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Tuberculosis, caused by the pathogenic bacterium Mycobacterium tuberculosis (Mtb), is
the leading cause of death from an infectious disease, with a mortality rate of over a
million people per year. This pathogen’s remarkable resilience and infectivity is largely
due to its unique waxy cell envelope, 40% of which comprises complex lipids. Therefore,
an understanding of the structure and function of the cell wall lipids is of huge indirect
clinical significance. This review provides a synopsis of the cell envelope and the major
lipids contained within, including structure, biosynthesis and roles in pathogenesis.

Introduction
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, was responsible for 1.5 million
fatalities worldwide in 2018 [1]. Added to this are the growing concerns of a surge in strains resistant
to front-line drugs (multidrug resistant; MDR) and those additionally resistant to second-line drugs
(extremely drug resistant; XDR) and all known drugs (totally drug resistant; TDR) [2]. The distinctive
cell envelope of Mtb is robust and waxy [3], thanks to the rich variety of lipids present, which bestow
on this pathogen resilience [4], a hydrophobic barrier to antibiotic entry [5,6] and key virulence
factors [7–10]. In view of these facts and since many of the existing antibiotics available for tubercu-
losis target the synthesis and transport of these complex lipids, an understanding of lipid structures
and synthesis in Mtb is a major goal of current research, with promise of novel effective drug targets.
Neither fully Gram-negative nor Gram-positive, the envelope of mycobacteria (Figure 1) is pro-

posed to adopt a remarkable dual membrane structure, with a specialised mycobacterial outer mem-
brane or ‘MOM’, formed as an inner layer of mycolic acids (MAs) and an outer leaflet of free lipids
[5,11–13]. While the free lipids are not attached and can be stripped from the envelope, the MA layer
is covalently linked to the polysaccharide cell wall [5,11,14], a feature not seen in Gram-negative bac-
teria. This connection forms part of the mycoloylarabinogalactan–peptidoglycan complex (mAGP),
consisting of branched arabinose domains esterified on the outer surface with MAs and linked to the
peptidoglycan via the galactan helices of the arabinogalactan (AG) [15–18]. The periplasmic space of
Mtb is sizeable, allowing for enzymatic reactions to take place and for the material to be processed
and translocated to the MOM [13,19–21]. The inner membrane of Mtb was initially assumed to be
conventional, though lipid studies have since revealed that the phospholipid composition is predomin-
antly phosphatidyl-myo-inositol mannosides (PIMs). More than half is present as PIM2 (with two
mannose sugars on the inositol moiety), which appears to be exclusively within the inner leaflet of the
inner membrane; while PIM6 (six mannose residues) is thought to occupy the outer leaflet [22]. This
unusual arrangement increases the content of fatty acid chains in the inner membrane as Ac1/
Ac2PIM2 and Ac1/Ac2PIM6, each has three or four (Ac1 or Ac2) acyl chains. The subsequent tight
packing of these chains could lead to a less fluid, more stable membrane with reduced permeability to
drugs [22], coining a new term mycobacterial inner membrane or ‘MIM’ [23]. The lipoglycans, lipo-
mannan (LM) and lipoarabinomannan (LAM) have lipid anchors based on PIMs and probably
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Figure 1. Structure of the cell envelope of Mtb.

In the MIM (mycobacterial inner membrane), the inner leaflet mostly consists of AC1/2PIM2 (tri-/tetra-acylated

phosphatidyl-myo-inositol-dimannoside). The outer leaflet also contains PIMs, in the form of AC1/2PIM6 (tri-/tetra-acylated

phosphatidyl-myo-inositol-hexamannoside), as well as the more conventional phospholipids of the inner membrane, DPG

(diphosphatidylglycerol), PE (phosphatidylethanolamine) and PI (phosphatidylinositol). In the periplasm, LM (lipomannan) and

LAM (lipoarabinomannan) extend outwards, from lipid anchors in the MIM, though additional anchorage in the outer membrane

has been demonstrated, which is contentious; the mannose core helix and individual sugar molecules of the PIMs and

mannose caps are coloured blue and the branched arabinan domain is pink. The glycan backbone of the PG (peptidoglycan),

green, is represented by helices positioned perpendicular to the membrane, according to the scaffold model [281, 282].

Peptide cross-links between the glycan helices are shown as coloured triangles (orange = L-alanine, yellow = D-isoglutamine,

green =meso-diaminopimelate and blue = D-alanine). The PG is connected to the Gal (galactan) domain, yellow, of the

arabinogalactan (AG) via a linker unit. The branched Ara (arabinan) domain of the AG, pink, is esterified with MA (mycolic

acids), comprising the inner leaflet of the MOM (mycobacterial outer membrane); the typical conformation adopted by each

class of MA is represented. The outer leaflet of the MOM is characterised by DAT, TAT and PAT (di-/tri- and pentaacyl

trehalose); PDIM and NPDIM (dimycocerosates of phthiocerols and phthiodiolones); and SGL (sulphated trehalose glycolipids)

[23,283]. The diagram is roughly to scale using dimensions obtained from cryo-electron microscopy [13].
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project into the periplasm from the MIM. Some models of the Mtb cell envelope depict a capsule as the outer-
most layer beyond the MOM, which consists mainly of polysaccharides and proteins, with only small quantities
of lipids [24]. This has been observed using cryo-electron microscopy to have a depth of ∼30 nm, but only in
cultures grown under optimal conditions [25].

Mycolic acids
MAs are an abundant feature of the cell envelope of mycobacteria, representing 30% of the dry weight [26];
they provide a hydrophobic permeability barrier to antibiotics [6,27,28] and are essential for viability [29,30]
and pathogenesis [31–35]. Characterised as long-chain α-alkyl-β-hydroxy fatty acids (70–90 carbons), most are
covalently bound to the AG, forming the inner leaflet of the MOM [5,36]. While two-thirds of the AG termini
are esterified with MAs [5,36], some MAs are present as extractable lipids in the outer leaflet of the MOM,
mainly linked to trehalose as trehalose dimycolates (TDM) and trehalose monomycolates (TMM), or as free
mycolates (Figure 2b). While these are thought to be mostly intermediates in the attachment of the MA to the
AG [37], there is evidence to suggest that TDM, the so-called ‘cord-factor’ and most highly expressed glycolipid
in Mtb, also has dedicated roles in pathogenicity through interactions with the C-type lectin receptor Mincle
on the macrophage, which prevents phagosome acidification and promotes granuloma formation [38–41]. Free
mycolates are more abundant in latent phase cells and could also play a role in biofilm formation [42,43].
MA structure can be separated into two parts: the meromycolate moiety consists of a long-chain meroalde-

hyde (up to 56 carbons) and usually has two functional groups, whereas the α-branch is a shorter, saturated
alkyl chain (24–26 carbons) [3]. There are three classes of MAs in Mtb: α-mycolates are the most abundant
and are present with only cis-cyclopropane rings, while oxygenated methoxymycolates and ketomycolates both
have subclasses with predominantly either cis- or trans-cyclopropane rings and an adjacent methyl branch [5,6]
(Figure 2a).
The MA chains are packed tightly into parallel arrays perpendicular to the surface of the cell envelope,

which may be stabilised by hydrogen bonds between the β-OH groups [5,6,36,44]. Within these arrays, the
MAs fold into energetically favourable conformations, modulated by the cis-double bonds and the cyclopropane

Figure 2. Structure of the major mycolic acid (MA) components from Mtb.

(a) MA structures and the typical conformations adopted, (i) α-MAs, (ii) Methoxy-MAs and (iii) Keto-MAs. The main components are denoted with a *.

(b) (i) TMM (trehalose monomycolates) and (ii) TDM (trehalose dimycolates) [284].
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rings, which introduce kinks into the long chains [6]; stabilising hydrophilic interactions are also formed
through the oxygen functions [45]. This enables the keto-MAs to adopt a ‘W-form’ conformation, in which
four chains are packed together in parallel [45,46]. Though the α-MAs and methoxy-MAs can also form a ‘W’
shape, they are more flexible, particularly the α-MAs, adopting more open forms at higher temperatures
(Figure 2a) [47]. This tight packing provides the MA monolayer with appropriate rigidity, leading to a hydro-
phobic permeability barrier, which could be regulated by the MAs assuming altered conformations depending
on their structure and the ambient temperature [45]. Each mycobacterial species has a specific MA profile, sug-
gesting that the different structural elements have an important biological role, both physiologically and in
pathogenicity [48].

Free lipids
Phthiocerol dimycocerosate (PDIMs) and phenolic glycolipids (PGLs) (Figure 3a,b) are large ( ∼90 carbons),
complex, hydrophobic molecules found in the outer leaflet of the MOM [49,50]. The unusual lipid core consists
of a long-chain β-diol (phthiocerol) esterified with two multimethyl branched long-chain fatty acids (myco-
cerosic acids) [49,51–53]. Whilst possessing a similar lipid core, PGLs differ through a phenolic residue that
forms a link between this core and a chain of up to four saccharide units; the composition of the oligosacchar-
ide is species-specific and confers antigenic properties [5]. The stereochemistry of the diol units of PDIMs and
PGLs also vary by species; M. marinum and M. ulecerans both have erythro stereochemistry, while all other
strains of mycobacteria have the threo configuration [54–56]. PDIMs are produced by all virulent strains of
Mtb and have important roles in pathogenicity: forming an impermeable barrier on the outer surface of the
cell [57,58], masking the cell from the host’s immune system and lysing the phagosome in order to escape the

Figure 3. Free lipid structures.

(a) PDIM (Phthiocerol dimycocerosate) and (b) PGL (phenolic glycolipids, general structure): black = saccharide; red = phenolphthiocerol/phthiocerol;

blue =multimethyl-branched fatty acids (mycocerosic acids) [285], (c) DAT (diacyl trehaloses) [286], (d) PAT (pentaacyl trehaloses) [286],

(e) Sulfolipid-1, SL-1 (sulphated trehalose glycolipid, SGL) [286] (f ) Lipooligosaccharides (LOS) from M. marinum [142], (g) C-GPLs (general

structure) [103] and (h) Ser-containing GPL from M. xenopi: red = lipid; green = peptide; black = saccharide [106].
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macrophage and disseminate [59,60]. Interestingly, PDIMs give a negative advantage to growth in vitro, leading
to their spontaneous loss, though they are never absent from clinical strains [61]. This could be partly due to
the hydrophobic barrier that PDIMs form, which though useful in the hostile environment of the host, also
prevents the diffusion of useful solutes. PE/PPE proteins, a family named for their N-terminal repeated regions
of proline-(proline)-glutamate, have recently been shown to compensate for this, forming pores that selectively
uptake the necessary nutrients [58].
PGLs are less prevalent in Mtb isolates [62,63], though are present in the Mtb Canetti strain [63], M. leprae

[64], M. marinum [65] and M. bovis [66], and could be responsible for the hyper-virulence and drug resistance
of the W-Beijing family of Mtb [8,10]. PGLs affect virulence by suppressing the release of cytokines involved in
the inflammatory response of the immune system [8]. In M. leprae, PGLs are also implicated in the Schwann
cell invasion [67] and nerve demyelination [68]. The presence of PGLs is directed by a single fused polyketide
synthase (PKS), Pks15/1, which is knocked out in strains devoid of PGLs by an insertion that splits the pks15/1
gene in two [62]. PKS proteins are required to condense, extend and modify nascent fatty acids; this particular
PKS, Pks15/1, is proposed to extend from the phenol group, producing an intermediate in the synthesis of the
phenolphthiocerol moiety, p-hydroxyphenylalkanoate (PHPA) [69]. This is extended by the PpsABCDE PKS
proteins to phenolphthiocerol [70]. Mycocerosic acid synthase (MAS), a PKS located in the same cluster as the
pps operon, produces the methyl-branched mycocerosic acids [71]. The latter two PKS systems are responsible
for the synthesis of the lipid core common to PDIMs and PGLs.
Acyl trehaloses, trehalose glycolipids (SGLs) acylated with multimethyl branched fatty acids, are present in

the MOM of all virulent strains of mycobacteria [49,72–74]. As such, they are important in virulence with a
role in blocking phagosome maturation [75] and suppressing the host’s immune system by inhibiting T cell
proliferation and down-regulating cytokine secretion in activated monocytes [76–78]. The core structure con-
sists of a central trehalose moiety that is esterified on the 2-position with a saturated fatty acid (C16 or C18); the
trehalose is additionally esterified with as many as four multimethyl branched long-chain fatty acids. The sim-
plest forms are the diacyl trehaloses (DATs) (Figure 3c), which are based on mycosanoic (C24) and mycolipa-
nolic (C27) acids [79]. Pentaacyl trehaloses (PATs) (Figure 3d) contain mycolipenates (C27), whereas sulphated
SGLs are made up of the longer fatty acids, phthioceranates (C37) and hydroxyphthioceranates (C40), and the
trehalose moiety is sulphated at the 20-position (Figure 3e) [80,81].
Lipooligosaccharides (LOS) are extremely polar lipids, which are associated with biofilm formation and

motility [82]. They consist of a common trehalose-containing saccharide core, acylated on the trehalose moiety
with multimethyl branched fatty acids (Figure 3f ). The trehalose is further glycosylated with a mono-, or more
commonly, an oligosaccharide of 2–6 sugars, which is species-specific [83,84]. LOS are lacking in many Mtb
strains, though are present in Mtb Canetti strain [85], M. kansasii [86], M. gordonae, M. smegmatis [87],
M. marinum [88,89] and a member of the M. fortuitum complex [90,91], later classified as M. houstonense.
Those strains that do produce LOS are characterised by a smooth appearance, whereas those lacking these gly-
colipids are rough and have increased hydrophobicity over the outer membrane [92,93]. LOS synthesis requires
the presence of two proximal pks5 gene homologues flanking an associated pap (PKS associated protein) gene.
Strains lacking LOS expression appear to have undergone a recombination-deletion event between the two pks5
homologues, losing a pks5-pap segment [94]. Studies have demonstrated that LOS reduces virulence; smooth
M. kanasii was unable to establish the chronic infection in the lungs of mice that their rough counterparts
could [92]. This could be due to the observed interference by LOS of host-pathogen interactions, perhaps by
covering up critical glycolipids, and it has been speculated that this has driven their loss in virulent strains
[94]. The associated hydrophobicity detected in mycobacteria lacking LOS may also have the added benefit to
the pathogen of enhancing aerosol transmission [93].
Glycopeptidolipids (GPLs), present in the outer leaflet of non-tuberculosis causing mycobacteria, consist of a

lipopeptidyl core, glycosylated on the peptide unit. They are important in biofilm formation, aggregation, motil-
ity, cell wall integrity and interactions with the host’s immune system [95–98]. Interestingly, strains producing
smaller amounts of GPL are more invasive, denoting a role in pathogenicity [99–101]. C-type GPLs
(Figure 3g), which form a sub-group that are alkaline-stabile, are found in M. smegmatis, M. avium, M. chelo-
nae and M. abscessus [91,102]; their general structure consists of a core tripeptide-amino alcohol
(D-Phe-D-allo-Thr-D-Ala-L-alaninol), esterified with a long fatty acyl chain (C28) [103]. The peptide is glycosy-
lated with a 6-deoxytalose on the allo-threonine and a rhamnose unit linked to the alaninol. This basic core
can be further acylated, methylated and glycosylated, depending on the strain, producing different serotypes
[95,104,105]. The other group of GPLs, found in M. xenopi, are serine-containing and alkaline-labile, consisting
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of a tetrapeptide core with two serines (L-Ser-L-Ser-L-Phe-D-allo-Thr), esterified with a simpler fatty acyl chain
(C12) [106,107] (Figure 3h). The N-terminal serine residue is methylated, acting as the primary glycosylation
site for a 6-deoxytalose unit; a di/tetrasaccharide of rhamnose (terminating in a glucose for the tetrasaccharide)
is attached to the allo-threonine [106,107].

Fatty acid and mycolic acid biosynthesis
The biosynthesis of fatty acids and MAs is carried out by two fatty acid synthases, FAS-I and FAS-II (Figure 4).
FAS-I is a multi-domain ‘eukaryotic-like’ fatty acid synthase, a single large protein comprising all the catalytic
domains required for fatty acid synthesis. Whereas FAS-II is a ‘prokaryotic-like’ fatty acid synthase, a large
complex of discrete enzymes. FAS-I is the only system capable of synthesising fatty acids de novo and uniquely
to mycobacteria, the synthesis is bimodal, generating fatty acids with two different chain lengths: C24–C26 (cor-
responds to the α-branch in MA synthesis) and C16–C18 (extended by FAS-II to produce the meromycolate
chain in MA synthesis) [108–110]. These fatty acids are either shuttled to FAS-II for MA production or to
other PKS systems for the further extensions and modifications required to manufacture the various complex
lipids.
Both FASs extend the nascent acyl chain through sequential additions of acetate (2 carbons) from the

extender unit malonyl-Coenzyme A (CoA), though FAS-II requires the malonate to be presented on an acyl
carrier protein (AcpM; Rv2244) [111]. The first step in fatty acid synthesis is the production of this unit
through the carboxylation of acetyl-CoA, catalysed by the acyl-CoA carboxylase complex (ACCase) [112].
FabD (Rv2243), a transacylase, next generates the malonyl-AcpM extender unit required by FAS-II, transferring
the malonyl group from the phosphopantetheine group of CoA to the same prosthetic group present on the
active site serine of the AcpM [113].
The FAS-I gene present in Mtb (fas; Rv2524c) contains seven domains for fatty acid synthesis: acyl transfer-

ase (AT), enoyl reductase (ER), dehydratase (DH), malonyl/palmitoyl transferase (MPT), acyl carrier protein
(ACP), β-keto reductase (KR) and β-ketoacyl synthase (KS) [114]. Synthesis is initiated with an acetyl group,
which is transferred from the CoA to the ACP domain. During synthesis, the growing acyl chain remains
bound to this domain.
In the FAS-II system, the discrete enzymes have corresponding functions to the domains of FAS-I. The first

step of synthesis in this system is an important link between FAS-I and FAS-II. FabH (Rv0533c), a β-ketoacyl

Figure 4. Biosynthesis of Fatty acids.

For example in the production of mycolic acids (MAs). The FAS-I domains/FAS-II enzymes: KS (β-ketoacyl synthase), KR

(β-keto reductase), DH (dehydratase), ER (enoyl reductase) and ACP (acyl carrier protein) [287,288].
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ACP synthase, plays a pivotal role in initiating FAS-II synthesis through the Claisen condensation of the
shorter product from FAS-I (acyl-CoA, C16–18) with a malonyl-AcpM [115]. This forms a β-ketoacyl-AcpM,
which can then be presented to the FAS-II enzymes, commencing a round of modifications: reduction in the
keto group by the keto reductase (MabA; Rv1483), dehydration of the β-hydroxylacyl-AcpM intermediate by
the dehydratase heterodimers (HadAB and HadBC; Rv0635–Rv0636 and Rv0636–Rv0637), and finally reduc-
tion in the enoyl-AcpM to acyl-AcpM by the enoyl reductase (InhA; Rv1484) [30,116–118]. After the first
cycle, further rounds are initiated by KasA/B (Rv2245 and Rv2246), ketosynthases which then elongate the acyl
chain by the addition of two carbons each cycle, forming a β-ketoacyl-AcpM intermediate [119,120]. The com-
pleted Acyl-AcpM undergoes further rounds of elongations, desaturations and also modifications, including
cis-/trans-cyclopropanation and methoxy/keto group additions [31,34,121,122].
How the FAS systems regulate the length of the growing acyl chains is not clear. Though not essential, muta-

tions in kasB result in MAs shorter by 2–4 carbons, suggesting that KasB is required for full-length extensions
[120,123]. The HadBC heterodimer is also associated with later elongation cycles and is similarly expected to
play a role in regulating the acyl chain length in FAS-II [117,124]. The mechanism by which FAS-I is able to
synthesise two products with different chain lengths (C16–C18 and C24–C26) is likely to be a complex interplay
between products and enzymes. Replacing the M. smegmatis FAS-I system with the Mtb homologue, did not
alter the length of the longer fatty acid chains produced in M. smegmatis from the usual C24 to the C26 pro-
duced by Mtb; this indicates that regulation is not restricted to FAS-I and may involve interactions between
FabH and FAS-II with FAS-I [125]. Endogenous polysaccharides also affect FAS-I product formation, favouring
the synthesis of shorter chain fatty acids (C16–C18) as well as increasing the overall rate of synthesis; these poly-
saccharides, containing 3-O-methyl-D-mannose or 6-O-methyl-D-glucose, are proposed to enhance product
release, a rate-limiting step in the synthesis, by forming a complex specifically with the shorter length product
and thereby facilitating its release [126–128]. In the absence of these polysaccharides, the synthesis of the
longer fatty acid chain is favoured (C24–C26), which as longer, shows an increased ability to self-interact,
forming stable aggregates that also enable product release from FAS-I [126].

Polyketide synthases (PKS)
The mycobacterial genome boasts a large number of PKS, fundamental in the synthesis of the cell envelope’s
complex lipids, performing condensations, extensions and modifications of fatty acid chains (Figure 5a) [129].
There are three types of PKS systems, with distinct organisations and mechanisms. Multifunctional type I PKSs
are large polypeptides with several catalytic domains. Pks12, for example, is the largest encoded polypeptide in
Mtb, at 4151 amino acids [129]. There are two varieties of type I PKSs: iterative systems cycle the product
several times through the same domains in a mechanism resembling FAS-I, whereas modular PKSs possess a
single domain for each catalytic step of the entire synthesis. Type II PKSs are similar to FAS-II, comprising a
large complex of enzymes, each responsible for a catalytic step. There are also three type III plant-like PKSs
present in the genome of Mtb [129], condensing enzymes from the chalcone synthase (CHS) superfamily
[130]. These enzymes are distinct from the other PKS classes, both in their structure, which is typically a
homodimer of KS domains, and mechanism, acting on free acyl-CoA thioesters with no ACP involvement [131].
PKSs do not carry out de novo fatty acid synthesis, instead using fatty acid precursors from FAS-I. These are

usually activated and loaded onto the ACP domain of the PKS by an associated FadD protein. The attached
precursor is then modified by the catalytic domains of the PKS, cycling through successive extensions by the
KS (β-ketoacyl synthase) domain, usually from a (methyl)malonyl-CoA extender unit via a Claisen-type con-
densation reaction; reduction in the keto group by the KR (β-keto reductase) domain; dehydration by the DH
(dehydratase) domain and reduction in the enoyl group by the ER (enoyl reductase) domain. Some more
complex lipids in mycobacteria require several PKSs to synthesise the different lipid components. For instance,
in PGL synthesis, Pks15/1 synthesises the PHPA intermediate [62], PpsABCDE extends this to phenolphthio-
cerol [70] and mycocerosic acid synthase (MAS), produces the methyl-branched mycocerosic acids that are
attached to the diols [71].
Pks13, an iterative type I PKS, is involved in the synthesis of MAs, joining together the acyl-CoA (C24–26)

product of FAS-I with the meromycolyl-AcpM product from FAS-II, via a Claisen-type condensation reaction
(Figure 5b). In this process, both substrates are first attached covalently as thioesters to the ACP domains of
Pks13. The meromycolyl-AcpM is activated by FadD32 (Rv3801c) to an AMP derivative and loaded on to the
N-terminal ACP of Pks13 [132,133]; the acyl-CoA fatty acid is carboxylated, by an ACCase [134,135], and
loaded onto the C-terminal ACP of Pks13, via the AT domain [136]. The meromycolyl group is then
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Figure 5. Polyketide synthase (PKS)/FAS-I domains and synthesis pathways.

(a) Domains. The PKS domains are: AT (acyl transferase; green), ER (enoyl reductase; blue), DH (dehydratase; red), ACP (acyl carrier protein; purple),

KR (β-keto reductase; brown), KS (β-ketoacyl synthase; yellow), TE (thioesterase; pink) and CHS (chalcone synthase; dark blue). Other abbreviations:

SL = sulfolipids, DAT = diacyl trehaloses, PAT = pentaacyl trehaloses, LOS = lipooligosaccharides, PGL = phenolic glycolipids, PDIM = phthiocerol

dimycocerosate [289–291]. (b) Suggested mechanism of Claisen-type condensation by Pks13. 1.a FadD32 (FD32) activates the

meromycolyl-S-AcpM with AMP and loads it on the N-terminal ACP (acyl carrier protein) domain of Pks13. 1.b The acyl-CoA (C26) produced by

FAS-I is carboxylated by ACCase and loaded onto the C-terminal ACP domain of Pks13 by the AT (acyltransferase) domain. 2. The meromycolyl

chain is transferred, in the presence of FD32, to the KS (ketosynthase) domain of PKS13. 3. The Claisen-type condensation reaction: the acidic

α-carbon of the carboxyl-acyl group attacks the carbonyl group of the meromycolyl chain, producing 3-oxo-C78-α-mycolate, releasing CO2 and the

meromycolyl chain from the KS domain. 4. The TE (thioesterase) domain cleaves the product from the ACP domain, possibly forming a transient

covalent bond via an active site serine. 5. The TE domain transfers the product onto a trehalose unit. 6. The keto group is reduced by CmrA,

producing the mature trehalose monomycolate (TMM) [138]. (c) MmpL transport of complex lipids across the cytoplasmic membrane in Mtb. PKS

(polyketide synthase) proteins are purple, FadD are red and MmpL/S blue. S4 and S5 are MmpS4 and MmpS5, respectively; MmpL4 and 5 are

involved in iron scavenging, exporting two siderophores, lipophilic mycobactin (MBT) and hydrophilic carboxymycobactin (cMBT). MmpL11 exports

monomero-mycolyl diacylglycerol (MMDAG) and mycolate wax ester (MWE) from the intermediate mycolyl phospholipid (MycPL). Other

abbreviations include FA = fatty acid, Tre = trehalose, mAGP =mycoloylarabinogalactan-peptidoglycan [292–294].
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transferred, in the presence of FadD32 [136], to the KS domain of Pks13 [132]. The carboxylation step is essen-
tial for the Claisen-type reaction that follows, activating the α-carbon and enabling a decarboxylative condensa-
tion reaction [137]. This proceeds via a nucleophilic attack by the acidic α-carbon of the carboxyl-acyl group
towards the carbonyl group of the meromycolyl chain, releasing CO2 and the meromycolyl chain from the KS
domain [138]. The thioesterase (TE) domain of Pks13 next cleaves the α-alkyl β-ketoacyl product from the
ACP domain, possibly forming a transient covalent bond with the product via a serine in the active site; the TE
domain then catalyses the transfer of the acyl chain onto a trehalose, forming α-alkyl β-ketoacyl trehalose
monomycolate (TMMk) [139]. The final mature TMM is formed when the keto group is reduced by CmrA
(Rv2509) [140,141].
Trehalose is a significant sugar in mycobacterial lipid production (for review see [142]); in addition to its role

in MA synthesis, trehalose constitutes the core of the polyacyl-trehaloses, sulfolipids and LOS [138,143–147]. A
disaccharide of α(1→ 1)-linked glucose, trehalose is well-known to protect against the stresses of heat, freezing,
desiccation and γ-radiation [148–150]. During MA synthesis, the trehalose could be acting to shield the
extreme hydrophobicity of the very long fatty acid chains, enabling export and attachment to the AG. For this
reason, it would seem unlikely that the free mycolates found in the MOM, particularly during biofilm forma-
tion [42], are released from Pks13 as free mycolates, but perhaps produced and transported as TMM, and the
trehalose removed by enzymatic hydrolysis in the outer membrane. After the MA is attached to the AG by the
mycolyltransferases of the antigen 85 complex (Ag85) [151], the trehalose is recycled back into the cytoplasm
by the ABC sugar transporter, LpqY-SugA-SugB-SugC (Rv1235–Rv1236–Rv1237–Rv1238); this transporter is
essential for virulence and again demonstrates the importance of trehalose to the bacterium [152].

MmpL/S
MmpL (mycobacterial membrane proteins large) proteins belong to the RND (resistance, nodulation and cell
division) superfamily of membrane proteins, which are typically characterised by 12-transmembrane (TM)
helices and two large substrate-specific periplasmic loops between TM1–2 and TM7–8 [153,154]. The energy
for their activity is derived from a proton gradient across the inner membrane [155] and they usually function
as antiporters, coupling the energy from proton movement into the cytoplasm, with substrate efflux [156,157].
The Mtb genome encodes 13 MmpL proteins, many of which are found in the same loci as PKS proteins and
other proteins involved in lipid synthesis [129,158]. Though MmpL5 and MmpL7 have been shown to have
roles in drug resistance and efflux [159–161], the primary function of the MmpL proteins is to export the
complex lipids synthesised in the cytoplasm across the inner membrane (Figure 5c). Some MmpL proteins (1,
2, 4 and 5) have smaller, transcriptionally coupled accessory proteins, MmpS (mycobacterial membrane pro-
teins small) [129]. Other MmpL proteins also require additional membrane proteins; MmpL8 interacts with
the membrane protein, Sap [162] and transport by MmpL7 involves the ABC transporter, DrrABC, and lipo-
protein, LppX [57,163].
Knock-out studies have shown that MmpL3 (Rv0206c) is the only essential MmpL protein, though others

are required for virulence [158]. MmpL3 is responsible for transporting the MA precursor, TMM, across the
inner membrane. Inhibitors that lead to TMM accumulation in the cytoplasm and simultaneous loss of TDM
in the periplasm also selected for spontaneous resistance mutations in mmpL3 [164,165], findings that have
since been confirmed by a mmpL3 conditional mutant in M. smegmatis [164,166]. Several inhibitors of MmpL3
have recently been found though spontaneous resistance based screening [164,165,167], though some of these
are broad-spectrum, targeting bacterial and fungal species lacking MAs, leading to speculation that the real
target could be elsewhere. The crystal structure of the homologue from M. smegmatis, however, has demon-
strated that many of these inhibitors, including SQ109, do bind directly to MmpL3 [168]. The resolved struc-
ture consists of a central proton translocating channel, formed between 2 TM helices (TM4 and TM10) that
intertwine and are linked by hydrogen-bonding between two sets of Asp-Tyr residues. These interactions,
which are essential for proton relay, were disrupted by binding of the inhibitors, all of which co-crystallised in
the central pore [168]. While many RND transporters form homo-dimers or -trimers [168,169–171], and a
homology model refined with electron microscopy (EM) suggested MmpL3 is a trimer [172], in the crystal
structure MmpL3 was monomeric [168].
MmpL protein expression is controlled by transcriptional repressors, which are in turn regulated by the avail-

ability of fatty acids; MmpL3 is regulated by three TetR regulators: Rv3249c, Rv0302 and Rv1816, all of which
dissociate from DNA upon binding palmitic acid, relieving transcriptional repression [173–175].
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Phosphorylation of the large C-terminal domain possessed by MmpL3 has also been implicated as a post-
translational regulation system [176].

Phosphatidyl-myo-inositol mannosides (PIMs), lipomannan
(LM) and lipoarabinomannan (LAM)
These lipoglycans (Figure 6) comprise a phosphatidyl-myo-inositol (PI) core decorated with mannose residues
(Manp, pyranose ring form), with additional branches of arabinose (Araf, furanose ring) in LAM. Acyl chains
on the inositol, glycerol and mannose moieties provide lipid anchors into the inner and possibly also the outer
membranes [25,74,177], though the inner membrane is perhaps their principal location as LM and LAM
possess the same lipid anchors as the PIMs, which share this location [22,23]. They are ubiquitous in mycobac-
teria, with important roles in stability, permeability and cell division [178–180]. LM and LAM are also import-
ant in virulence, modulating interactions with the immune system [7,9]; LAM, in particular, plays a key role in
the infection life cycle of Mtb, blocking phagosome maturation and therefore avoiding lysis and antigen presen-
tation, enabling Mtb to avoid the host’s defences whilst providing a habitable environment in which to replicate
[181]. Synthesis proceeds via PIM→ LM→ LAM [182], yet PIM2 and PIM6 are not only intermediates in the
synthesis of LM and LAM, but end products in their own right, forming much of the cytoplasmic membrane,
enhancing the stability and reducing drug permeability [22]. In fact, PIM6 is unlikely to be intermediary, pos-
sessing two α(1→ 2) linked mannose residues not present in LM and LAM; instead PIM4 is the likely branch
point between the two pathways [183]. Structurally, in PIM2 (Figure 6a), the 2 and 6 positions of the
myo-inositol ring each have a single linked mannose residue, whereas in PIM6 (Figure 6b), a chain of five
mannose units resides at the 6-position in addition to the mannose at position 2 [184]. Both LM and LAM
possess a core chain of 21–34 α(1→6) linked mannose residues from position 6 of the myo-inositol ring,
dotted with single α(1→ 2) linked mannose units (Figure 6c) [185]. LAM has an additional arabinan domain
of highly branched arabinose residues, similar to AG (Figure 6d) [186]. The non-reducing termini of these ara-
binose branches can be capped mannose residues to form ManLAM [187].
The biosynthesis of PIMs, LM and LAM is compartmentalised, which is achieved by the presence of both

soluble, membrane-associated glycosyltransferases (GTs) in the cytoplasm (from the GT-A/B superfamily) and

Figure 6. Structure of phosphatidyl-myo-inositol mannosides, Lipomannan and Lipoarabinomannan.

(a) Ac2PIM2, (b) Ac2PIM6, (c) LM and (d) LAM (and ManLAM). See key for component sugars [23].
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membrane-bound GTs (from the GT-C superfamily) in the periplasm [188,189]. This enables the initial glyco-
sylation of the lower PIMs to occur within the cell; the lipid-anchored PI sits on the cytoplasmic face of the
inner membrane, with the inositol moiety pointing inwards. Here, mannose is transferred from a
GDP-Mannose sugar donor, initially with α(1→ 2) linkage to position 2 of the myo-inositol by PimA
(Rv2610c), forming PIM1 [190,191]; and then with α(1→ 6) linkage to position 6 by PimB’ (Rv2188c),
forming PIM2 (Figure 6a) [192,193]. An acyl chain (palmitate) is transferred by PatA (Rv2611c) to position 6
of the mannose added by PimA, forming Ac1PIM2, which has three acyl chains [194,195]; position 3 of the
myo-inositol ring can also be acylated by an unknown acyl transferase to Ac2PIM2, a tetra-acylated form,
though LM and LAM are predominantly triacylated [183]. PIM2 either remains in the inner leaflet of the cyto-
plasm where it forms the majority of the lipid content [22], or is further mannosylated on position 6 with α
(1→ 6) linkages to PIM4. The GT(s) responsible for this has yet to be identified; PimC was found in the
genome of Mtb CDC1551 as a possible candidate for the mannosylation to PIM3, though there is no homo-
logue in some strains of mycobacteria (Mtb H37Rv and M. smegmatis) and a knock-out in M. bovis did not
reduce the levels of PIMs, LM or LAM, indicating that another pathway must exist [196].
The biosynthesis of the higher PIMs, LM and LAM occurs outside of the cytoplasm, though it is not known

whether the juncture for this is PIM2, PIM3 or PIM4 [197]. The PIM is flipped across the inner membrane so
that the inositol and mannose moieties now point into the periplasm. A candidate for this transport is the
putative ABC transporter, Rv1747, a knock-out of which had low levels of PIMs and showed reduced virulence
[198]. However, this mutant still had WT levels of LM and LAM, suggesting the presence of an additional
transport mechanism [199]. In the periplasm, membrane-bound GTs transfer further mannose units from the
lipid-linked donor, polyprenyl-mannose [182]. The formation of PIM6 from PIM4 (Figure 6b) involves the add-
ition of two α(1→2) linked mannose residues, the first or both of which are transferred by PimE (Rv1159)
[200]. In LM and LAM biosynthesis, the α(1→ 6) linked mannose core is extended from PIM4 by MptB
(Rv1459c) [201], followed by MptA (Rv2174), an order determined by knock-outs. The deletion of MptA in
C. glutamicum resulted in a truncated LM and halted LAM production, which was complemented by Rv2174
or the C. glutamicum homologue [202]. The deletion of MptB in C. glutamicum completely abolished all LM
and LAM synthesis, which was also successfully complemented [201]. A similar knock-out of MptB in M.
smegmatis, however, did not affect LM/LAM production, allowing for some redundancy in this pathway [201].
The α(1→ 2) linked mannose residues that decorate the mannose core, producing mature LM, are added by
MptC (Rv2181) [203,204], a knock-out of which abolished all LM synthesis in M. smegmatis, though still pro-
duced a truncated version of LAM; the immature LM is speculated to be either degraded or processed into
LAM [201]. The regulation of the branch point of PIM4 to either PIM6 or LM is controlled by LpqW
(Rv1166). Disruption of the corresponding gene in M. smegmatis reduced LM/LAM synthesis, producing an
unstable mutant that restored LM/LAM levels through a spontaneous mutation disrupting pimE, which simul-
taneously abolished the dependent PIM6 pathway [205,206]. A similar deletion in Corynebacterium glutami-
cum, which lacks a PimE homologue and higher PIMs, was stabilised by a point mutation in mptB. MptB,
which is required for the initial mannosylation of the LM core, was subsequently shown to have reduced activ-
ity in the absence of LpqW and authors speculate that this mechanism could regulate MptB and subsequently
LM synthesis [207]. GDP could also be a regulator, it has been shown to inhibit early PIM synthesis and
reduce levels of the polyprenyl-mannose substrate, perhaps by reversing the synthesis of this substrate to
GDP-Mannose [197].
The arabinan domain of LAM is similar to that of arabinoagalactan (AG), sharing the same linkages and

branched core of 18–22 arabinose units [208], though LAM is more variable in structure [208–211] and is
characterised by the presence of more linear chains at the reducing end. AG is terminated by a distinctive
branched hexa-arabinoside unit (β-D-Araf(1→ 2)α-D-Araf ]2-3,5-α-D-Araf-(1→ 5)-α-D-Araf ) [212], whereas
LAM also has the linear tetra-arabinoside motif (Araf4; a chain of four α(1→ 5) linked Araf ) [186]. This is
unsurprising since both domains are constructed by a similar set of membrane-bound arabinosyltransferases,
using the lipid-linked donor, decaprenylphosphoryl-D-arabinose (DPA) [213]. During synthesis, the mannan
core of the LM is first primed, though the arabinosyltransferase responsible and the location of this attachment
are not known; while the O-2 of the mannose was originally implicated [214], more recent studies suggest that
the linkage is to the O-6 position [215], which would restrict the attachment of the arabinan domain to the
very end of the mannan core. Clarification requires further analysis with longer chain saccharides. After the
initial priming, EmbC (Rv3793) adds an arabinan core of 12–15 arabinose residues with α(1→ 5) linkage
[208,216,217]. AftC (Rv2673), which has α(1→ 3) activity, introduces 3,5-arabinose branches in both LAM
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[217] and AG synthesis [218]. AftD (Rv0236c) has been shown to have similar activity to AftC and may also
introduce branch points [219], though α(1→ 5) activity in AG synthesis has also been demonstrated [220].
EmbC further extends these branch points by up to 8–9 arabinose units with α(1→ 5) linkage [208–216].
Finally, AftB (Rv3805c) adds the terminal arabinose residue, with β(1→ 2) linkage, to the non-reducing ends
of the arabinan [221].
Another difference in the arabinan domains of LAM and AG is the nature of the reducing end. In AG, most

are esterified with MAs [5,36], while LAM is capped with mannose, producing ManLAM. This mannose
capping is species-specific: in Mtb and other slow-growing virulent strains, the LAM is capped with up to three
linear α(1→ 2) linked mannose residues (Manp) on the 5-position of the terminal arabinose [187]; in faster-
growing mycobacteria, such as M. smegmatis, much of the LAM is uncapped, while a portion is capped with
phosphoinositide (PILAM) [222]; M. leprae has much reduced mannose capping and M. chelonae has none at
all [222,223]. Capping is initiated by CapA (Rv1635c), which adds the first mannose residue with α(1→ 5)
linkage [224,225]. Further residues are next attached by MptC, the mannosyltransferase responsible for adding
the α(1→ 2) mannose to the mannan core [226].
Cell surface labelling, using either biotin followed by lipid extraction or antibodies and cryo-electron micros-

copy, has shown the presence of arabinan mannan (AM; non-acylated LAM), and also PIMs, LM and LAM,
on the surface of the mycobacterial envelope; the PIMs and LM/LAM have lipid anchors and are thought to sit
within the lipids of the MOM, projecting into the capsule, while the AM lacks this anchor and is free within
the capsular layer [25,74,177]. However, this issue is debateable and not always reproducible; a study using
atomic force microscopy with immunogold labelling, for example, was only able to demonstrate the presence of
surface-exposed LAM after treatment with drugs that target the cell wall [227]. Also, if PIMs, LM and LAM do
indeed locate to the MOM, a yet undiscovered transport system would be required to extract these lipoglycans
from their inner membrane anchoring and then relocate them across the periplasmic space and through the
lipids of the MOM, a system hypothesised to be similar to the one used by Escherichia coli in the transport of
LPS [177,228]. The presence of PIMs, LM and LAM in the MOM would certainly be reassuring, since surface
exposure is essential for their observed roles in infection and interactions with the host’s immune system, espe-
cially since the PIMs, LM and LAM located in the inner membrane were proven not to be surface-exposed
[177]. Studies with purified ManLAM and PILAM demonstrated that the mannose cap blocks the fusion of the
phagosome and expression of pro-inflammatory cytokines [181,229–231], though these results were not repli-
cated with live bacteria deleted of capA and lacking mannose caps [225]. Similar mutants did, however, demon-
strate that ManLAM is recognised by Dectin-2, initiating the expression of pro-inflammatory cytokines [232].
LM has also been shown to activate the Toll-like receptor 2 (TLR2), triggering the innate immune system. This
response is proportional to the chain length of the mannan core but is reduced with LAM, possibly because
the mannan core is obscured by the arabinan domain [233–236]; truncations of the arabinan domain of LAM
restored this activation [217,221]. While initial stimulation of the TLR2 activates the immune response, pro-
longed stimulation in macrophages has been shown to have the opposite effect, preventing antigen presentation
by major histocompatibility complex class II molecules (MHC) [237,238]. This could be a crucial part of the
mechanism employed by Mtb to evade the host’s immune system and establish a latent phase infection in
macrophages [239].

Mycobacterial antigens and CD1 presentation
For many years, it had been assumed that proteins are the sole antigens, activating T cells via the T cell recep-
tor (TCR), and lipids were limited to stimulating the innate immune system. More recently, it has been recog-
nised that many mycobacterial lipids, including mycolates [240], PIM [241–243], LAM [241] and
phosphatidylglycerol (PG) [244], activate T cells through the CD1 (cluster of differentiation molecules) presen-
tation pathway (Table 1). CD1 proteins are similar to MHC molecules [245], which present peptide antigens
on antigen-presenting cells (APCs) to conventional T cells via the TCR, though CD1 presentation is limited to
CD1-restricted T cells. There are five human CD1 proteins: CD1a, -b, -c and -d are membrane proteins
involved in presenting lipids and are expressed on APCs, such as B cells, Langerhans cells and dendritic cells as
well as cortical thymocytes [246]. CD1e is a soluble protein that processes the glycolipids in order to increase
the versatility of the CD1 proteins. CD1e functions by binding directly to the glycolipids and aiding their
enzymatic digestion, for example by α-mannosidase in PIM6 presentation by CD1b [243].
The expression of the CD1 proteins is regulated by the TLR, via interleukin-1β, a pathway that is triggered

upon Mtb infection [247,248]. The lipid antigen binds to CD1 either directly at the cell surface or within the
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endosome, after the antigen or whole bacteria has been phagocytosed into the cell, a mechanism that enables
additional processing by CD1e [249]. If binding occurs in the endosome, the CD1-lipid complex is then traf-
ficked to the cell surface in order to present the antigen to the TCR of CD1-restricted T cells [249]. CD1b and
CD1c are better adapted to binding to lipids within endosomal compartments [240,250], whereas CD1a is
more suited to binding to antigens at the cell surface [251]. Studies have shown that there are higher levels of
CD1-restricted T cells present in individuals exposed to Mtb [252,253] and their activation by CD1 presenting
molecules is thought to function in the host defences. The T cell response to this activation is not known in
humans, though in vitro effector mechanisms have been demonstrated to include the secretion of alpha and
gamma interferon and granulysin production, which results in lysis of infected cells and macrophage activation
[254–256]. CD1d is recognised by CD1d-restricted natural killer (NK) T cells, which activate both the innate
and the adaptive immune system, with responses that include proliferation and cytokine secretion, including
gamma interferon and interleukin-4. Invariant NKT cells are also important in granuloma formation and are
recruited to the site by lipid antigens, though the evidence suggests that CD1d is not involved in their presenta-
tion [257,258].

Conclusions
Mtb commands a complex array of lipids, many of which are crucial to its pathogenicity and survival, with
roles in stability, drug permeability, cell division, biofilm formation, infection and host interactions. Many of
the lipids present, such as the MAs and the lipid anchors of the PIMs, are packed together tightly in parallel
arrangements, a feature that greatly enhances structural stability, while providing a generous hydrophobic
barrier that reduces permeability to drugs. Free lipids provide yet more hydrophobic coating, constituting the
outer layer of the MOM, an unconventional second membrane. The distinctiveness of the Mtb cell envelope
does not end here as the bulk of the complex lipids present form part of much larger complexes, mAGP and
LM/LAM, structures essential for viability that are unique to the Corynebacterium genus.
While it might be easy to consider the cell envelope to be a rigid, unchanging entity, it is in fact dynamic.

For instance, the conformation of the MAs is temperature dependent. Also the lipid content of the envelope
varies according to the infectivity cycle (for review see [268]). PIMs are up-regulated during early infection,
while LM and LAM are more likely to predominate during latent phase [43,268]; the high levels of LAM
expressed in the granulomas may guard against the host’s defences, masking the mannan core [233–235].
Prolonged stimulation of the TLR2 by LM could also assist in establishing and maintaining the granulomas, by
inhibiting antigen presentation in the macrophages and thus evading the host’s immune response [239]. MAs,
as an essential component of the cell wall, are synthesised in line with growth, though their structural compos-
ition is thought to vary throughout [268,269]. The TDM and TMM levels, however, decrease in stationary
phase, accompanied by an increase in the levels of free mycolates [43], which could be an initial step in biofilm
formation [42]. In addition, PDIM is highly synthesised in actively growing cells, but not in stasis [268,269],
correlating with the crucial role that it plays during active infection [270].

Table 1. Human CD1 and the mycobacterial lipids they present [249]

Human CD1a Human CD1b Human CD1c Human CD1d
Human
CD1e

Dideoxy-mycobactin
[259]

Mycolate [240] Mannosyl mycoketide [260] Phosphatidylglycerol
[244]

PIM [243]

Glucose monomycolate
[261,262]

Phosphomycoketide [263] Cardiolipin [244,264]

Glycerol monomycolate
[253]

Phosphatidylinositol
[244,264]

Sulfoglycolipid [266] Mannosyl-β-1-phosphoisoprenoids
[265]

PIM [243] PIM [242]

LAM [241]

Phosphatidylglycerol [267]
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Many of the proteins involved in lipid synthesis and transport are essential and as such represent ideal drug
targets. Indeed, many the current antibiotics already inhibit some of the enzymes involved, including isoniazid
(INH) and ethionamide (ETH), both of which target InhA, abolishing MA biosynthesis [271–273]; ethambutol
inhibits the arabinosyltransferases involved in assembling the branched arabinan domains of both LAM and
AG, blocking MA attachment to the latter [274–278]; the recently approved second-line drugs delamanid and
pretomanid also affect MA synthesis, though the exact targets are not known at present [279,280]; and not to
mention the plethora of compounds in the pipe-line that look to be inhibiting MA transport by MmpL3
[164,165,167]. Future research into the area would benefit by studying the MmpL proteins, key lipid transpor-
ters present in the inner membrane, one of which is essential for survival (MmpL3) and many more are
required for pathogenicity. Searching for the enzymes missing from some of the biosynthesis pathways could
also prove fruitful, as would structural data and in vitro assay development for all appropriate targets. Today
much of the current drug discovery works backwards from the drug to the target; though in the future, as our
knowledge of this organism grows and enzyme assays are developed, screening could become increasingly tai-
lored to the target. The cell envelope of Mtb is truly unique, contributing to its triumph as the most successful
pathogen of our time. An understanding of its structure and biosynthesis, therefore, is crucial in the search for
new drugs to tackle the ever-growing tide of resistance.
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