
advantages over empirical approaches, which do not make
use of the effect over time, but instead attempt to correlate
an exposure metric, such as area under the concentration-
time curve (AUC) or steady-state average concentration with
tumor growth inhibition at a single timepoint. Drug potency
estimates from a single timepoint will be time-dependent, and
therefore not useful for translation to the clinic.

Tumor growth models in control groups of preclinical
species
Empirical models are commonly used to describe tumor
growth in the absence of the drug treatment in xenograft
experiments. For preclinical evaluations, the focus is to
obtain quantitative predictions of drug effect in mechanistic
terms — not to predict future tumor volume beyond the
observation period. A good description of tumor growth in
the untreated group is an important prerequisite to appro-
priately capture drug effect. Tumors are expected to grow
exponentially during early growth phases, followed by a lin-
ear phase before reaching a plateau. However, tumor-

bearing mice are euthanized for ethical reasons when
tumor volume reaches the maximal allowable tumor mass,
which often occurs before a plateau phase is observed.
Model selection is therefore based on parsimony principles,
which means providing a sufficient goodness-of-fit of
observed data while using the fewest number of parameters
(Supplementary Material S1).

In the absence of effective drug treatment, net tumor
growth (the balance of growth and natural cell death) can
be described by an exponential function,31 exponential
growth that can be inhibited by tumor volume,32 or some
combination of linear and exponential functions.33–35 First
order (exponential) net growth is represented in the follow-
ing equation:

dTV
dt

5kng � TVðtÞ (2)

where kng is the first order rate constant (days21). For
tumor growth data showing a plateau phase, various mod-
els have been proposed.6 Kogame et al.32 proposed a
model including first order growth and inhibition of tumor
growth by its tumor volume, which is described as:

dTV
dt

5kng � 12
TVðtÞ

TG501TVðtÞ

� �
� TVðtÞ (3)

where TG50 is the tumor size that inhibits tumor growth by
50% and is based on the underlying physiology where local
conditions can limit tumor growth.32

In the absence of a plateau phase, an alternative growth
model allowing the tumor growth function to switch between

Figure 1 Multiscale pharmacokinetic-pharmacodynamic (PK-PD) models relate quantitatively events on molecular to cellular and/or on
tissue levels to support selection of biomarker to monitor drug response. These models increase the confidence in projecting transla-
tional PK-PD relationship from animal to man, as illustrated in the example. The steps include (1) establish PK-PD model to quantita-
tively understand the pharmacological activity of the drug in preclinical species; (2) link biomarker response to anticancer effect to
define required pharmacological activity to obtain tumor regression in preclinical model; and (3) scale model to humans to select dose/
dosing schedule and monitor biomarker profile in patients in early clinical trial to find the “right” dose and dosing schedule.
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Table 1 Summary of PK-PD models used to describe tumor growth inhibition in xenograft models

Reference Target Xenograft model Objectives Model

Simple growth models

Bueno, 200834 Transforming

growth factor-b
Calu6, MX1 To develop a semime-

chanistic PK-PD

model to integrate

PK and PD with

tumor growth

inhibition.

dTV
dt 5

Kgrw13ð12EffectÞ3TV ðtÞ

11
Kgrw1
Kgrw0

3TV ðtÞ
� �ch i1=c (1)

Effect5f ðbiomarkerÞ

Kogame, 201332 Hedgehog pathway PAN-04 To characterize PK

and antitumor

effects to support

dosing regimen

selection in the

clinic.

dTV

dt
5kin � 12

TV ðtÞ
TG501TV ðtÞ

� �
� ð12EffectÞ � TV ðtÞ

Effect5
Imax � C
IC501C

(1)

Phase-specific models

Yamazaki, 200893

Yamazaki, 201294

ALK and cMET GTL16

H3122, Karpas299

To characterize the PK

and antitumor

effects to support

dosing regimen

selection in the

clinic.

dTV

dt
5kng � ð12EffectÞ � TV ðtÞ2kout � TV ðtÞ

Effect5
Emax3Cn

ECn
501Cn

(1)

Wong, 200936

Gong, 201395

Wong, 201396

B-Raf kinase inhibitor

Endoxifen

Inhibitor of apoptosis

A375

MCF7

MDA-MB-231-X1.1

To characterize in vitro

and in vivo potency

and PD properties.

To define the in vivo

potency.

To characterize PK-PD

to support a second-

generation molecule.

dTV

dt
5kng � TV ðtÞ2K � TV ðtÞ

K 5
Kmax3Cn

KCn
501Cn

(1)

Salphati, 201037

Wong, 201138

Phosphatidylinositol

3-kinase inhibitor

Hedgehog pathway

MCF7.1

Medulloblastoma allograft,

D5123

To characterize in vivo

efficacy and investi-

gate PK-PD

relationships.

To characterize PK-PD

to support dosing regi-

men selection in the

clinic.

dTV

dt
5kng � TV ðtÞ2K � TV ðtÞ

K 5
Kmax3ð%IÞn

K ð%IÞn501ð%IÞn
(1)

Phase nonspecific models incorporating transit compartments

Cell distribution models

Simeoni, 200433

Rocchetti, 200742

Rocchetti, 200997

Shah, 201298

Fetterly, 201399

Cytotoxic agents

Cytotoxic agents

Combination therapies

Antibody drug conjugate

VEGF and docetaxel

A2780, HCT116

A2780

Bx-pc3, HT29, KM-12

L540cy, Karpas299

Acute myeloid leukemia

To develop a minimal

PK-PD model.

To explore the use of

drug-specific parame-

ters in predicting

human responses.

To develop a PK-PD

model for combination

therapy.

To develop a multi-

scale mechanism-

based PK-PD model.

To determine the most

effective in vivo combi-

nation using a PK-PD

approach.

dx1ðtÞ
dt 5

k0 �x1ðtÞ

11
k0
k1
�wðtÞ

� �w
� �1=w 2k2 � cðtÞ � x1ðtÞ

dx2ðtÞ
dt 5k2 � cðtÞ � x1ðtÞ2k1 � x2ðtÞ

dx3ðtÞ
dt

5k1 � ½x2ðtÞ2x3ðtÞ�
dx4ðtÞ

dt 5k1 � ½x3ðtÞ2x4ðtÞ�
wðtÞ5x1ðtÞ1x2ðtÞ1x3ðtÞ1x4ðtÞ
x1ðt50Þ5wð0Þ

x2ðt50Þ5x3ðt50Þ5x4ðt50Þ50

Koch, 200935 Combination therapies PC3, HCT116 To demonstrate the

feasibility of empiri-

cal PK-PD modeling

for combination

drugs.

dx1ðtÞ
dt 5

2�k0 �k1 �x1ðtÞ2
½k112�k0 �x1ðtÞ�wðtÞ�2TI � x1ðtÞ

dx2ðtÞ
dt 5TI � x1ðtÞ2k1 � x2ðtÞ

dx3ðtÞ
dt 5k1 � ½x2ðtÞ2x3ðtÞ�

dx4ðtÞ
dt 5k1 � ½x3ðtÞ2x4ðtÞ�

wðtÞ5x1ðtÞ1x2ðtÞ1x3ðtÞ1x4ðtÞ
TIðtÞ5ka

2 � caðtÞ1kb
2 � cbðtÞ � w

x1ðt50Þ5wð0Þ
x2ðt50Þ5x3ðt50Þ5x4ðt50Þ50
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exponential and linear growth33 is described in the following
equation:

dTV
dt

5
k0 � TVðtÞ

11 k0
k1
� TVðtÞ

� �w
� �1=w

(4)

Koch et al.35 suggested an empirical tumor growth model
with a smooth transition between exponential to linear

growth phases that are represented in the following
equation:

dTV
dt

5
2 � k0 � k1 � TVðtÞ
k112 � k0 � TVðtÞ (5)

where k0 and k1 are first-order and zero-order rate con-
stants characterizing exponential and linear growth, respec-
tively, and in Eq. 4, w is a parameter that allows the system

Table 1. cont.

Reference Target Xenograft model Objectives Model

Terranova, 201350 Combination therapies A278, HT29, BxPC3 human

pancreatic adenocarcinoma

cell lines

PK-PD model to

mechanistically

describe combo

drug treatment.

dx00ðtÞ !
dt

5fpðwðtÞÞ2k2a � caðtÞ1k2b � cbðtÞ1v11Þ � x00

dxij ðtÞ
dt

5uaij 1ubij 1vij

wð0Þ5
X3

i50

X3

j50

xij ðtÞ

x00ð0Þ5w0

xij ð0Þ50

i1j > 0

dx1ðtÞ
dt

5
k0 � x00ðtÞ

11
k0

k1
� wðtÞ

� �w
" #1=w

uaij 5

0 i50

k2acaðtÞxi21;j 2k1axij i51

k1axi 21j 2k1axij i52

8>>>><
>>>>:

9>>>>=
>>>>;

ubij 5

0 i50

k2bcbðtÞxi ;j212kbxij i51

k1axi 21j 2k1axij i52

8>>>><
>>>>:

9>>>>=
>>>>;

vaij 5

ccaðtÞxi21;j cbðtÞx00 i5j51

0ij otherwwise

8<
:

9=
;

Jumbe, 2010100 Antibody-drug conjugate Fo5, BT474EEI To develop a PK-PD

model to describe

antitumor activity as

a function of dose

and schedule.

dV1ðtÞ
dt 5kGn2kK � Effect � V1ðtÞ

dV2ðtÞ
dt 5kK

�
Effect � V1ðtÞ2V2ðtÞ

�
dV3ðtÞ

dt 5kK �
�

V2ðtÞ2V3ðtÞ
�

TV ðtÞ5V1ðtÞ1V2ðtÞ1V3ðtÞ
Effect5 Kmax3CðtÞ

KC501CðtÞ

V1ðt50Þ5TVð0Þ

V2ðt50Þ5V3ðt50Þ50

Signal distribution models

Yang, 201041 Paclitaxel Colon-26 To compare the prop-

erties of two prom-

ising transduction

models.

dR
dt 5g � R2K4 � R; Rð0Þ5wð0Þ
dK1

dt 5 1
s �

Kmax �C
IC501C 2K1

� �
; K1ð0Þ50

dK2

dt 5ðK12K2Þ=s; K2ð0Þ50
dK3

dt 5ðK22K3Þ=s; K3ð0Þ50
dK4

dt 5ðK32K4Þ=s; K4ð0Þ50

Higgins, 201468 MDM2 SJSA osteosarcoma To determine the

scheduling require-

ments for optimal

antitumor activity

using a PK-PD

approach.

dR
dt 5g � R2K4 � R; Rð0Þ5wð0Þ
dK1

dt 5 1
s � ðk2 � C2K1Þ; K1ð0Þ50

dK2

dt 5 1
s � ðK12K2Þ; K2ð0Þ50

dK3

dt 5 1
s � ðK22K3Þ; K3ð0Þ50

dK4

dt
5 1

s � ðK32K4Þ; K4ð0Þ50

This table provides a summary reference of published tumor growth and drug effect models. (1) Initial condition: TVðt50Þ5TVð0Þ.

ALK, anaplastic lymphoma kinase; PD, pharmacodynamics; PK, pharmacokinetics; VEGF, vascular endothelial growth factor.
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to sharply switch from exponential to linear growth. A fixed
value of 20 was suggested for w.33 For these equations,
the initial condition is given as TV(t 5 0) 5 TV0.

Tumor growth models in drug treatment groups
The addition of anticancer drug treatment is expected to
inhibit tumor growth. In a simple growth model, the model
assumes that the exponential growth of the xenograft can be
reduced by a drug effect either directly or through inhibition
of the target.32,34 The cell cycle phase nonspecific model
assumes exponential growth, and that drug acts by a first-
order rate constant.31 In the cell cycle phase-specific model,
the drug affects the sensitive cells that can cycle between
sensitive and resistant pools. Drug effect can be incorpo-
rated by including a sigmoid Emax equation. For example, a
first-order growth model with the drug effect included as a
sigmoid Emax model36 is shown in the following equation:

dTV
dt

5kng � TVðtÞ2K � TVðtÞ (6)

where the initial condition TV(t 5 0) 5 TV0, kng is a first-
order growth rate constant, K is a function describing drug
effect is shown in the following equation:

K5
Kmax � Cn

KCn
501Cn (7)

where Kmax describes the maximum drug effect, KC50 is
the concentration at half-maximal response, and n is the
hill coefficient. An alternate parameterization was proposed
where biomarker response is used in lieu of drug
concentration.37–39

The response of anticancer drugs is typically delayed rel-
ative to the time course of drug exposure. Tumor size is
determined by the net effect of growth and shrinkage
because of cell death. Many current anticancer drug treat-

ments reduce the rate of growth, for example by modifying
DNA replication. Thus, although the drug effect on growth
is related to exposure, tumor shrinkage because of inhibi-
tion of growth and death of damaged cells is a secondary
effect. The time course of response to treatment depends
primarily on the factors influencing the delay between drug
administration and eventual effects on tumor growth. These
delays arise from distribution to the site of action, binding to
the target receptor, and the turnover of physiological media-
tors leading to an observable response.

Transit compartment models, originally developed to
describe kinetics of signal transduction processes, were
shown to describe time delay.40 Transduction models were
proposed based on the phase nonspecific models, but
make use of transit compartments to describe a delay
between PK and tumor growth inhibition.31,33,39,41 In the
cell distribution model, tumor volume is assumed to repre-
sent the population of cycling cells plus additional cells that
are in various stages of cell death and removal.33,41 In con-
trast, the signal distribution model assumes the drug acts
on a receptor, and the resulting signal is cascaded through
a series of transit compartments.31,41 Lobo and Balthasar31

proposed a signal distribution model describing tumor
growth dynamics of in vitro data assuming a delayed drug
effect because of signal transduction processes.

Simeoni et al.33 developed a semimechanistic PK-PD
model to assess antitumor effect in xenograft mice assum-
ing a delay in tumor response because of the duration of
drug-induced cell death. As a secondary parameter, a
threshold concentration was derived that defines the pre-
dicted concentration at which the drug-induced tumor kill
rate equals the tumor growth rate and, as a result, net
tumor stasis is achieved. Thus, threshold concentration
can be regarded as reference concentration above which
relevant anticancer activity is expected in patients. Roc-
chetti et al.42 demonstrated that predicted threshold con-
centration derived from xenograft experiments correlated
with the active dose in humans for several marketed
drugs.

Tumor growth models have been used to evaluate treat-

ment effect with various anticancer agents in clinical trials

to quantify individual sensitivity and response to anticancer

drugs. Many of the translational models can be applied to

clinical data. A simple function that can be used to describe

the growth of a tumor as an exponential increase in cell

count with time is given in the following equation43:

dTumor
dt

5 kgrowth � Tumor 2 kdeath � Tumor � Ce;A: (8)

The effect of drug treatment may be to slow tumor growth
rate (kgrowth) or increase cell death rate (kdeath). The
delayed effect of drug concentration can be handled using
an effect compartment model (Ce,A).44

A model describing the non-small cell lung cancer
response to gemcitabine treatment in humans used a semi-
mechanistic model based on the principles of delayed
response to treatment.45 The response time course is slow
in relation to the PK of gemcitabine (Figure 2). This delay
was explained by a combination of slow onset of drug effect

Figure 2 Response of non-small cell lung cancer during and
after six cycles of treatment with gemcitabine (red bars). The
predicted accumulation of the nominal amount of active sub-
stance during treatment and washout after treatment (dotted
green line) determines the effect on inhibition of tumor growth.
The time course of tumor size (dashed blue line) reaches a mini-
mum some weeks after stopping treatment (adapted from ref. 45
with permission).
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and slow turnover because of tumor cell shrinkage and loss
using the following equation:

dSize
dt

5 RateIn � Effect2
1

TTurnover
� Size

� �
� Size: (9)

where Size is the tumor size, RateIn is the rate of tumor
growth, Effect is the drug effect on tumor growth, and TTurn-
over is tumor turnover. A second size parameter was included
to describe a simplified form of feedback to describe an
asymptote for tumor size. This model is limited owing to the
inability to predict tumor regrowth in the presence of treat-
ment, something that is often observed in clinical settings.

A more realistic tumor growth model should take resist-
ance to drug, such as may occur through mutation, into
account. The change of cell characteristic from a respon-
sive to an unresponsive state can be either reversible or
irreversible. The equations below describe reversible transi-
tion between sensitive phases (TumorS) and phases that
are not sensitive to therapeutic intervention (TumorR)46:

dTumorS

dt
5 kgrowth � TumorS 2 kSR � TumorS

1 kRS � TumorR 2 kdeath � TumorS

dTumorR

dt
5 kSR � TumorS 2 kRS � TumorR

(10)

where the rates of transformation to and from the resistant
state are indicated by kSR and kRS, respectively.

Claret et al.47 developed a model describing tumor size

based on RECIST criteria as a function of time and drug

exposure that accounts for tumor growth and drug action.

The model incorporates a first-order tumor growth rate. A

resistance process was incorporated to describe tumor

regrowth as shown in the equation below:

dyðtÞ
dt

5 KL 2 KD � ExposureðtÞ � yðtÞ yð0Þ5y0

KDðtÞ 5 KD;0:e
2kt

(11)

where y(t) is the tumor size at time t, y(0) is the baseline

tumor size, KL is the tumor growth rate, KD(t) is the drug-

constant cell kill rate that decreases exponentially with time

(according to k) from an initial value of KD,0 to account for

the progressive development of resistance, and Exposure(t)

is the drug exposure at time t. Thus, this model can

describe regrowth of tumors but has no tumor size

limitations.
Tumor growth and response exhibits high BSV, with

some patients responding to treatment and others showing
continued tumor growth. In settings with highly variable
response to therapy, a mixture of model approaches48

allows development of functions describing separate trajec-
tories for responders and nonresponders may provide a
useful approach to reduce BSV in parameter estimates.
Primarily, mixture models are used when data yield a
multimodal distribution for a random effect (h) that cannot
be removed or made symmetric by inclusion of a covariate,
or transformation of the h distribution. Mixture models are

always the second choice to using an appropriate
covariate. However, mixture models can provide insight into
the data, improving the structure of a nonmixture model.
This approach was used to describe tumor growth relative
to MK-3475, in which different tumor growth patterns were
identified.49 For illustration, simulated tumor growth profiles
are shown in Figure 3 (see Supplementary Material S2):

This approach simplifies identification of predictive factors
for responders or nonresponders. By allowing the model to
identify what sort of tumor growth each patient experiences
under treatment, covariates within each responder category
can be scrutinized.

Tumor growth drug interactions
Combination therapies are widely used to treat patients
with cancer. Model-based approaches can be applied in
preclinical development to characterize pharmacological
drug interaction. For example, Koch et al.35 proposed an
empirical model of tumor growth to look at the effect of
combination therapy, whereas Terranova et al.50 suggested
a mechanistic PK-PD model to characterize combination
therapies in xenograft experiments. Both approaches
include an interaction term to score the synergistic/antago-
nistic interaction. However, utility of the Koch model to
describe tumor growth DDIs is restricted to drugs with simi-
lar mechanisms of action. Furthermore, because only one
drug potency is modulated through the interaction term,
requires be made about assumptions on the interaction
effect. The more physiologic Terranova model does not
have these limitations.

Timing of administered agents can play an important role
in effectiveness of combination therapy. Harrold et al.51

developed a multiscale pharmacological model linking drug
exposure, receptor occupancy, and signal transduction
events to changes in tumor burden. This translational mod-
eling approach enables the ability to select the optimal drug
combinations and optimal dosing regimen for further
exploration.

Measuring tumor response to treatment
Developing PK-PD models necessitates understanding the
limitations of methods evaluating response. Tumors can be
measured directly through visualization or indirectly through
assessment of biomarkers of tumor growth. These methods
are described below.

Direct measurements of tumor growth
Traditional RECIST criteria for categorizing response to
treatment are largely based on changes in tumor size
described by the sum of the longest diameters of tumor
visible on computed tomography (CT) or magnetic reso-
nance imaging scans. RECIST categories have been
criticized because they discard much of the quantitative
information included in measurements.5,52

Although RECIST is the most common metric of tumor
size, alternative assessments are becoming available.
Combined positron emission tomography/CT, an imaging
method combining positron emission tomography functional
imagery with anatomic information of CT, allows visualiza-
tion of tumor response. Positron emission tomography/CT
is able to provide more precise evaluations of tumor growth
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and response than RECIST, and precise information is cru-
cial to development of useful models. The ability to mea-
sure early treatment response makes positron emission
tomography/CT useful during anticancer drug development,
allowing visualization of tumor metabolism, cellular prolifer-
ation, specific cell surface receptors, angiogenesis, and
tumor hypoxia.53 Standardized uptake values provide quan-
titative measures of tissue accumulation of 18F-fluorodeoxy-
glucose by normalizing measured tissue radioactivity to the
injected dose and body weight.54 Standardized uptake val-
ues represent the ratio of image-derived radioactivity con-
centration in a selected body part at a certain time to
radioactivity across the whole body.

Tumor biomarkers
The use of image-based measurements of tumor size has
a variety of limitations. It can be difficult to reliably identify
the same primary tumor or metastasis in order to describe
overall tumor size in a consistent fashion. Tumors may be
diffuse and not identifiable by traditional imaging methods.
An alternative to direct measurement of tumor size is to
use a biomarker produced by the tumor in proportion to its
size. The biomarker concentration is typically measured in
blood. Changes in concentration are assumed to be due to
changes in tumor size rather than changes in biomarker
clearance.

Biomarkers can predict tumor growth, as was shown with
sunitinib.55 The authors examined several biomarkers (vas-
cular endothelial growth factor, soluble vascular endothelial
growth factor receptor-2, soluble vascular endothelial
growth factor receptor-3, and soluble stem cell factor recep-
tor) to ascertain their ability to predict tumor response and
ultimately survival. A similar approach was used with CA-
125 as a biomarker for ovarian tumors. Imaging methods
were used to link the time courses of CA-125 and tumor
size.56 CA-125 changes after treatment were used to pre-
dict tumor size time course. CA-125 was a better predictor
of progression-free survival than models based on
observed tumor size, which may reflect the ability of CA-
125 to describe a tumor that is not visible with standard
imaging methods.

SAFETY EVALUATIONS

Safety is commonly evaluated to establish appropriate
doses of anticancer agents. Adverse events are broadly
divided into categorical evaluations (e.g., mucositis grade),
and continuous evaluations (e.g., absolute neutrophil
count). When events are reported in terms of occurrence
(e.g., a binary event where a subject experienced an event

Figure 3 Simulated tumor responses using a mixture of models. In each panel, the overall range of tumor growth over time for subjects
who have responded to therapy (responders), remained stable (stable disease), and not responded (progression). The solid lines repre-
sent the median tumor trajectory, the dashed lines represent the lower 2.5 percentile and the upper 97.5 percentile of expected tumor
growth, and the shaded gray regions are 95% confidence intervals of the percentiles. Defining separate functions for different subpopu-
lations can help to determine the effect of the drug in a sensitive patient population.
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or did not) or grade of occurrence (e.g., an ordered cate-
gorical event where increasing severity is associated with
higher event grades), the relationship between exposure
and events should be conducted using logistic regression
because intermediate grades or occurrences cannot occur.
However, caution must be used when attempting to extrap-
olate logistic models to other dose regimens, as these mod-
els are largely empirical, with little or no mechanistic basis,
and lack usefulness when applied to conditions (e.g.,
schedules, or routes of administration) different from those
from which they were originally derived. In general, if the
probability of an event is related to AUC, suggesting the
same toxicity will occur regardless of how the drug is
administered (e.g., a high dose infused twice weekly will
produce the same toxicity as lower doses infused 5 times
weekly), which is not always true.

In a logistic model, the probability of an event occurring
in an individual (pi) is represented as follows:

Probability pi 5
eki

ð11ekiÞ : (12)

where ki is a function of covariates (Xi), scale factors (u)
and BSV (hi) (ki5f ðXi ; u;hi Þ.

Odds ratio eki 5
pi

ð11piÞ
: (13)

The odds ratio is one way to quantify how strongly covari-
ates are associated with the occurrence of an event in a
given population. Exponentiating the odds ratio to isolate ki

gives the logit:

Logit Log
pi

ð11piÞ

� �
5ki : (14)

In binary logistic regression, we relate factors, such as drug
exposure, to the probability of a patient experiencing an
event. However, when the events are graded by severity,
this approach must be modified to take into account that
the events are ordered:

g½PðYi ;j � mjgiÞ�5log
p

12p

� �
5

Xm

k51

bk 1fd1gi : (15)

where Yi,j is the ith observation of the jth individual, m is the
number of grades of an event (1 mild, 2 moderate, etc.), fd
is a function of drug exposure, and bk is an underlying
baseline probability such that:

b1 is 1 � m; b2 is 2 � m; etc: (16)

Probability p5
e

Pk51

m
bk 1fd 1g

ð11e

Pk51

m
bk 1fd 1gÞ

: (17)

Adverse events can be dependent on prior occurrences.
For instance, a patient who has experienced a high-grade
adverse event usually undergoes dose reduction owing to

the likelihood that this patient will have the same or worse
grade of event on subsequent doses. Thus, it may be
important to account for past events when predicting future
occurrences. In such cases, the use of a transition or Mar-
kov model should be considered.57 With Markov models,
the probability of observing the data (Yi,j) depends on the
previous observation (Yi,j21) such that:

g½PðYi ;j � mjYi ;j215h; giÞ�5log
p

12p

� �
5

Xm

k51

bk ;h1fd ;h1gi : (18)

Examples of logistic regression models are in Supplemen-
tary Material S3.

Logistic regression is frequently used for graded safety
assessments. An evaluation of pralatrexate58 found drug
exposure and folate levels were predictive of mucositis,
requiring folate pretreat before pralatrexate administration. A
pooled retrospective evaluation of topotecan identified sev-
eral factors predictive of high drug exposure (weight, renal
function, performance status, and drug formulation), and
other factors, such as previous treatment with platinum-
based drugs, that would potentially increase patient sensitiv-
ity to neutropenia.59 This work used an ordered categorical
evaluation of common toxicity criteria-graded neutropenia
after infusions of 1.5 mg/m2 administered daily for 5 days
every 3 weeks. The model identified drug exposure (AUC)
and the number of courses of prior treatment with platinum-
based regimens as predictive factors for neutropenia.

A more elegant solution with broader applicability was
proposed by Friberg et al.,60 who described the delayed
transient decrease and rebound of neutrophils after varying
anticancer regimens in the rat model. This model was sub-
sequently tested across a range of drugs in humans,61

identifying drug effect parameters for several anticancer
agents and showing good consistency of system parame-
ters across all drugs evaluated. Puisset et al.62 applied this
model to docetaxel, where prior chemotherapy was again
identified as a predictor of neutropenia. The model was
also evaluated as a predictive tool for myelosuppression63

with good results, suggesting that semiphysiologic models
are useful to identify maximum tolerated doses during drug
development. Finally, the Friberg model was linked to the
probability of febrile neutropenia,64 suggesting the further
benefit of identification of patients who are at high risk for
developing febrile neutropenia based on predictive factors
and/or drug exposure.

Because anticancer agents are usually administered as
combination therapy, PK or PD interactions can increase
toxicity. Consequently, the model for neutrophil time course
proposed by Friberg et al.60 was adapted by Soto et al.65

to predict the neutropenia arising from concomitant admin-
istration of several anticancer agents. However, the
assumption that the actions of both agents are additive in
effect is usually made, which may underestimate the com-
bined effect. This same model can be modified to describe
effects of anticancer drugs on platelet and red blood cell
counts.

Estimating the TI in preclinical species and projecting it
to humans based on a dynamic translational PK-PD model
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has become feasible with the development of scalable
semiphysiologic models of myelosuppression. For exam-
ple, a translational PK-PD model was developed to
describe the time-course of the drug-induced thrombocyto-
penia by separating system-specific (platelet baseline
level, maturation time, rate of progenitor production, feed-
back regulation) and drug-specific (e.g., drug potency)
parameters.61,66 The model was scaled to humans by
accounting for system-specific differences while assuming
drug potency to be the same across species.67 Human PK
was predicted by a PBPK model and linked to the scaled
thrombocytopenia model to predict the time-course of
drug-induced thrombocytopenia in humans.66 Simulations
suggested dosing regimens projected to provide similar
anticancer effect based on a semimechanistic PK-PD
model developed to predict tumor growth inhibition in
tumor-bearing xenograft mice.68 The most favorable dos-
ing regimen that allowed differentiation of antitumor effect
from drug-induced thrombocytopenia was selected and
implemented in the FIH trial.

MODELING OUTCOMES (TTE)

TTE models find many uses in pharmacometrics and have
been recently reviewed.69 Examples for anticancer agents
include OS and progression-free survival, dropout from a clini-
cal trial, and time to the occurrence of a treatment-emergent
adverse event. A noteworthy feature of such data is that it may
not be observed (censored) during the observation period. The-
oretically, if one could follow the subject long enough, the event
might be observed. TTE models describing the distribution of
event times, such as time to death, are commonly used to test
hypotheses about treatment effectiveness.

A common approach is to use parametric hazard func-
tions, which can be parameterized to describe the hazard

for an event with and without treatment, as shown in the
equation below:

Constant hðtÞ5a a > 0: (19)

This function, a constant hazard, is uncommon, but it has
been used under the assumption that as long as the abso-
lute neutrophil count is below some critical level, there is a
constant hazard of developing febrile neutropenia.

Gompertz hðtÞ5h � ea�th; a > 0 : t � 0 (20)

Weibull hðtÞ5a � k � ta21a; k > 0 : t � 0 (21)

where t is time, a is the shape parameter, and k is the
scale parameter. Example hazard curves for the Weibull
function are shown in Figure 4a. The Weibull function can
be reparameterized in terms of a, and the median of the
Weibull distribution (TM) as shown in the equation below:

Weibull 2hðtÞ5 0:693a
TM

� t
TM

� �ða21Þ
a > 0 (22)

Parametric hðtÞ5ea1b�t1c�X1a > 0: (23)

Where a is the log of the baseline hazard (at t 5 0), b is a
scale factor for time ‘t’, g is a scale factor for the covariate
effect, and X1 is a measure of drug exposure (or other
covariate). Parametric approaches are often used as they
are interpretable (see Supplementary Material S4).

TTE analysis commonly uses factors assessed at base-
line (e.g., prognostic factors) as covariates to account for
between-subject differences in outcome. These factors can
be incorporated into hazard functions and tested to identify
their impact. If important, such covariates can be useful for
determining appropriate treatment strategy (commonly
referred to as “staging” in oncology).

Figure 4 Hazard functions. (a) A Weibull hazard function showing the impact of varying a (the shape parameter) and k (the scale
parameter). Weibull functions can therefore account for increasing or decreasing hazards. (b) Piecewise continuous and continuously
differentiable hazard functions. Although the piecewise hazard function is not easily related to physiology, the use of such functions, if
appropriately supported by the data, can improve the ability of the time-to-event (TTE) model to describe the reduction in hazard
because of drug exposure. In this figure, the continuous model would provide a biased estimate of hazard reduction at high first week
of treatment (FWTX) if the piecewise hazard function were derived from observed data.
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Often after a model is fitted to data, it is desirable to
see if the model contradicts the data. The model monitor-
ing distribution, or posterior predictive check, is one
approach to evaluate model performance.72 This involves
simulating from the final TTE model incorporating param-
eter uncertainty and plot nonparametric survival (i.e.,
Kaplan–Meier) or hazard estimators based upon the
simulated data and then overlay the estimators based
upon the observed data, as shown in Figure 5.70,73 Sev-
eral issues deserve attention when simulating with TTE
models. The first involves the simulation technique. It is
well known that the cumulative distribution function, F(t),
is distributed unit uniform. Because of the survival func-
tion, S(t) is 1-F(t), it is also distributed unit uniform. To
simulate a survival curve, one can simulate a unit uniform
variate, u, and plot u vs. t 5 S-1(u). If S is invertible, this
is trivial; otherwise other methods may be required to
compute “t.”74 This approach is cogent if one is working
with a known density (i.e., one that integrates to unity,
such as Gompertz).

EXPOSURE–RESPONSE CONSIDERATIONS

Consider the common case in which survival data are to be
modeled from a cohort of patients with cancer, all of whom
received either the same dosing regimen or placebo. A
number of predictors of survival are available from baseline
or very early in treatment. A measure of drug exposure is
available from the first week of treatment (FWTX), but BSV
in FWTX is substantial. When Kaplan–Meier plots are
generated by exposure quartile, a nonmonotone pattern is
evident. Subjects in the two lowest FWTX quartiles have
worse survival than subjects receiving placebo, with
subjects in the highest two quartiles having improved
survival relative to placebo. It is important to ensure that
these comparisons are made with subjects whose
underlying covariates are similar.75 If key covariates are
imbalanced in the exposure quartiles, modeling the impact
of the underlying covariates and using simulation to
compare to simulated placebo outcomes may be
appropriate.

Figure 5 Example Visual Predictive Check of a time-to-event model. In the example below, the final TTE model was used to simulate
multiple replicates of the study, and Kaplan–Meier plots of the simulated data (shaded area) were overlaid on the observed data (blue
lines). In such evaluations, it is common to generate these figures stratified by predictive covariates; here, the data were stratified by
drug exposure. In this example Visual Predictive Check, the model performs well for most exposure quantiles but slightly underesti-
mates survival benefit in the third quantile.
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After establishing that the nonmonotone exposure-
survival pattern is not due to covariate imbalance, and
keeping in mind that subjects were not randomized to
FWTX (exposure in this case is observed), it is decided to
model the data. Two possible approaches with such appa-
rent relationships are piecewise continuous and continu-
ously differentiable hazards. For the piecewise continuous
approach, the change points (knots) for h(t) must be man-
ually selected or estimated. Likewise, coming up with a
continuous h(t) that in nonmonotone is challenging. One
possible continuous h(t) is described in the equation below.
A comparison of a continuous and piecewise continuous
hazard functions are depicted in Figure 4b.

hðtÞ5e
2FWTX �ea

11eb 2e2ea�FWTX �ec�FWTX
(24)

Another potential situation might be a monotone relationship
with higher levels of exposure associated with worse survival.
This might be explained by an unobserved dichotomous cova-
riate that is associated with both poorer survival and lower
drug elimination (which is referred to as a latent confounder).
Examples include poor performance status, which is often
negatively associated with survival and slower clearance, and
dose reductions because of mechanism-based toxicities.
Unexpected relationships between survival and drug exposure
have been described for angiogenesis inhibitors.76 Bortezomib
has been reported to stimulate angiogenesis at low concen-
trations, while inhibiting angiogenesis at higher exposure (i.e.,
bell-shaped dose-response).77

TIME-DEPENDENT COVARIATES

Using a single evaluation of tumor size to predict outcome
can cause problems because the observed time course of
tumor size may be confounded with survival.78 The use of
time-varying factors, such as tumor size or biomarkers,55

can be included as covariates in TTE models to account for
disease progression or remission on outcome. However,
covariate misclassification often biases parameter esti-
mates for data-analytic models. Misclassification could be
recording the wrong category for an ordinal or nominal
covariate, or measurement error for a continuous covariate.
If a time-varying covariate is fixed to a baseline value in a
TTE analysis, the degree of misclassification may increase
with time and result in underestimation of the covariate
effect. An often cited example is mortality among liver fail-
ure patients who have a model of end-stage liver disease
scores recorded longitudinally. Using a model of end-stage
liver disease as a time-varying covariate results in a larger
model of end-stage liver disease effect than just using the
baseline value.79 Thus, when covariates vary over time,
including more than just the baseline, value is an important
means of reducing bias.

However, using time-varying covariates in TTE models
requires careful consideration. Even if the covariate is time
invariant, its effect on outcome may change with time. A lag
effect may be needed for events having long incubation peri-
ods. Given a history of a changing covariate value up to the
time of event, or censoring, there are concerns on how to

use this information. One could use the covariate value at the
event time, the maximum value up to the event time, or some
sort of average. Time-varying covariates could be allowed to
interact with baseline covariates (e.g., larger baseline tumor
may grow faster and be less likely to respond).

Broadly speaking, covariates may be classified as exter-
nal or internal. External or internal covariates are generated
by a stochastic process external or internal to the subject,
respectively.71 External covariates are further subclassified
as fixed, fixed path, or ancillary. A fixed covariate is time
invariant (e.g., sex at randomization), a fixed path covariate
changes with time in a predictable way (e.g., attained age),
and an ancillary covariate is generated by a random pro-
cess external to the subject (e.g., circadian effects).

Internal covariates can only be observed if the subject is
alive and uncensored. From a modeling perspective, it is opti-
mal if the internal covariate affects the TTE, as opposed to
the converse. Consider a randomized study of placebo vs. a
novel anticancer agent. Serial measures on tumor size are
recorded. Also presume tumor size is on the causal pathway
to death. If the time-varying tumor size and treatment arm are
included in the TTE model as simple independent covariates,
the treatment effect may be underestimated, as the drug
effect may be absorbed into the tumor size effect. If the pri-
mary goal of modeling is to quantify treatment benefit, inclu-
sion of time-varying tumor size along with treatment coded as
dichotomous is suboptimal. Inclusion of time-varying tumor
size could minimize the apparent treatment effect, if the treat-
ment effect is via tumor size attenuation. An option to avoid
this would be to model TTE as a function of tumor size, which
is modeled via a separate function as depending on drug
exposure.71 It is important to include appropriate relationships
between time-varying covariates within the TTE model.

Wang et al.80 developed a model linking drug levels to
tumor growth, which was subsequently linked to OS. The
model was used to identify a metric (tumor size change at
week 8) as an early covariate of patient response to treat-
ment, and was subsequently used to examine the potential
OS benefit for cytostatic vs. cytotoxic agents.81 A simplified
version of this approach was also used by Claret et al.,47

using individual predicted tumor trajectory to evaluate sur-
vival. However, Wang and Claret were not using time-
varying covariates for individuals, and did not integrate the
hazard over time. Linking drug exposure to tumor growth
and then ultimately linking time-varying tumor growth to OS
provides important information about appropriate exposure
for novel anticancer agents, as was shown with sunitinib.55

Bruno et al.82 reviewed various approaches to modeling
tumor growth and its impact on OS. The authors suggested
jointly modeling the drug effect on tumor growth and OS, or
serially modeling tumor growth, then using post hoc esti-
mates tumor size as predictors of OS. They also recom-
mended considering D-optimization to help identify
informative times to evaluate tumor size.

DOSE SELECTION

The goal of optimal dose selection is to maximize the likeli-
hood of producing therapeutic response while minimizing
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unacceptable toxicity. For drugs that produce therapeutic
effects at doses not associated with adverse events (i.e., a
wide therapeutic index), the incentive for precisely deter-
mining dose is lower than for drugs with a narrow TI. Most
anticancer agents have a narrow TI, requiring careful evalu-
ation of optimal dosing schedules and individualized dosing
to minimize the BSV in drug exposure.

Historically, many anticancer agents are dosed based on
body surface area (BSA), which was initially proposed as a
metric for individualizing dose. Egorin83 noted that using
BSA-based dosing was initially implemented as a means to
derive safe starting doses for phase I anticancer studies
from preclinical animal toxicology data based on its theoret-
ical ability to predict metabolic rate. The limitations of using
BSA as the primary size metric is based on the fact that
the PK of many anticancer agents are not related (or are
not linearly related) to BSA (e.g., a prospective study of
epirubicin evaluating fixed dosing found no correlation with
body size for either PK or neutropenia) and on difficulties in
treating obese patients.84 Despite numerous articles ques-
tioning the value of BSA-based dosing,85 the practice is still
common today.86

Variables for dose selection include the amount of drug
delivered, frequency of administration, and treatment dura-
tion. Ideally, these should be selected based on knowledge
of the relationship between the dose, the concentration
time course, and the subsequent effects and likelihood of
beneficial and adverse consequences resulting from these
concentrations. PK-PD models relate doses to concentra-
tions and then describe concentration-effect relationships,
facilitating the prediction of the time course of the drug
effects. Population-based evaluations identify patient factors
predictive of exposure and response,7,87 making simulating
with these models useful in developing appropriate dose
regimens. In 1988, Canal et al.88 suggested implementation
of adaptive dose adjustment, based on PK and PK-PD
models, to allow revision of the dosage after measurement
of drug concentration and comparison of exposure metrics
based on known PK-PD relationships. Ten years later,
Evans et al.89 reported that individualizing the dose of
methotrexate to account for the patient’s ability to clear the
drug improved the 5-year survival from 66% to 76% in chil-
dren with B-lineage acute lymphoblastic leukemia. Taking
the concept of individualized therapy further, Barrett et al.90

developed a dashboard system (user interactive decision
support software) to fully individualize methotrexate dosing
in pediatric patients, potentially further improving outcomes.
Although a fully powered prospective clinical trial evaluating
the outcomes with dashboard-guided dosing vs. standard
care has never been reported, the expectation is that this
approach would further reduce toxicity and improve
efficacy.

The identification of novel targets increased the opportu-
nity to individualize therapy. For trastuzumab, tumors
expressing high HER-2/neu are more likely to respond than
those with low or no HER-2/neu expression.91 In several
studies comparing disease-free survival in patients with
HER-2/neu-positive breast cancer, treatment with trastuzu-
mab was found to offer benefit.92 Identification of more sen-
sitive subpopulations of patients using PK-PD modeling

could allow enrichment of patient populations in early phase
studies, leading to higher response rates or earlier discon-
tinuation of failing drug candidates.

CONCLUSIONS

There are a number of special considerations that anti-
cancer drug development often faces: a narrow TI, complex
pharmacology, combination therapy, lack of data from
healthy subjects, sparse PK sampling, and high BSV for PK
and PD. Currently, new anticancer agents have a high fail-
ure rate in late-stage development, which is partly attribut-
able to these considerations, suggesting that anticancer
drug development would benefit from systematic model-
based evaluations of the data across all phases of drug
development. PK-PD modeling can provide information
about new anticancer agents, improving mechanistic under-
standing of the drug and identifying exposures associated
with response and toxicity. When tumor models are devel-
oped during preclinical evaluations, results can be scaled to
humans, providing important information for rapid identifica-
tion of the TI in humans, facilitating selection of dose regi-
mens for testing during clinical development. Updating
models with human data as it becomes available can sup-
port appropriate dose metrics, and may reduce the number
of late-state development failures.

A wide variety of models are routinely developed during
anticancer drug development, including PK, disease pro-
gression, and exposure-response modeling. Exposure-
response modeling can include TTE models and models
relating exposure to adverse events. Such models can be
applied to investigate DDI. Simulation can help identify safe
starting doses for combination therapy. Models can also be
used to determine informative times to assess exposure or
response.
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