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The prevalence of bacterial diseases and the application of probiotics to prevent them is a
common practice in shrimp aquaculture. A wide range of bacterial species/strains is
utilized in probiotic formulations, with proven beneficial effects. However, knowledge of
their role in inhibiting the growth of a specific pathogen is restricted. In this study, we
employed constraint-based genome-scale metabolic modeling approach to screen and
identify the beneficial bacteria capable of limiting the growth of V. harveyi, a common
pathogen in shrimp culture. Genome-scale models were built for 194 species (including
strains from the genera Bacillus, Lactobacillus, and Lactococcus and the pathogenic
strain V. harveyi) to explore the metabolic potential of these strains under different nutrient
conditions in a consortium. In silico-based phenotypic analysis on 193 paired models
predicted six candidate strains with growth enhancement and pathogen suppression.
Growth simulations reveal that mannitol and glucoronate environments mediate parasitic
interactions in a pairwise community. Furthermore, in a mannitol environment, the
shortlisted six strains were purely metabolite consumers without donating metabolites
to V. harveyi. The production of acetate by the screened species in a paired community
suggests the natural metabolic end product’s role in limiting pathogen survival. Our study
employing in silico approach successfully predicted three novel candidate strains for
probiotic applications, namely, Bacillus sp 1 (identified as B. licheniformis in this study),
Bacillus weihaiensis Alg07, and Lactobacillus lindneri TMW 1.1993. The study is the first to
apply genomic-scale metabolic models for aquaculture applications to detect bacterial
species limiting Vibrio harveyi growth.

Keywords: constraint-based, genome-scale model, microbial community, probiotics, vibriosis, shrimp
INTRODUCTION

Microbes naturally exist as a community with a complex web of interactions that define the
microbial community structure. The coordinated interactions between microbes enable metabolic
processes such as cross-feeding, degradation of complex saccharides (Freilich et al., 2011), or
synthesis of complex molecules (McCarty and Ledesma-Amaro, 2019). Advancement in sequencing
gy | www.frontiersin.org September 2021 | Volume 11 | Article 7524771

https://www.frontiersin.org/articles/10.3389/fcimb.2021.752477/full
https://www.frontiersin.org/articles/10.3389/fcimb.2021.752477/full
https://www.frontiersin.org/articles/10.3389/fcimb.2021.752477/full
https://www.frontiersin.org/articles/10.3389/fcimb.2021.752477/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:Ashok.Jangam@icar.gov.in
https://doi.org/10.3389/fcimb.2021.752477
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2021.752477
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2021.752477&domain=pdf&date_stamp=2021-09-29


Devika et al. In Silico Prediction of Probiotic Species
has provided a potential resource for constructing genome-scale
metabolic models (GSM) that serve as a basis to explore
metabolic capabilities in microbial communities. Constraint-
based modeling is a well-established approach that has been
successfully applied for in silico prediction of microbial
interactions (Henson et al., 2019; Fang et al., 2020). This
approach has been applied from individual to consortium of
species with the potential to discern the metabolic capabilities
and interactions that operate in a microbial community
(Heinken and Thiele, 2015b; Magnúsdóttir et al., 2017).

Shrimp aquaculture is among the fastest-growing farming
sectors globally in the coastal regions (FAO, 2020). However,
the shrimp farming suffers from frequent bacterial, fungal, and
viral outbreaks (Seibert and Pinto, 2012; Alfiansah et al., 2018).
According to a survey of key shrimp farming states in India,
economic losses owing to shrimp infections were 0.21 million tons
worth $1.02 billion in the 2018–2019 fiscal year (Patil et al., 2021).
Among the bacterial pathogens, the major Vibrio species affecting
shrimp aquaculture include V. parahaemolyticus, V. vulnificus,
V. furnissii, V. campbellii, V. harveyi, V. alginolyticus, and
V. anguillarum (Saulnier et al., 2000; Kumar et al., 2020),
leading to vibriosis.

A challenging problem that arises in this domain is the
possible unscientific use of antibiotics and chemotherapeutic
agents leading to drug or antibiotic-resistant bacteria in
aquaculture (Kang et al., 2014). In the aquaculture sector,
probiotics, prebiotics, and synbiotics are widely used to
improve growth performance and enhance immunity and
disease resistance (Hoseinifar et al., 2018). The probiotic
organisms produce natural antimicrobial compounds such as
organic acids, fatty acids, hydrogen peroxide, and bacteriocins
that prevent pathogenic organism’s growth and confer positive
health benefits to the host (Knipe et al., 2020). The application of
probiotic in shrimp farming is a key factor implicated in
bioremediation, water quality improvement (Verschuere et al.,
2000), enhancing the nutritional benefit and antimicrobial
activity against pathogenic microorganisms (Tamilarasu
et al., 2021).

Earlier studies have reported the use of beneficial bacteria for
their ability to inhibit pathogen through co-culture experiments
supplemented with carbohydrates or prebiotics (Fooks and
Gibson, 2002; Rurangwa et al., 2009). In a study, Fierro-
Coronado et al. (2018) have investigated the role of fulvic acid
in improving the survival of Litopenaeus vannamei challenged
with Vibrio parahaemolyticus. However, the exact molecular
mechanism by which the probiotic species suppress pathogen
growth remain unknown, but their role in improving the health
of shrimp is well established (Garcıá-Medel et al., 2020; Wang
et al., 2020; Nair et al., 2021). Moreover, screening bacterial
strains for probiotic properties on a large scale via conventional
in vivo and in vitro methods is labor-intensive, time-consuming,
and expensive. Further, screening at the species level is not
sufficient as the beneficial properties are strain-dependent
(Campana et al., 2017; McFarland et al., 2018). Therefore, it is
essential to delineate the strains limiting the survival of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
pathogens through in silico approaches. These challenges, in
turn, have rendered constraint-based genome-scale modeling
approach as a choice for the selection of beneficial bacterial
strains by analyzing the metabolic capabilities.

We developed a strain-specific genome-scale metabolic model
concentrating on Lactobacilli, Bacilli, and Lactococci genera
having closed-genome sequences. Moreover, the species from
these genera have demonstrated health advantages (Sahandi
et al., 2019). The pathogenic strain V. harveyi employed in this
study is associated with infections in shellfish, finfish, corals, and
molluscs, leading to substantial economic loss to the farmed
species in both brackish water and marine aquaculture
(Darshanee Ruwandeepika et al., 2012). The study aims to
predict the potential species limiting the growth of V. harveyi
and analyzes the metabolic interactions and exchanges operating
under different nutrient environments in the microbial
communities using in silico-based genome-scale metabolic
models. The contributions made here accelerate the screening
process by identifying the candidate strains for experimental
validation to evaluate their efficacy against pathogenic strains.
This study represents a pioneering work in screening the species
through a constraint-based approach against a shrimp pathogen.
METHODS

Dataset
The strains belonging to the genus, namely, Bacillus, Lactobacillus,
and Lactococcus, for which the whole genome sequences were
available, were used in the present study. The genome and protein
sequences corresponding to three genera comprising 193 different
strains were downloaded from NCBI RefSeq (as of 11/02/2020).
This includes 106 strains of Bacillus, 81 strains of Lactobacillus,
and 6 strains of Lactococcus. The dataset also contains a
pathogenic strain V. harveyi QT520, linked to pathogenesis in
marine organism (Supplementary Table 1).

Model Reconstruction
The genome-scale metabolic models were built with CarveMe
v1.2.2. CarveMe generates automated models using a top-down
approach for single and community species (Machado et al.,
2018). CarveMe converts the universal metabolic model into an
organism-specific model by removing reactions and metabolites
that are unlikely to be present in the given organism. Each of the
194 protein sequences retrieved was given as an input in CarveMe
to build a draft SBML model. The model statistics of 194 GSM
generated is summarized in Supplementary Table 2. The resulting
SBML models were gap filled and grown in a defined medium
(Supplementary Table 3) in anaerobic conditions with biomass
components specific to Gram-negative and Gram-positive bacteria
to make the draft model functional. The individual models were
merged in CarveMe using the merge community function into
groups of varying sizes, and each strain was assigned its own
compartment and a shared extracellular environment.
September 2021 | Volume 11 | Article 752477
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Computing Growth Using Flux
Balance Analysis
Simulations were performed with COBRA toolbox v3.0
(Heirendt et al., 2011) in Matlab R2018b using the linear
programming solver glpk. Each microbial consortium was
subjected to flux balance analysis (FBA), a constraint-based
approach to predict the flow of metabolites through a
metabolic network (Orth et al., 2010). FBA uses linear
programming formulation and operates under steady-state
conditions using stoichiometric matrix obtained from
metabolic models, mathematically expressed as follows:

Objective :

Max · vbio
s : t :    S : v = 0

Lj ≤ vj ≤ Uj

where S is a stoichiometric matrix of size m×n, m is the number
of metabolites, and n is the number of reactions, v represents the
flux through all reactions, Lj and Uj are the lower and upper
bound flux of each reaction j.

Simulations were performed by maximizing the objective
function, i.e., the biomass reaction, while constraining the
uptake rates of amino acids and essential vitamins/nutrients to
−1 mmol/gDw/h. A substrate uptake of −10 mmol/gDw/h was
constrained for glucose, fructose, mannitol, galactose, mannose,
N-acetyl-D-glucosamine (N-acgam), ribose, glucoronate, and
arabinose, and uptake of −5 mmol/gDw/h for sucrose, maltose,
cellobiose, trehalose, lactose, and maltotriose environments
(Supplementary Table 4). All the models were simulated in an
anaerobic environment by setting the lower bounds of oxygen
exchange to zero. An in silico growth rate of at least 0.01/h was
considered the organism’s ability to take up the carbon source.

Flux Variability Analysis
Flux variability analysis (FVA) computes the flux range through
each reaction while maintaining maximum biomass production
(Mahadevan and Schilling, 2003).

Maximize,  Minimize vj

S : t :  S : v = 0

vmin
j ≤ v ≥ vmax

j

where v represents the maximum andminimum flux through each
reaction j. Due to the long computation time, we performed FVA
only on the shortlisted models to determine the production of
major short-chain fatty acids (SCFA), such as acetate, lactate,
ethanol, formate, succinate, and butyrate. The flux value above 1e-
06 mmol/gDW/h was considered an organism’s ability to produce
the metabolites while maximizing the biomass reaction.7

Categorizing Paired Communities
We classified the strains into three categories as suggested by
Heinken and Thiele (2015b), summarized as follows: (i) An
increase in the growth rate of at least 10% under pairwise
community compared to a single strain grown in the same
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
environment, and unchanged growth of the pathogen in
relation to a single strain. (ii) A strain with the same growth
rate in paired and single in the same environment and a 10%
decrease in growth for the pathogen over the single strain. (iii) A
minimum of 10% increase in growth rate in paired over single in
the same environment and a 10% decrease in growth of pathogen
over single in same environment.

Computing Metabolic Exchanges
Species Metabolic Interaction Analysis (SMETANA v1.2.0), a
mixed-integer linear programming method, was used to
compute the metabolites exchanged between species in a
paired community under a defined medium (Zelezniak et al.,
2015). The smetana command was used with the flags “–flavor
cobra” with detailed mode using the default CPLEX solver.
Among the different scores generated, we analyzed only the
SMETANA score, as this potentially indicates the strength of
metabolic interactions between organisms. SMETANA score
varies between 0 and 1, wherein 0 represents no interaction
and 1 represents certain interaction between species.

Phylogenetic Analysis
The phylogenetic analysis was performed with MEGA7.0
software using the 16S rRNA genes of shortlisted species to
understand their phylogenetic relationship (Kumar et al., 2016).
We used MEGA software’s ClustalW program for multiple
sequence alignment with bootstrap set to 1,000 using the
maximum likelihood method to generate phylogenetic trees.

Average Nucleotide Identity
The average nucleotide identity (ANI) indices were computed
using the Python library pyANI v0.20 to study genome level
similarities among the selected species (Pritchard, 2015). PyANI
uses Mummer or Blast to compute similarity indices. ANI was
run with the argument “ANIm”, which calculates indexes
with Mummer.

Statistical Analysis
The growth values derived from FBA were subjected to non-
parametric one-way ANOVA with Kruskal-Wallis test using the
R package for all combinations of shortlisted six species across
four different media. The data visualization was performed
with ggplot2.
RESULTS

Screening Potential Species Based
on Growth Benefit and Suppression
of Pathogen
As an initial core analysis, each model was subject to FBA in an
anaerobic media with single carbon source (15 different carbon
sources were used). As shown in Supplementary Figure 1, the
single models of 193 strains exhibited a wide range of simulated
growth rates in each of the 15 nutrient environments. About
carbon source utilization, 32 strains comprising 20 Bacilli,
September 2021 | Volume 11 | Article 752477
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11 Lactobacilli, and 1 Lactococci showed fermentation in all 15
environments. All 193 individual models showed in silico growth
in maltose and glucose environments. Most strains (40–70%)
fermented the carbon sources glucoronate, arabinose, and
galactose. The strains L.kunkeei MP2 and L. sp. BHWM 4 are
the least fermenting ones that utilized only five carbon sources.
Additionally, phenotypic prediction on the pathogenic strain
V. harveyi revealed no in silico growth under arabinose
(Supplementary Figure 2).

Next, the single 193 models were merged with the pathogenic
strainV. harveyi to perform pairwise community simulations. Only
48% of the strains in a paired community showed in silico growth,
with only 30% showing a 10% increase in growth compared to
single strains under diverse nutrient environments, as shown in
Figure 1. Moreover, only 30% of strains in the paired community
grew on the sole carbon sources, namely, glucose and maltose,
compared to the single strains, where all 193 strains grew. In a
paired community, three strains, namely, B. thermoamylovorans
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
SSBM, B. weihaiensis Alg07, and L. sp. Koumiss, could survive
across all nutrient environments.

In paired communities, V. harveyi could grow with 186 out of
193 strains, as shown in Supplementary Figure 3, on 15 different
nutrient environments. Under galactose environment, V. harveyi
showed significant growth in silico. It was noted that only nine
strains, namely, Bacillus sp 1s 1, B. thermoamylovorans SSBM, B.
weihaiensis Alg07, L. jinshaniHSLZ 75, L. lindneri TMW 1.1993,
L. paracasei ATCC 334, L. pontis LP475, L. reuteri JCM 1112,
and L. sp Koumiss, limited the growth of the pathogenic strain
under galactose environment. Additionally, growth simulation
revealed a limited growth for V. harveyi under mannitol
environment in a paired community.

Mannitol Exhibits Parasitic Interaction in
Pairwise Community Models
Based on the in silico phenotypic analysis, we categorized the
strains as tabulated in Supplementary Table 5. We focussed our
FIGURE 1 | Heat map representing computed growth rates of strains with significant increase in growth rates (at least 10% uplift in in silico growth rate than single
species) in a paired community with 15 different nutrient environments.
September 2021 | Volume 11 | Article 752477
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analysis on the paired models where an increase in growth rate
was observed for the strains while a limited in silico growth rate
for pathogen. A total of 48 strains, comprising 30 bacilli and 18
lactobacilli, fall into this category.

Prior work by Heinken and Thiele (2015a) has classified
microbial communities into six types of interactions based
on growth rates: parasitism, amensalism, commensalism,
mutualism, neutralism, and competition. As the study’s goal
was to identify the strains that limit the growth of the
pathogen as well as enhance the growth of the strains, we were
interested in parasitic interaction. Our analysis revealed that
only 15% of the strains accounted for parasitic interactions
(Supplementary Figure 4). The six strains, namely, Bacillus sp
1s 1, B. weihaiensis Alg07, L. sakei WiKim0063, L. sp Koumiss,
L. lindneri TMW 1.1993, and L. buchneri NRRL B 30929, which
showed parasitic interaction, also outperformed the other species
in at least five nutrient environments, both improving growth
and limiting pathogen survival (Figure 2). The different
interaction types exhibited by 48 strains are tabulated in
Supplementary Table 6.

Out of the 15 nutrient environments used in this study,
pathogen survival was limited majorly in the mannitol
environment, as shown in Supplementary Figure 5. Analysis of
the 48 strains reveals metabolic gains on four species, namely,
B. thermoamylovorans SSBM, B. weihaiensis Alg07, L. jinshani
HSLZ 75, and L. lindneri TMW 1.1993. Among the four species,
the highest metabolic gain is achieved by L. lindneri TMW 1.1993,
upon paired with the pathogen (Supplementary Figure 6).

Cross-Fed Metabolites in
Pairwise Community
SMETANA identified 87 metabolites cross-fed across the
pairwise community for the 48 filtered species (Supplementary
Table 7). Among the metabolites predicted, minerals and amino
acids were frequently exchanged. In addition, lactate, acetate,
ethanol, fumarate, and succinate have also been predicted to be
exchanged. Out of the 87 pan metabolites predicted in silico, 58
metabolites were environment independent, with exchange
occurring in all nutrient environments.

Moreover, out of the 48 strains, eight strains, namely,
L. fermentum IFO 3956, L. hokkaidonensis JCM 18461
LOOC260, L. kullabergensis ESL0186, L. lindneri TMW
1.1993, L. pontis LP475, L. reuteri JCM 1112, L. sakei WiKim0063,
and L. sp Koumiss, were only consumers, i.e., receivingmetabolites
from the pathogen based on our in silico predictions. All these
strains have shown the ability to benefit from pathogen across all
the nutrient environments by consuming metabolites. Among the
metabolites cross-fed in the shortlisted strains (Figure 3),
L. lindneri TMW 1.1993 achieved significant in silico growth
benefits by uptaking carbon sources, namely, glucose and ribose,
predicted to be secreted from the pathogen.

Short-Chain Fatty Acids Profile Across
Nutrient Environments
The flux profiles, i.e., the qualitative increase or decrease of
SCFA, were inferred using FVA in single and paired models to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
contextualize the pairwise community models towards
production of metabolites across environments. When
comparing pairwise communities to single species, acetate and
ethanol fluxes increased. The lactate production potential of 48
species varied significantly, with single models exhibiting higher
flux than pairwise community models. Similarly, the ability of
the organism to produce succinate and fumarate was higher in
single species. All 48 paired species were unable to produce
butyrate. A total of 10 species, as listed in Supplementary
Table 8, could synthesize five of the six metabolites in at least
one of the nutritional conditions.

Community Simulation With
Potential Species
To unravel how the interactions among shortlisted species limit
the growth of V. harveyi, we made merged models from all
possible combinations of six strains for generating different
consortia and subjected to FBA in four different nutrient
environments. The four nutrients, namely, mannitol, N-acgam,
glucoronate, and cellobiose, were chosen based on strain survival
and limiting pathogen growth in these environments. The in
silico growth rate listed in Supplementary Table 9 is the sum of
the biomass reactions of the potential strains under each
environment in different consortia. The results indicate that
the maximum simulated growth rate of strains under
mannitol, N-acgam, glucoronate, and cellobiose environment
were 0.17, 0.14, 0.17, and 0.16/h, respectively. The consortium
consisting of Bacillus sp 1s, B. weihaiensis Alg07, and L. lindneri
TMW 1.1993 was the most effective combinations in growth
enhancement and limiting pathogen survival.

Non-parametric one-way ANOVA revealed a significant
difference between the groups tested in community
simulations. The test resulted in Kruskal-Wallis chi-square
value of 10.10 at p-value <0.05, indicating the significance
between the species combinations. The top 10 groups that
exhibited the highest average scores are depicted in Figure 4.
Among the total combinations, B. licheniformis, B. weihaiensis,
and L. lindneri were the best combinations that exhibited the
highest in silico growth rates in the presence of V. harveyi.
DISCUSSION

This study reports the constraint-based metabolic modelling
approach applied for the first time in the aquaculture
ecosystem to screen potential strains limiting the growth of the
pathogen. The individual models constructed from the genome
of 193 strains exhibited better in silico growth in over 15 different
nutrient environments. In contrast, limited in silico growth was
observed with the paired models. The in silico growth
impediment of strains observed in the paired models attributes
to the metabolites derived from V. harveyi, a known property of
the Vibrio spp. (Balakrishnan et al., 2014).

We identified 48 out of 193 strains through a flux-based
approach to be ideal candidates limiting the growth of V. harveyi
September 2021 | Volume 11 | Article 752477
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in specific nutrient environments. It is important to note that
many strains out of these 48, like B. subtilis, L. casei,
L. rhamnosus, L. paracasei, L. sakei, L. sp Koumiss, and
L. buchneri, have already reported to be probiotic species (Lim
et al., 2014; Hill et al., 2018; Westerik et al., 2018; Rhayat et al.,
2019; Xu et al., 2019; Garcıá-Medel et al., 2020; Liao et al., 2020;
Tang et al., 2020). Flux variability analysis revealed the
production of SCFA, mainly acetate, by a majority of the
strains in paired models, signifying the role of this natural by-
product towards growth inhibition of the pathogen. Earlier, Mine
and Boopathy (2011) also reported the role of organic acids such
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
as formic acid, acetic acid, propionic acid, and butyric acid in
inhibiting the V. harveyi.

The constraint-based approach employed in the current study
screened several Lactobacilli strains as potential candidates
limiting V. harveyi. The shortlisted strain L. buchneri NRRL B
30929 was originally isolated from an ethanol fermentation plant
which has broad substrate utilization capability (Heinl and
Grabherr, 2017).

In our in silico analysis, L. buchneri exhibited parasitic
interaction limiting the pathogen surivival. Another shortlisted
species, L. sakei, isolated from fish and meat products
FIGURE 2 | Barplot depicting the number of nutrient environments in which strains limits growth of V. harveyi.
FIGURE 3 | Alluvial plot depicting top metabolites exchanged between shortlisted species and V. harveyi with thickness of the line denoting the SMETANA scores,
which range between 0 and 1.
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(Lim et al., 2014), reduce the count of Vibrio species in different
live prey such as Artemia franciscana, Brachionus plicatilis, and
Tigriopus japonicas (Sahandi et al., 2019). It has been reported
that L. sakei showed a stronger killing effect on pathogenic
V. parahaemolyticus, making it a promising candidate in
controlling vibriosis (Le and Yang, 2018). The in silico analysis
presented in this study revealed that L. sakei strain benefited
from metabolites generated from V. harveyi, exhibiting a
parasitic relationship by experiencing growth benefit.

L. lindneri is one of the novel Lactobacillus strains identified
through constraint-based approach as a potential candidate
against V. harveyi in our study. Interestingly, L. lindneri is
associated with the following metabolic capabilities: (i) Flux-
based Analysis revealed the ability to limit V. harveyi in many of
the nutrient environments. (ii) Metabolic gain achieved by L.
lindneri, which signifies a species’ ability to utilize a nutrient in a
paired model where the same nutrient cannot be catabolized
alone by the species. (iii) SMETANA-based analysis reveal L.
lindneri as the consumer of metabolites donated by V.harveyi. In
addition to the distinguished metabolic capabilities exhibited by
L. lindneri in simulations performed in this study, it has also
exhibited a close phylogenetic affiliation to known probiotic
strains. The 16s rRNA-based phylogeny with a bootstrap value
of 93% places greater confidence that L. lindneri is closely related
to L. fructivorans (Supplementary Figure 7). The strain L.
fructivorans is previously reported to significantly decrease
larval mortality in sea bream (Carnevali et al., 2004).

Among the Bacillus strains shortlisted in this study, B.
weihaiensis Alg07 exhibited parasitic interactions in the
pairwise community. The B. weihaiensis Alg07 strain is
associated with polysaccharide degradation and promotes the
nutrient cycle and other essential functions in the marine
ecosystem (Zhu et al., 2016). Another shortlisted strain,
Bacillus sp 1s, exhibited proximity with B. licheniformis DSM
13 ATCC 14580 using ANI analysis (Supplementary Table 10).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
Several extracellular bio-compounds, including vitamins and
enzymes, are produced by B. licheniformis, improving nutrient
digestion and innate immunity (Tachibana et al., 2021).
Moreover, the probiotic effect of B. licheniformis BCR 4-3 has
been reported to increase resistance in Litopenaeus vannamei
challenged with V. parahaemolyticus (Garcıá-Medel et al., 2020).
In another study, the hemolytic activity of V. harveyi has been
reported to be reduced by B. licheniformis (Nakayama
et al., 2009).

In a microbial community, the nutrient environment
significantly influences the interactions between species
(Freilich et al., 2011). Our study highlighted the role of sugar
alcohol mannitol, which retained its influence on growth benefit
on beneficial species and limiting pathogen in different
communities generated. The growth improvement effect of
mannitol on Lactobacillus reported by Liong and Shah (2005)
and limiting effect on V. harveyi observed in our study indicate
the role of this sugar alcohol in the parasitic interactions.
Simulations on multiple consortia generated with all possible
combinations of potential strains revealed the community
comprising Bacillus sp 1s, B. weihaiensis Alg07, and L. lindneri
TMW 1.1993 to be the ideal combination in reducing the
pathogen’s survival in the studied nutrient environments. This
study also demonstrated the potential of genome-scale model to
identify the ideal consortia of compatible potential strains for
further testing and applications in the field.

The present study was conducted with the automated
genome-scale model generated due to the non-availability of
readily available manually curated published models. In addition,
the scope of the study is limited to monosaccharide and
disaccharide nutrient environments only. Future works with
similar methods as followed in the study could provide further
insights into the metabolic interactions between the probiotic
and the pathogen if curated models with diverse nutrient
environments are used and validated through experiments.
FIGURE 4 | Top 10 community model groups with highest average growth scores (Bw, B. weihaiensis; Ll, L. lindneri; Bl, B. licheniformis; Ls, L. sakei; Lk, L. Koumiss;
Lb, L. buchneri).
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CONCLUSION

Large-scale screening for identifying beneficial microbes using
experimental methods is difficult and time-consuming. However,
the genome-scale modeling work presented here provides a
feasible, effective, and alternative approach to accelerate the
screening of larger microbial communities and shorten the path
to experiments. Through the metabolic modelling approach, we
can narrow down the search of potential probiotic candidates from
the huge pool of species with closed genome availability, reducing
experimental efforts and saving time and resources. The study also
suggests the importance of nutrient environments in driving the
parasitic interactions facilitating the growth of beneficial microbes.
Moreover, with the exchange of metabolites observed in the paired
models, the beneficial bacteria might gain an advantage and inhibit
pathogen growth. Collectively, this work illustrated the importance
of constraint-based genome-scale modeling to shortlist potential
strains that could go for experimental validation.
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Diarte-Plata, G., Gámez-Jiménez, C., et al. (2020). Bacillus Licheniformis BCR
4-3 Increases Immune Response and Survival of Litopenaeus Vannamei
Challenged With Vibrio Parahaemolyticus IPNGS16. Aquac. Int. 28, 2303–
2318. doi: 10.1007/s10499-020-00585-2

Heinken, A., and Thiele, I. (2015a). Anoxic Conditions Promote Species-Specific
Mutualism Between Gut Microbes In Silico. Appl. Environ. Microbiol. 81,
4049–4061. doi: 10.1128/AEM.00101-15

Heinken, A., and Thiele, I. (2015b). Systematic Prediction of Health - Relevant
Humanmicrobial Co-Metabolism Through a Computational Framework. Gut
Microbes 6, 85–92. doi: 10.1080/19490976.2015.1023494
September 2021 | Volume 11 | Article 752477

https://www.frontiersin.org/articles/10.3389/fcimb.2021.752477/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcimb.2021.752477/full#supplementary-material
https://doi.org/10.3389/fmicb.2018.02457
https://doi.org/10.12980/APJTB.4.2014C947
https://doi.org/10.1186/s13099-017-0162-4
https://doi.org/10.1023/B:AQUI.0000042141.85977.bb
https://doi.org/10.1111/j.1753-5131.2012.01061.x
https://doi.org/10.1111/j.1753-5131.2012.01061.x
https://doi.org/10.1038/s41579-020-00440-4
https://doi.org/10.4060/ca9229en
https://doi.org/10.1111/are.13789
https://doi.org/10.1016/S0168-6496(01)00197-0
https://doi.org/10.1038/ncomms1597
https://doi.org/10.1007/s10499-020-00585-2
https://doi.org/10.1128/AEM.00101-15
https://doi.org/10.1080/19490976.2015.1023494
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Devika et al. In Silico Prediction of Probiotic Species
Heinl, S., and Grabherr, R. (2017). Systems Biology of Robustness and Flexibility:
Lactobacillus Buchneri—A Show Case. J. Biotechnol. 257, 61–69. doi: 10.1016/
j.jbiotec.2017.01.007

Heirendt, L., Arreckx, S., Pfau, T., Mendoza, S. N., Richelle, A., Heinken, A., et al.
(2011). Creation and Analysis of Biochemical Constraint-Based Models Using
the COBRA Toolbox V.3.0. Nat. Protoc. 6, 1290–1307. doi: 10.1038/
nprot.2007.99

Henson, M. A., Orazi, G., Phalak, P., and O’Toole, G. A. (2019). Metabolic
Modeling of Cystic Fibrosis Airway Communities Predicts Mechanisms of
Pathogen Dominance. mSystems 4, 1–20. doi: 10.1128/msystems.00026-19

Hill, D., Sugrue, I., Tobin, C., Hill, C., Stanton, C., and Ross, R. P. (2018). The
Lactobacillus Casei Group: History and Health Related Applications. Front.
Microbiol. 9:2107. doi: 10.3389/fmicb.2018.02107

Hoseinifar, S. H., Sun, Y. Z., Wang, A., and Zhou, Z. (2018). Probiotics as Means of
Diseases Control in Aquaculture, a Review of Current Knowledge and Future
Perspectives. Front. Microbiol. 9, 2429. doi: 10.3389/fmicb.2018.02429

Kang, C. H., Kim, Y. G., Oh, S. J., Mok, J. S., Cho, M. H., and So, J. S. (2014).
Antibiotic Resistance of Vibrio Harveyi Isolated From Seawater in Korea.Mar.
Pollut. Bull. 86, 261–265. doi: 10.1016/j.marpolbul.2014.07.008

Knipe, H., Temperton, B., Lange, A., Bass, D., and Tyler, C. R. (2020). Probiotics
and Competitive Exclusion of Pathogens in Shrimp Aquaculture. Rev. Aquac.
13, 324–352. doi: 10.1111/raq.12477

Kumar, J. A., Kumar, K. V., Avunje, S., Akhil, V., Ashok, S., Kumar, S., et al.
(2020). Phylogenetic Relationship Among Brackishwater Vibrio Species. Evol.
Bioinform. 16, 1–8. doi: 10.1177/1176934320903288

Kumar, S., Stecher, G., and Tamura, K. (2016). MEGA7: Molecular Evolutionary
Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33, 1870–
1874. doi: 10.1093/molbev/msw054

Le, B., and Yang, S. H. (2018). Probiotic Potential of Novel Lactobacillus Strains
Isolated From Salted-Fermented Shrimp as Antagonists for Vibrio
Parahaemolyticus. J. Microbiol. 56, 138–144. doi: 10.1007/s12275-018-7407-x

Liao, C., Wang, T., Maslov, S., and Xavier, J. B. (2020). Modeling Microbial Cross-
Feeding at Intermediate Scale Portrays Community Dynamics and Species
Coexistence. PloS Comput. Biol. 16, e1008135. doi: 10.1371/journal.pcbi.1008135

Lim, H. I., Lee, J., Jang, J. Y., Park, H. W., Choi, H. J., Kim, T. W., et al. (2014).
Draft Genome Sequence of Lactobacillus Sakei Strain Wikim 22, Isolated From
Kimchi in Chungcheong Province, South Korea. Genome Announc. 2, 195–
196. doi: 10.1128/genomeA.01296-14

Liong, M. T., and Shah, N. P. (2005). Optimization of Cholesterol Removal by
Probiotics in the Presence of Prebiotics by Using a Response Surface Method.
Appl. Environ. Microbiol. 71, 1745–1753. doi: 10.1128/AEM.71.4.1745-
1753.2005

Machado, D., Andrejev, S., Tramontano, M., and Raosaheb, K. (2018). Fast
Automated Reconstruction of Genome-Scale Metabolic Models for Microbial
Species and Communities. Nucleic Acids Res. 46, 7542–7553. doi: 10.1101/
223198
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