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Background Meta-analysis of individual participant time-to-event data from
multiple prospective epidemiological studies enables detailed inves-
tigation of exposure–risk relationships, but involves a number of
analytical challenges.

Methods This article describes statistical approaches adopted in the Emerging
Risk Factors Collaboration, in which primary data from more than
1 million participants in more than 100 prospective studies have
been collated to enable detailed analyses of various risk markers
in relation to incident cardiovascular disease outcomes.

Results Analyses have been principally based on Cox proportional hazards
regression models stratified by sex, undertaken in each study sep-
arately. Estimates of exposure–risk relationships, initially unadjust-
ed and then adjusted for several confounders, have been combined
over studies using meta-analysis. Methods for assessing the shape
of exposure–risk associations and the proportional hazards assump-
tion have been developed. Estimates of interactions have also been
combined using meta-analysis, keeping separate within- and
between-study information. Regression dilution bias caused by
measurement error and within-person variation in exposures and
confounders has been addressed through the analysis of repeat
measurements to estimate corrected regression coefficients. These
methods are exemplified by analysis of plasma fibrinogen and risk
of coronary heart disease, and Stata code is made available.

Conclusion Increasing numbers of meta-analyses of individual participant data
from observational data are being conducted to enhance the statistical
power and detail of epidemiological studies. The statistical methods
developed here can be used to address the needs of such analyses.
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Introduction
Combining information across several studies using
meta-analysis can enhance precision for quantitative
summaries of evidence.1 Re-analysis of individual par-
ticipant data (IPD) from multiple epidemiological
studies has several advantages compared with meta-
analysis of aggregated published data, including har-
monization of definitions for risk markers as well
as disease outcomes; ability to update follow-up
information; consistent approaches to adjustment for
confounding; characterization of the shape of expos-
ure–risk relationships; greater ability to correct for
regression dilution bias; and determination of how
exposure–risk relationships depend on age, sex and
other potential effect modifiers.2–4 This article de-
scribes and illustrates statistical methods that are
being used in the Emerging Risk Factors Collabora-
tion (ERFC), an analysis of individual records from
more than 1.2 million participants in 116 prospective
studies in predominantly Western populations of
major cardiovascular disease outcomes.5–8 The ERFC
includes mostly prospective cohort studies (a few
based in randomized trials), as well as some nested
case–control and case–cohort studies. For each partici-
pant in the ERFC, the coordinating centre has col-
lated, verified and harmonized individual records on
baseline risk markers, confounders, other charac-
teristics, major cardiovascular morbidity and cause-
specific mortality.5 Available repeat survey data,
which provide serial measurements, have also been
collected to help address measurement error and
within-person variability.3,9

As the ERFC subsumes the Fibrinogen Studies
Collaboration,10 we have illustrated the statistical
methods used in the ERFC by analysis of plasma fi-
brinogen concentration and the risk of coronary heart
disease (CHD) in the Fibrinogen Studies Collaboration
dataset involving individual data on 154 211 partici-
pants from 31 prospective studies. CHD is defined as
first non-fatal myocardial infarction or coronary death
in those without known cardiovascular disease at the
initial examination.10 A total of 7118 CHD events
occurred during an average of 9 years of follow-up.
Across the 31 studies, the number of CHD events
ranged from 17 to 1474 and the follow-up ranged
from 4 to 33 years; the crude mean fibrinogen was
3.02 g/l [pooled within-study standard deviation (SD)
0.65 g/l].

Methods and illustrative analyses
Principal meta-analysis methods
This exposition initially assumes all data are derived
from prospective cohorts; other designs are addressed
towards the end of the article. The main analyses are
based on Cox proportional hazards (PH) models,11

estimated for each study separately. The PH models
are stratified by sex and, if applicable, randomized

group. So separately for each study s¼ 1 . . . S, with
strata k¼ 1 . . . Ks (for most studies, Ks¼ 2 just for
the two sexes) and individuals i¼ 1 . . . ns, with expos-
ure of interest Esi and other covariates Xsi, the hazard
at time t after baseline is modelled as

log hskiðt jEsi, XsiÞð Þ ¼ log h0skðtÞ þ �sEsi þ csX si ð1Þ

The evolution of risk over time is thus modelled in-
dependently for each stratum in each study, as repre-
sented by the non-parametric baseline hazards h0sk(t).
The �s are the parameters of interest, being the log
hazard ratios (HRs) per unit increase in the exposure
in study s, adjusted for the confounding effects of the
covariates Xsi.

These estimated log HRs can be combined over
studies using random-effects meta-analysis,12 which
incorporates heterogeneity between studies as
described below. Fixed-effects meta-analysis can also
be used3,13,14 and has been employed in parallel ana-
lyses in the ERFC. Writing the variance of the esti-
mated �s as vs, the random-effects meta-analysis
model is given by

�̂s ¼ �s þ "s, where "s � Nð0, vsÞ

�s ¼ �þ �s, where �s � Nð0, �2Þ
ð2Þ

Here � is the average log HR, the estimate of which
combines within-study information on the relation-
ship between exposure and risk, while allowing for
heterogeneity in the true log HRs between studies as
represented by the variance �2. A standard moment
estimator of �2 is used,15 although other estimation
methods are available.16 The statistical significance
of the standard test for heterogeneity17 reflects the
strength of evidence for heterogeneity. The impact of
heterogeneity on the imprecision of the overall log HR
is expressed in terms of I2, the percentage of variance
in the point estimates of the study-specific log HRs
that is attributable to between-study variation as
opposed to sampling variation,18 for which a confi-
dence interval (CI) is also available.19 Values of I2

close to 0% correspond to lack of heterogeneity.
In addition, specific sources of heterogeneity are
explored by investigating the impact of various factors
(e.g., age, sex and other potential effect modifiers) on
the strength of the association between exposure and
risk, as described in later sections.

The above procedure is a two-step method: first,
each study is analysed separately in (1) and then
the log HRs are combined in (2). A one-step
method would be preferable in principle, writing a
combined model as

log hskiðt jEsi, X siÞð Þ ¼ log h0skðtÞ þ �sEsi þ cs X si

�s ¼ �þ �s, where �s � Nð0,�2Þ
ð3Þ

Computational problems are, however, formidable in
a dataset the size of the ERFC.20 A two-step analysis
has only the slight disadvantage that the first-step
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variances vs in a two-step analysis are not in general
exactly those implied in a one-step method, although
one-step and two-step methods usually produce very
similar results.21,22

For the case of fibrinogen and the risk of CHD, ad-
justing only for the linear effect of age at baseline
in each study, these analyses are summarized in the
upper part of Table 1. The study-specific HRs are
shown in Figure 1. The random-effects combined
HR exp(�) is estimated as 1.57 (95% CI 1.47–1.67)
per 1 g/l higher baseline fibrinogen concentration,
and an I2 of 64% (95% CI 48–76) indicates substantial
heterogeneity across studies (test for heterogeneity,
P < 0.0001). By comparison, a fixed-effects meta-
analysis estimate gives a lower point estimate of
1.52 with a narrower 95% CI of 1.47–1.57.

The above estimates and CIs relate to the overall
mean HR across all studies. Also of interest is the
range of true HRs across studies, representing those
in different contexts or populations. It can be ex-
pressed by the 95% prediction interval for the true
HR in a new study and is estimated from the
random-effects meta-analysis by expð�̂�tS�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varð�̂Þþ�̂2
p

Þ,
where t is the 2.5-percentile of a t-distribution and S
is the number of studies.12 In the case of the fibrino-
gen data, this 95% prediction interval is 1.18–2.08.
Because of the presence of heterogeneity, this interval
is much wider than the 95% CI for exp(�), as shown
at the bottom of Figure 1, but remains above 1, indi-
cating that the relationships in different studies are
consistently positive.

Choice of exposure scale
An assumption of the above model is that the log HR
increases linearly with the exposure. It might be more
appropriate, however, to choose a log scale for some
exposures to improve linearity. Alternatively, the use

of a study-specific SD score might reduce heterogen-
eity of the risk association between studies. In the
case of fibrinogen, for example, the distributions
were slightly positively skewed and the SD varied
considerably between studies.23 It is also important
to assess the possibility of non-linear risk relation-
ships that could indicate a threshold or a plateau
for risk.

To assess linearity, as in previous studies,3 the dis-
tributions of the exposure are divided into quantile
groups such as fifths; such quantile groups can be
defined within each study or across all studies. HRs
in each quantile group, compared with the bottom
group, are estimated by using Cox PH regression in
each study separately. These log HRs within each
study are not independent (their correlations are
available from standard regression software), because
they are all relative to the same reference group. So
the set of log HRs are pooled across studies using a
multivariate version of random-effects meta-
analysis24,25 to allow for their inter-correlations both
within and between studies. These pooled log HRs are
plotted against the mean exposure level in each quan-
tile group. Assessing linearity is easier using CIs
derived by floating absolute risk methods26,27 so that
each estimate (including that for the reference cat-
egory) has a measure of uncertainty and is less corre-
lated with the others. Judging linearity visually from
strongly correlated estimates can be misleading:
for example, if the reference group is small, then all
the standard CIs will be wide and non-linearity
cannot be ruled out. Sensitivity analyses, employing
different scales for the exposure (e.g. log, SD score) or
assessing curvature using polynomial terms, are also
used to investigate whether heterogeneity between
studies is reduced or the substantive conclusions
affected.

Table 1 Combined HRs for the relationship between baseline fibrinogen (g/l) and CHD risk, adjusted for a linear effect
of age at baseline in each study separately

Method HR (95% CI) Log HR, �̂ (SE)

Heterogeneity

Between-study
variance �̂2 P-value I2 (95% CI)

Untransformed fibrinogen: log HRs per 1 g/l increase

Random-effects meta-analysis 1.57 (1.47–1.67) 0.450 (0.033) 0.018 <0.0001 64% (48, 76)

Fixed-effects meta-analysis 1.52 (1.47–1.57) 0.419 (0.018) NA <0.0001 NA

Transformed fibrinogen: log HRs per SD increase—random-effects meta-analysis

Untransformed fibrinogen 1.34 (1.29–1.40) 0.294 (0.022) 0.008 <0.0001 64% (48, 76)

Log fibrinogen 1.38 (1.32–1.45) 0.325 (0.025) 0.010 <0.0001 65% (48, 76)

Study-specific SD score fibrinogen 1.34 (1.29–1.40) 0.292 (0.021) 0.007 <0.0001 63% (45, 75)

Study-specific SD score log fibrinogen 1.37 (1.31–1.44) 0.316 (0.024) 0.009 <0.0001 64% (47, 76)

Untransformed fibrinogen

Quadratic term for fibrinogen 0.96 (0.91–1.01) �0.045 (0.027) 0.007 0.013 40% (7, 61)

NA: not applicable; SE: standard error.
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Figure 2 shows the results of an analysis by
study-specific fifths of fibrinogen in relation to CHD
risk, which suggests that a log-linear model for risk is
satisfactory.10 Examples of sensitivity analyses are
shown in the lower part of Table 1. These compare
untransformed fibrinogen, log fibrinogen, study-
specific SD fibrinogen score, and study-specific SD
log fibrinogen score. For comparability, results are
expressed as the HR per 1-SD higher baseline fi-
brinogen; in the first two analyses, this refers to the
pooled within-study SD (0.65 g/l for untransformed

fibrinogen). The results from all analyses are quanti-
tatively similar, including the extent of heterogeneity.
Including a quadratic term for untransformed fibrino-
gen in the first analysis provides little evidence of
curvature in the risk relationship (P¼ 0.09). In the
case of fibrinogen, therefore, the heterogeneity be-
tween studies is not due to the choice of exposure
scale.

A few technical issues in such analyses merit con-
sideration. First, the visual assessment of linearity
and the comparison between different exposure
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Figure 1 Study-specific HRs and 95% CIs (log scale) for the relationship of baseline fibrinogen with CHD in 31 studies,
and meta-analysis. A 95% prediction interval for the true HR in a new study is also shown. Results are adjusted for
age at baseline as a linear term. For acronyms to studies, see Ref. 10. RE, random effects; FE, fixed effects; NA, not
applicable.
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scales are informal. Second, although it might be
preferable to use fractional polynomials28 or splines29

to investigate curvature, this is not straightforward in
a two-step random-effects meta-analysis, because dif-
ferent functional forms might be appropriate for dif-
ferent studies. These problems would be reduced if
one-step meta-analysis methods were computationally
feasible. Thirdly, in Figure 2, the choice of fifths is
rather arbitrary, and it is not entirely clear what

levels of fibrinogen the log HRs should be plotted
against; for example, this could be the mean fibrino-
gen in each fifth weighted by the number of events
rather than by the number of participants. Finally, the
effect of measurement error and within-person vari-
ation in fibrinogen may distort the shape of the ex-
posure–disease relationship, as discussed later.

Covariate adjustment
Age is the most important confounder in many epi-
demiological applications, so adjustment for age de-
mands particular attention. For linear terms,
age-at-baseline in a PH model is equivalent to includ-
ing current age as a time-dependent variable, but the
latter is computationally more difficult to fit.
Assuming a simple linear term for age at baseline
may, however, be inadequate, resulting in residual
confounding. Alternatives include adjustment or
stratification by age categories at baseline, as well as
inclusion of polynomial terms and interactions with
other covariates (especially sex). Empirical compari-
son of alternatives as sensitivity analyses is useful to
check for adequate age adjustment. In principle, simi-
lar considerations apply to other covariates, but in
practice, the use of linear terms is usually sufficient
unless the covariates are both highly prognostic and
substantially correlated with the exposure of interest.
One important practical problem often encountered is
that not all studies measure all the desired confoun-
ders; an approach to this situation is described under
section ‘Discussion’.

The ERFC’s two-step approach allows the confound-
ing effects (cs in model 1) to be different in each
study. Examples of age and other confounder adjust-
ments for the fibrinogen dataset are given in Table 2.
In this case, linear adjustment for age at baseline
appears to be adequate, because more complex
forms of adjustment hardly change the results. No
precision is lost by stratification using narrow age
bands. The overall HR for fibrinogen is reduced

Table 2 Combined HRs for CHD per 1 g/l increase in baseline fibrinogen: random-effects meta-analysis adjusting for
baseline confounding variables

With adjustment for HR (95% CI) Log HR �̂ (SE) �2
1

Heterogeneity

Between-study
variance �̂2 P-value I2 (95% CI)

Age 1.57 (1.47–1.67) 0.450 (0.033) 181 0.018 <0.0001 64% (48, 76)

Age as 5-year age bands 1.57 (1.47–1.68) 0.451 (0.033) 183 0.018 <0.0001 64% (48, 76)

Stratification by 5-year age bands 1.57 (1.47–1.68) 0.451 (0.033) 182 0.018 <0.0001 64% (48, 76)

Age sex� age 1.57 (1.47–1.68) 0.450 (0.034) 180 0.018 <0.0001 65% (48, 76)

Age age2 1.56 (1.46–1.67) 0.447 (0.033) 179 0.018 <0.0001 64% (48, 76)

Age age2 sex� age sex� age2 1.57 (1.47–1.67) 0.448 (0.034) 177 0.019 <0.0001 65% (49, 76)

Age smoking tchol sbp bmia 1.38 (1.31–1.45) 0.320 (0.026) 156 0.006 0.028 35% (0, 58)

SE: standard error.
aSmoking coded as current vs other; tchol: total cholesterol; sbp: systolic blood pressure; bmi: body mass index.
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Figure 2 Combined log HRs with 95% CIs based on
floating absolute risks for the relationship between
baseline fibrinogen (g/l) and CHD risk, plotted against
mean baseline fibrinogen in fifths. From multivariate
random-effects meta-analysis, adjusted for a linear effect
of age at baseline in each study separately.
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towards unity on adjusting for four additional
covariates (last row in Table 2), and the extent of
heterogeneity decreases. Thus, some of the original
heterogeneity between studies seems to be due to
differing impacts of these confounders in different
studies. The age-adjusted HR per 1 g/l higher baseline
fibrinogen falls from 1.57 to 1.38 on adjusting
for these covariates, so 29% [calculated as
(log 1.57�log 1.38)/log 1.57] of the effect is ‘explained’
by the observed values of these confounders. The
change in the respective Wald �2

1 statistics reflects a
slight decrease in the strength of evidence for an
association.3

Joint effects
An important advantage of IPD is that it provides the
opportunity for systematic investigation of the expos-
ure–risk relationship at different levels of other vari-
ables. This evaluation of factors that modify the
overall log HRs estimated above involves assessing
their interactions on this scale with the exposure of
interest. When effect modifiers are variables measured
in individuals, such as age or other risk markers,
these interactions are most effectively assessed using
within-study information.4,30 Here a two-step proced-
ure has again been adopted, first estimating the inter-
action in each study separately. For example, for a
single potential effect modifier Xsi, the model in
study s is

logðhskiðtjEsi, XsiÞÞ ¼ log h0skðtÞ þ �sEsi þ �s Xsi þ �sEsiXsi

ð4Þ

The estimates of the interaction terms �s are combined
using random-effects meta-analysis, as in (2). The
overall interaction, �W, is then based on only
within-study information. Model (4) can be extended
by including adjustments for other confounders, and
indeed their interactions with the exposure of inter-
est; this enables investigation of whether, as is pos-
sible, a particular interaction is confounded by other
main effects or interactions.

Some potential effect modifiers are assessed only at
the study level; for example, the type of population
recruited or the laboratory methods used for measur-
ing the exposure. For such variables, any information
on interactions relies entirely on between-study com-
parisons, which are assessed using random-effects
meta-regression.31 Using the estimates of �s from
(1), model (2) is extended to include a study level
covariate Xs by writing

�̂s ¼ �s þ "s, where "s � Nð0, s2
s Þ

�s ¼ �þ �B Xs þ �s, where �s � Nð0, �2Þ
ð5Þ

�B is the between-study interaction term, with statis-
tical significance assessed allowing for the residual
between-study heterogeneity �2.

A few variables, notably sex and ethnic group, have
potential interactions for which both within-study

and between-study information may be important.
For example, studies involving both men and
women provide within-study information on sex
interactions, whereas studies that comprise members
of one sex alone can only be used to assess inter-
actions across studies. In this case, the within-study
interaction �W is estimated as in model (4) based on
studies of both sexes, and the between-study inter-
action �B is estimated using model (5) in which Xs

is the proportion of women in each study. Provided
they are similar, these two asymptotically independ-
ent estimates of interaction can themselves be com-
bined. As between-study information on interactions
is prone to numerous potential sources of between-
study confounding,32 there is a trade-off between
increased precision and possible bias in choosing
whether to use between-study information in addition
to within-study information.22,33,34

Presenting interactions in a way that is intelligible
to readers is not easy. For a binary variable identify-
ing two subgroups, the exponent of the interaction
term is a ratio of HRs, but it is simpler to present
two separate meta-analyses, one in each subgroup.
However, because the between-study heterogeneity,
�2 in (2), now affects each of these estimates, the
(multivariate) meta-analytic weighting of study-
specific subgroup estimates is different from the
weighting of study-specific interactions. So neither
the estimates nor the CIs of the subgroup-specific
estimates are necessarily compatible with the estimate
and CI of the interaction term. In practice, this prob-
lem is not usually severe. For continuous variables, the
exponent of the interaction term is a ratio of HRs per
unit increase in the effect modifier. Similarly, for
presentation, it is easier to present the HR estimates
according to study-specific quantile groups (e.g. thirds
or fifths) of the effect modifier distribution.

Examples of interaction analyses for fibrinogen are
shown in Table 3. The interactions with body mass
index and age at baseline are clear, but the inter-
actions with other variables are less marked.
Including the body mass index and age interactions
simultaneously hardly affect their respective esti-
mates. There is more consistency in the interaction
terms across studies than for the main effect of fi-
brinogen, as indicated by the lower values of I2. For
investigating a possible sex interaction, �B is estimated
from a meta-regression of the study-specific log HRs
on the proportion of women in each study. The SE
of the interaction term is smaller for �W than �B, so
the majority (73%) of the information comes from
within-study information. It is sensible to rely on
the within-study pooled interaction estimate, especial-
ly when it contributes the majority of the informa-
tion, because of the potential for bias in the
between-study estimate.22 The sex-specific combined
log HRs (not shown) and the combined sex inter-
action term are similar but not identical. The sex
interaction term represents the correct analysis,
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whereas the sex-specific HRs are probably the prefer-
able method of presentation in applied publications,
especially when given in a diagram. As noted above,
effect modification is being assessed on the HR scale.
Thus, although the HRs per unit higher fibrinogen
decrease with increasing age, the absolute risk gradi-
ents increase (Figure 3).

Proportional hazards
An assumption of all the models considered so far is
of PH, meaning that the regression coefficients in
model (1) do not change with time since baseline
measurement. Although the effect of any covariate
measured at baseline may plausibly decrease over
time, the prime interest is whether the PH assump-
tion is appropriate for the exposure of interest. This
can be evaluated in each study separately by including
an interaction between the exposure and time, or
by the commonly used diagnostic tool based on
Schoenfeld residuals.35 These independent �2

1 statis-
tics can be summed across the S studies, yielding a
�2

S statistic testing the hypothesis that PH holds in
each study.

This approach is, however, not a powerful test
against the plausible alternative hypothesis that HRs
tend to decline over time in all studies. A better
method is to combine the interaction terms between
the exposure and time over studies. Using random-
effects meta-analysis, and assuming linear time-
dependence, the model is given by

log hskiðtjEsi, XsiÞð Þ ¼ log h0skðtÞ þ �sEsi þ �stEsi

�s ¼ � þ �s, where �s � Nð0, �2Þ
ð6Þ

where �s are separate fixed effects, and the focus is on
the estimate of �, which can be tested using a �2

1
statistic.

The results of these analyses for fibrinogen are
shown in Table 4. The summed �2

31 statistics are less
than expectation, as is the more powerful �2

1 statistic.
So, in this case (and perhaps surprisingly given the

Table 3 Interactions between baseline fibrinogen (g/l) and potential effect modifiers for risk of CHD: differences in log HRs
adjusted for the main effects of baseline age, smoking, total cholesterol, systolic blood pressure and body mass index

Potential effect modifier

Estimated interaction between the potential effect modifier
and fibrinogen

Number of
cohorts

Number of
subjects Estimate � (SE) P-value

Heterogeneity I2

(95% CI)

Age (10 years) 31 154 211 �0.095 (0.029) 0.001 0% (0, 40)

Systolic blood pressure (10 mmHg) 31 154 211 �0.021 (0.010) 0.032 21% (0, 50)

Body mass index (5 kg/m2) 31 154 211 �0.079 (0.023) <0.0001 3% (0, 31)

Total cholesterol (1 mmol/l) 31 154 211 �0.025 (0.014) 0.081 1% (0, 41)

Sex: women vs men

Between-study interaction 31 154 211 0.120 (0.092) 0.21 NA

Within-study interaction 16 90 529 0.089 (0.061) 0.15 0% (0, 52)

Overall pooled interactiona 31 154 211 0.098 (0.051) 0.054 NA

NA: not applicable; SE: standard error.
aMeta-analysis of between-study and within-study interactions.
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Figure 3 Interaction of baseline fibrinogen and age,
derived from a proportional hazards model with
time-dependent effect of age in each study and combined
using multivariate random-effects meta-analysis. Log HRs
with 95% CIs based on floating absolute risks, plotted
against mean baseline fibrinogen in fifths.
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extent of data), there is no evidence of departures
from PH for fibrinogen and no evidence of heterogen-
eity between studies in this regard. The final method
provides an estimate of the non-PH parameter �,
which indicates that over a 20-year period the esti-
mated change in the exposure log HR is small. In
ERFC, this random-effects pooling of the interaction
terms between exposure and time is used to assess
the PH assumption. It provides extra power against
a plausible alternative hypothesis and is consistent
with the approach described above for quantifying
other interactions. If there was substantial evidence
against the PH assumption, it would be necessary to
summarise the exposure–risk relationship either in
discrete intervals of time or as a trend over time.

Other topics
When the focus is on estimating underlying aetio-
logical associations, it is necessary to adjust for the
effect of measurement error and within-person vari-
ation. For the exposure of interest, this addresses the
often serious underestimation caused by regression
dilution bias,9,36,37 and for covariates it reduces re-
sidual confounding.38 Methods exist to correct for re-
gression dilution bias in exposure variables in IPD
meta-analysis.3,13,14 Novel methods that enable con-
current adjustment for measurement error both in the
exposure of interest and in covariates have been de-
veloped for use in the multiple study context of the
ERFC, but they are technically demanding and have
been described in full elsewhere.39,40 Examples of
these analyses for fibrinogen are shown in Table 5.
Because the within-person correlation of fibrinogen
measurements on different occasions is �0.5,39 the
overall log HR corrected for measurement error in fi-
brinogen alone is about twice the uncorrected esti-
mate (leading to a corrected HR of 1.96 vs 1.38
uncorrected). Multivariate correction for measure-
ment error in four confounders makes the log HR
for fibrinogen slightly less extreme, as expected
because residual confounding is reduced, with an
estimated HR of 1.85 per 1 g/l higher ‘usual’ (i.e.
long-term average) fibrinogen level. As methods that
correct for regression dilution cannot correct for

unmeasured covariates, residual confounding may
persist after their use.

Some cohorts in the ERFC have analysed particular
risk markers in a nested case–control or case–cohort
design. Nested case–control studies are analysed with
similar methods to those described for cohort studies,
but they involve logistic regression.41 For individually
matched studies, conditional logistic regression is ap-
propriate. For frequency-matched studies, ordinary lo-
gistic regression is used with the matching factors
as covariates. Such analyses either provide estimates
of HRs (if matched controls were selected to be
disease-free at the time the case had an event) or
odds ratios (if the selected controls were disease-free
at the end of the study).42 Provided the disease is
relatively rare (say <10% of the study participants),
odds ratios approximate HRs and it is reasonable to
combine them in a meta-analysis. For nested
case–cohort studies, the analysis should allow for
the fact that some members of the randomly
selected cohort also become cases.43 A modified PH
regression model then provides estimates of log HRs
with robust standard errors,44 although this modifica-
tion generally has only a small effect.

Although some participants may have multiple
events (e.g. two CHD events at separate time points,

Table 4 Non-PHs for CHD risk assessed by the interaction of baseline fibrinogen (g/l) and time (years)

Method
Estimated non-PH
parameter, � (SE)

�2 test Heterogeneity
�2 (df) P-value I2 (95% CI)

Summed �2
1 statistics of non-PH

parameter from each study
NA 24 (31) 0.80 NA

Summed �2
1 statistics from tests of

Schoenfeld residuals in each study
NA 21 (31) 0.90 NA

Random-effects meta-analysis of
study-specific non-PH parameters

0.0016 (0.0045) 0.12 (1) 0.73 0% (0, 40)

The models include adjustment for age at baseline as a linear term. NA: not applicable; SE: standard error; df: degrees of freedom.

Table 5 Combined HRs for CHD per 1 g/l increase in
fibrinogen, corrected for measurement error

Measurement error
correction HR (95% CI) Log HR (SE)

No measurement error
correction

1.38 (1.31–1.45) 0.320 (0.026)

Measurement error in
fibrinogen

1.96 (1.76–2.17) 0.672 (0.053)

Measurement error in
fibrinogen, smoking,
total cholesterol,
systolic blood pressure
and body mass index

1.85 (1.66–2.06) 0.617 (0.055)

SE: standard error. All analyses are adjusted for age at baseline,
sex, smoking, total cholesterol, systolic blood pressure and body
mass index.
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or a CHD event followed by another type of event,
such as a stroke or death from cancer), analyses in
the ERFC focus on first events by censoring partici-
pants after their first CHD event, after another
non-fatal event such as stroke (when cohorts have
recorded them), and after death from any cause.
The rationale for this approach is that major cardio-
vascular disease events may disrupt the association
between baseline risk factors and subsequent disease
risk. The ERFC does not, however, censor individuals
at the time of cardiovascular investigations or inter-
ventions (such as angiography or coronary bypass op-
erations) or at the diagnosis of angina because the
incidence of such occurrences is not recorded reliably
enough in sufficient studies. Sensitivity analyses that
implement alternative censoring criteria can assess
potential biases that might arise through these deci-
sions on censoring.

The constraints on comprehensiveness in IPD
meta-analyses mainly relate to the identification of
relevant studies and provision of data. In the ERFC,
studies have been identified from publications, exten-
sive literature searches, and correspondence with au-
thors of relevant reports. The ERFC has included the
large majority of Western prospective studies with any
relevant exposure markers and 420 000 person-years
of follow-up. Hence, although publication and report-
ing biases are potential concerns in all meta-analyses,
they may be less so in the ERFC.

Discussion
The statistical methods used in the ERFC have been
explicitly described and illustrated in this article to
facilitate their adoption by others; example programs
in Stata45 are available from http://www.phpc.cam
.ac.uk/MEU/ERFC/Software.html. The ERFC methods
extend previous approaches in several respects.46–48

Strategies being used in the ERFC to adjust for
measurement error concurrently in levels of both con-
founders and exposures should help improve esti-
mates of the underlying aetiological association
between exposures and disease outcomes by reducing
residual confounding. Methods used in the ERFC
give specific consideration to the analysis of inter-
actions for characteristics that vary both within
and between studies and to assessment of the PH
assumption.

A common practical problem in IPD meta-analyses
is how to adjust for confounders that are measured
only in a subset of the studies. For the fibrinogen
example, age and four other confounders (Table 2)
were measured in all participants in all studies.
However, additional confounders, such as lipid frac-
tions (high-density lipoprotein cholesterol, low-
density lipoprotein cholesterol and triglycerides),
were available in only about half of the studies.10

More comprehensive adjustment for confounding
can only be easily achieved by restricting the dataset

to the latter studies, but such restriction omits infor-
mation on partial adjustment from the other studies.
We have previously described an approach that uses
the partially adjusted HRs, which can be estimated in
all studies, and the more comprehensively adjusted
log HRs, which can be estimated only in a subset of
studies, in a bivariate meta-analysis.49 This approach
acknowledges the correlations between the partially
and the more comprehensively adjusted log HRs
within studies in which both can be estimated but
uses the full dataset to contribute to the estimation
of a combined more comprehensively adjusted log HR.

An unresolved issue concerns the estimation of a
possibly non-linear exposure–risk relationship when
the exposure is measured with error. Homogeneous
measurement error, with a variance that does not
depend on level of the exposure, will tend to make
a non-linear association appear more linear.
Conversely, measurement error that, for example,
increases with level of the exposure will make a
linear association appear non-linear. Characterizing
the shape of the underlying exposure–disease rela-
tionship, while taking into account possibly heteroge-
neous measurement error, is not well studied,
especially in the context of IPD meta-analysis.50 One
approach may be to model the underlying association
using fractional polynomials or splines, while careful-
ly estimating measurement error variance as a func-
tion of exposure level.

As distinct from characterizing the shape, magni-
tude and independence of associations between risk
factors and disease (which may be relevant to judge-
ments about an exposure’s potential aetiological rele-
vance), IPD meta-analyses of multiple studies can
provide additional useful information. For example,
we have previously described the ERFC’s approach
to characterizing the cross-sectional correlates (and,
hence, potential determinants) of risk markers.23

Although this article has not addressed issues related
to risk prediction (i.e. the extent to which measuring
an additional exposure could better identify the risk
of disease outcomes for individuals), there is consid-
erable interest in the use of information from multiple
prospective studies to help inform risk stratification
and/or screening strategies. A separate literature
exists that involves discussion of how the ‘area
under an Receiver operating characteristic (ROC)
curve’ can be adapted for time-to-event data51 and
the extent to which individuals are re-classified into
risk groups that would affect the subsequent inter-
vention offered.52,53 We have adapted and illustrated
some of these predictive metrics for use in the
multiple study situation,54 and further such work
comprises a future methodological research agenda.

Increasing numbers of IPD meta-analyses of obser-
vational data are being conducted in order to enhance
the statistical power and detail of epidemiological stu-
dies. The scientific value of such approaches has now
been demonstrated in relation to various exposures
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and disease outcomes in many different consortia,
exemplified by the Prospective Studies Collaboration,3

the Asia Pacific Cohort Studies Collaboration,55 the
Breast Cancer Genetics Linkage Consortium,56 the
Collaborative Group on Hormonal Factors in Breast
Cancer,57 the US Pooling Project of Prospective Stu-
dies of Diet and Cancer47 and the GENOMOS Genetic
Markers for Osteoporosis Consortium.58 The statistical
methods developed here can be used to address the
needs of such analyses. Appropriate meta-analytical
methods may also have applications to analyses of
large purpose-designed multi-centre prospective ob-
servational studies, such as the pan-European EPIC
study,59 UK Biobank60,61 and the subsequent planned
meta-analysis of such studies.62
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KEY MESSAGES

� Summarizing exposure–risk relationships on the basis of individual time-to-event data from multiple
studies enhances the detail and power of epidemiological analyses.

� A two-step meta-analysis method is proposed to combine study-specific associations estimated by
using Cox regression.

� These methods allow investigation of the appropriate exposure scale, adjustment for confounders,
and checking the proportional hazards assumption.

� Within-study and between-study information for interactions need to be distinguished.

� More technically demanding issues include adjustment for measurement error and within-person
variation, and handling confounders that are not measured in all studies.
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University, Sweden; P Wennberg MD, Umeå
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Meta-analysis—the synthesis of quantitative informa-
tion from related studies—is one of the most popular
research methods of the past 20 years. Though the
large majority of meta-analyses synthesise aggregate
data (e.g. hazard ratio estimates) obtained from pub-
lications or investigators, there have been repeated
calls to facilitate meta-analysis of individual partici-
pant data (IPD),1 where the raw participant-level data
are obtained from each study and synthesized. IPD is
the original source material, which brings many
opportunities over the aggregate data approach,2 like
standardizing statistical analyses in each study; deriv-
ing desired summary results directly, independent
of study reporting; checking modelling assumptions;
and assessing participant-level effects, interactions
and non-linear trends. The approach is increasingly
applied,2 despite the extra cost, time and complexity
required to obtain and manage raw data.3 Commend-
able examples of IPD meta-analysis are those con-
ducted by the Emerging Risk Factors Collaboration
(ERFC),4 who have remarkably gathered IPD from
116 prospective studies and over 1.2 million
participants.

While meta-analysis methods using aggregate data
are well established and fairly routine, methods for
IPD meta-analysis are more complex and not well
known. They require statistical models specific to
the type of data under investigation and must account
for the clustering of patients within studies, while

appropriately synthesizing effects of interest across stu-
dies. The article in this issue of the IJE by Thompson
et al.5 is thus both pertinent and timely. The authors
consider IPD meta-analysis to identify risk factors for
a time-to-event outcome, as in the ERFC. I will now
expand on a few issues in the article and emphasize
some methodological challenges that remain.

The authors describe two-step IPD meta-analysis
methods, where Cox models are fitted within each
study separately and then relevant parameter esti-
mates pooled across studies. This methodology is
sound, but I agree with their comment that in prin-
ciple a one-step approach is preferred, where the IPD
are analysed simultaneously in a single model that
accounts for clustering of participants within studies.
One-step hierarchical Cox models with random-
effects are achievable,6 and a single modelling frame-
work is more convenient. The biggest advantage
of the one-step approach arises when modelling
non-linear trends and dealing with non-proportional
hazards, as it more easily allows established proced-
ures like fractional polynomials7 and cubic splines8 to
be implemented. However, the one-step approach is
computationally intensive,6 especially in situations
with large numbers of participants, but this problem
will ease as software and computational speed im-
proves. The one-step approach may also be more feas-
ible when using flexible parametric survival models,9

rather than the Cox model. These allow the baseline
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