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Primary familial brain calcification (PFBC, OMIM#213600), also known as Fahr’s disease,

is characterized by bilateral and symmetric brain calcification in the basal ganglia

(globus pallidus, caudate nucleus, and putamen), thalamus, subcortical white matter, and

cerebellum. PFBC can be caused by loss-of-function mutations in any of the six known

causative genes. The most common clinical manifestations include movement disorders,

cognitive impairment, and neuropsychiatric signs that gradually emerge in middle-aged

patients. To broaden the PFBC mutation spectrum, we examined nine members of a

family with PFBC and two sporadic cases from clinical departments, and sequenced all

PFBC-causative genes in the index case. Two novel frameshift mutations in SLC20A2

[NM_001257180.2; c.806delC, p.(Pro269Glnfs∗49) and c.1154delG, p.(Ser385Ilefs∗70)]

and one novel splice donor site mutation (NM_002608.4, c.456+1G>C, r.436_456del)

in PDGFB were identified in the patient cohort. c.806delC co-segregated with brain

calcification and led to SLC20A2 haploinsufficiency among the affected family members.

The c.456+1G>C mutation in PDGFB resulted in aberrant mRNA splicing, thereby

forming mature transcripts containing an in-frame 21 base pair (bp) deletion, which might

create a stably truncated protein [p.(Val146_Gln152del)] and exert a dominant negative

effect on wild-type PDGFB. All three mutations were located in highly conserved regions

among multiple species and predicted to be pathogenic, as evaluated by at least eight

common genetic variation scoring systems. This study identified three novel mutations

in SLC20A2 and PDGFB, which broadened and enriched the PFBC mutation spectrum.
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INTRODUCTION

Primary familial brain calcification (PFBC, OMIM #213600)
is a rare neurodegenerative disorder characterized by vascular
calcification affecting multiple brain regions, particularly the
basal ganglia, thalamus, subcortical white matter, and cerebellum
(Nicolas et al., 2013a, 2015; Tadic et al., 2015; Batla et al., 2017).
Brain calcification first appears in the globus pallidus, caudate
nucleus, and putamen, and progressively affects the thalamus,
hypothalamus, subcortical white matter, cerebral cortex, and
dentate gyrus of the cerebellum (Kimura et al., 2016; Paucar et al.,
2016, 2017). Clinical symptoms include cognitive impairment,
psychiatric symptoms, and movement disorders (Nicolas et al.,
2013a, 2015; Grangeon et al., 2019). Most patients have no
obvious neurological manifestations before their middle age;
however, ∼60–70% of patients may exhibit progressive motor
coordination dysfunction and neuropsychiatric signs, such as
tremor paralysis, dystonia, ataxia, dementia, aphasia, mental
confusion, and chronic headache, after the age of 40 years
(Donzuso et al., 2019; Grangeon et al., 2019; Westenberger et al.,
2019).

Genetically, loss-of-function mutations in SLC20A2 cause
familial and sporadic cases of PFBC (Hsu et al., 2013; Lemos
et al., 2015). SLC20A2mutations can impair the inward transport
of phosphate through loss-of-function (Wang et al., 2012),
dominant negative effects (Kimura et al., 2016; Larsen et al.,
2017), or haploinsufficiency mechanisms (Zhang et al., 2013).
In addition, PIT-1/SLC20A1 (Inden et al., 2016) and XPR1
(Giovannini et al., 2013; Legati et al., 2015) are important for
regulating phosphate homeostasis in the brain. PIT-2 and PIT-
1 proteins belong to the type III sodium-dependent phosphate
co-transporter family that mediates phosphate influx (Li et al.,
2006; Crouthamel et al., 2013), whereas XPR1 is the only known
transporter for phosphate efflux (Legati et al., 2015). PDGFRB
(Nicolas et al., 2013b), PDGFB (Keller et al., 2013),MYORG (Yao
et al., 2018), and JAM2 (Cen et al., 2020; Schottlaender et al.,
2020) are four known PFBC-causative genes, all of which may
help maintain the structural integrity of the neurovascular unit
(NVU) and regulate the permeability of the blood-brain barrier
(BBB) (Westenberger et al., 2019; Zarb et al., 2019a).

To date, SLC20A2 and PDGFB are most frequently involved
in familial cases of autosomal dominant (AD) PFBC (Batla et al.,
2017; Donzuso et al., 2019), whereas the presence of bi-allelic
mutations in MYORG is the major cause of recessive PFBC
(Bauer et al., 2019). This study aimed to identify novel pathogenic
mutations in six known PFBC-causative genes and to provide
new insights into the clinical diagnosis of PFBC.

CASE DESCRIPTION

One Chinese family and two Chinese sporadic cases of
PFBC were recruited from the Peking Union Medical
College Hospital (PUMCH). The eligibility criteria for
patient enrollment were: (1) bilateral and symmetrical basal
ganglia calcification; and (2) PFBC-related neurological
symptoms. Exclusion criteria were: (1) individuals with
blood biochemical disorders related to calcium, phosphate,

alkaline phosphatase (ALP), or parathyroid hormone (PTH)
metabolism; (2) traumatic brain injuries; (3) parasitic or
viral infections; and (4) physiological and senile calcification.
Written informed consent was obtained from each participant,
and ethical approval was obtained from the Institutional
Ethics Committee of Peking Union Medical College,
Chinese Academy of Medical Sciences (CAMS&PUMC).
Subsequently, the recruited patients underwent systemic
physical, neurological, and blood biochemical examinations.
Brain computed tomography (CT) or magnetic resonance
imaging (MRI) scans were routinely adopted as part of the
diagnostic workup for evidence of brain calcification and
other intracranial abnormalities. All clinical examinations
and diagnoses were carefully evaluated and revised by the
relevant experts.

Case-1: HB-PFBC Family
A three-generation HB-PFBC family was recruited from the
Department of Endocrinology, PUMCH (Figure 1A). The
regions of brain calcification were revealed using intracranial
CT scanning, and the high radiopacity and density areas inside
the brain parenchyma represented calcification. Members (I-1,
II-1, II-3, and III-1) of the HB-PFBC family, who underwent
CT scanning with the imaging authorized to researchers,
showed symmetric and bilateral calcification in the caudate
nuclei, globus pallidus, and putamen regions, whereas no
retina/lens calcification, microphthalmia, or cataracts were
observed (Figure 1B). The molecular and clinical characteristics
of the patients are summarized in Table 1. The old father (I-1)
showed prominent and severe calcification in the cerebellar
hemisphere and vermis, as well as in the hippocampus, which is
seldom calcified in PFBC patients. His neurological symptoms
included parkinsonism, cerebral infarction, dysarthria, gait
rigidity, and ataxia. The proband II-1 reported suffering from
chronic and repetitive dizziness for 2 years. Biochemical
tests showed that only total thyroxine (TT4) levels were
slightly lower than normal; however, PTH levels were much
higher than those in the reference (Supplementary Table 1).
Mutational analysis of the four known AD PFBC-causative
genes revealed the c.806delC mutation in SLC20A2 of proband
II-1 (Figure 1C) that co-segregated with brain calcification
in this family (Supplementary Figure 1). The c.806delC
mutation is located in highly conserved regions of exon 7 of
SLC20A2 (NM_001257180.2) in multiple species (Figure 1C),
theoretically resulting in a prematurely terminated mRNA
transcript, which might activate a surveillance mechanism
called nonsense-mediated mRNA decay (NMD) (Khajavi
et al., 2006), or probably create a C-terminal truncated PIT-
2 protein [p.(Pro269Glnfs∗49)] with impaired phosphate
transport function. We evaluated the impact of the c.806delC
mutation on SLC20A2 mRNA expression and found a
40–65% relative level in heterozygous carriers compared
with controls, confirming that SLC20A2 haploinsufficiency
causes brain calcification in the HB-PFBC family members
(Figure 1D). Furthermore, SLC20A1, which is considered
to play an essential role in inorganic phosphate-induced
cardiovascular calcification (Li et al., 2006), showed no
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FIGURE 1 | (A) HB-PFBC pedigree. Filled symbols represent family members affected with brain calcification, including both symptomatic (black) and asymptomatic

(gray) cases. The black arrow indicates the proband and question marks indicate individuals whose blood samples and brain imaging were both not available. delC:

c.806delC; +: wild-type allele; Cal, calcification; non-Cal, no calcification; NA, not available. (B) Brain computed tomography (CT) images of affected individuals in the

HB-PFBC family. High radiopacity and density areas represent brain calcification. (C) The c.806delC mutation of SLC20A2 in the HB-PFBC proband and frequency

diagram of protein conservation analysis for mutated Pro269 site. (D) SLC20A2 and SLC20A1 mRNA expression in the peripheral leukocytes of the HB-PFBC family

members. Red bar indicates the patient, and blue indicates normal people. (E) Brain CT and MRI axial T2*GRE images of the GD-PFBC patient. (F) The c.1154delG

mutation of SLC20A2 in the GD-PFBC patient.

compensation effect for the c.806delC mutation in SLC20A2
(Figure 1D).

Case-2: GD-PFBC Sporadic Case
A case of a patient with sporadic PFBC, named GD-PFBC, was
recruited from the Department of Neurology, PUMCH. The
patient was a 45-year-old man who had been suffering from
involuntary movement of his left limbs and bradykinesia
for 3 years. No headache, dizziness, nausea, vomiting,
convulsion, language or speech problems, or consciousness
disorders were present. A family history was also referred
to. Systemic physical and neurological examinations revealed
no abnormalities. Serum calcium, phosphate, and PTH
concentrations and thyroid function were normal. The
total serum cholesterol was normal; however, triglycerides

(TG: 4.78 mmol/L, normal: 0.56–1.70 mmol/L), high-density
lipoproteins (HDL-C: 0.75 mmol/L, normal: 1.16–1.42
mmol/L), low-density lipoproteins (LDL-C: 2.56 mmol/L,
normal: 2.70–4.10 mmol/L), and apolipoprotein A-I (apoA-I:
0.90 g/L, normal: 1.20–1.60 g/L) were all out of reference,
implicating dyslipidemia. Serum homocysteine (HCY: 36.9
µmol/L, normal: 4.0–17.0 µmol/L) and blood lactic acid (2.50
mmol/L, normal: 0.50–2.20 mmol/L) levels were higher than
normal values. Abdominal ultrasonography showed mild
fatty lesions in the liver and prostatic calcification. Brain
CT imaging revealed bilateral symmetric calcification in
the caudate nuclei, lentiform nuclei, thalami, and dentate
nuclei of the cerebellum (Figure 1E). Brain MRI axial
T2∗GRE also showed bilateral symmetric hypointense signal
changes in the aforementioned brain regions (Figure 1E).
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TABLE 1 | Molecular and clinical findings in the HB-PFBC family.

Index Agea Sexb Mutation Calcification regions Symptoms

I:1 69 M c.806delC Caudate nuclei, globus pallidus, putamen, thalamus,

cerebral cortex, cerebellum, vermis, hippocampus

Parkinsonism, cerebral infarction, dysarthria, gait rigidity,

ataxia

II:1 43 M c.806delC Caudate nuclei, globus pallidus, putamen, cerebellum Chronic and repetitive dizziness

II:3 41 M c.806delC Caudate nuclei, globus pallidus, putamen, thalamus,

cerebral cortex, cerebellum

Asymptomatic

II:6 39 F c.806delC Brain calcifications Asymptomatic

III:1 19 M c.806delC Caudate nuclei, globus pallidus, putamen, thalamus,

cerebral cortex

Asymptomatic

III:4 12 F c.806delC Brain calcifications Asymptomatic

III-2 14 F Ref. Allele No brain calcification Chronic headache

III-3 14 F Not test No brain calcification Normal

III-5 9 M Ref. Allele No brain calcification Normal

aAge indicates age at diagnosis; bM and F indicate male and female, respectively.

The patient was eventually diagnosed with Fahr’s disease
with hypertriglyceridemia and hyperhomocysteinemia. We
identified a novel c.1154delG mutation at exon 8 of SLC20A2
(NM_001257180.2) (Figure 1F), in an evolutionarily conserved
region, and predicted the formation of an NMD-directed
degraded transcript or a truncated protein [p.(Ser385Ilefs∗70)]
in this patient.

Case-3: HLJ-PFBC Sporadic Case
The HLJ-PFBC patient in this case was a 46-year-old woman
who complained of chronic headache, nausea, and slow writing
in the 3 years prior to examination. Her physical examination
revealed slightly elevated blood pressure (130/100 mmHg),
and biochemical examination showed normal levels of serum
calcium, phosphate, magnesium, calcitonin, and PTH. However,
cranial CT revealed bilateral and symmetrical calcification in the
basal ganglia, thalamus, and cerebellum (Figure 2A). A splice
donor mutation (c.456+1G>C), located at the initiation of
intron 4 of PDGFB (NM_002608.4), was suspected to be the
causative mutation in this patient (Figure 2B). Mutational effects
on mRNA splicing evaluated via cDNA-PCR and TA-cloning
sequencing revealed that the c.456+1G>C mutation resulted in
an in-frame deletion of 21 bp of nucleotides in vivo (Figure 2C).
The relatively lower numbers of mutant TA clones (mt/wt
clones = 22/44) and lower heights of cDNA sequencing peaks
indicated that the newly deleted transcript was either undergoing
the NMD process, the compensatory effect of the wild-type
allele, or both, in the peripheral blood. Quantitative real-time
PCR using SYBR Green dye and TaqMan probes revealed that
the overall expression of PDGFB mRNA was increased by
2.47-fold when compared with age- and sex-matched controls,
while the expression of the wild-type allele was increased by
more than 3-fold (1.55 vs. 0.50%) (Figure 2D). Mutant PDGFB
protein might be more stable than wild-type PDGFB and may
induce the compensatory expression of wild-type protein in
the HEK293T cell line (Figure 2E). The c.456+1G>C mutation
effect on the PDGFB mRNA splicing process is illustrated in
Figure 2F.

DISCUSSION

Clinical Phenotype, Genetic Heterogeneity,
and Genetic Complexity in Brain
Calcification
Loss-of-function mutations in SLC20A2 are the major genetic
causes of familial and sporadic PFBC (Hsu et al., 2013;
Lemos et al., 2015). Most patients are asymptomatic before
the age of 40 years. Notably, among members of the HB-
PFBC family, SLC20A2 mRNA levels of III-2 (no calcification
and no c.806delC mutation) were reduced to 80% of that
of III-5 normal controls (Figure 1D). III-2 also presented
with short and thick fingers and toes, and reported chronic
headache and arthritis of the fingers. Biochemical results
of proband II-1 in the HB-PFBC family showed slightly
lower TT4 levels but significantly higher PTH levels than
the reference range (Supplementary Table 1). Generally,
TT4 decreases along with serum thyroid-binding globulin
due to the intake of diazepam, testosterone, glucocorticoids,
or other drugs. PTH, fibroblast growth factor-23 (FGF-23),
and 1,25-dihydroxyvitamin D (1,25(OH)2D) are the main
phosphate regulators in human physiology. PTH can increase
renal phosphate excretion by reducing the expression of
sodium-dependent phosphate co-transporters NaPi-IIa and
NaPi-IIc in the proximal renal tubules (Bergwitz and Juppner,
2010). Elevated PTH is commonly regarded as a sub-clinical
stage of hyperparathyroidism (OMIM#145000) or pseudo-
hypoparathyroidism (OMIM#103580). Hypoparathyroidism,
another clinical condition that can also lead to intracranial
calcification, is usually caused by inadvertent removal of or
accidental injury to the parathyroid gland during neck-related
surgery, or by autoimmune disorders (Mannstadt et al., 2017;
Gafni and Collins, 2019). Pseudo-hypoparathyroidism results
from resistance to the biological effects of PTH in the peripheral
organs. Both diseases share common biochemical features, such
as hypocalcemia and hyperphosphatemia (Mantovani et al.,
2018). Environmental factors and other genetic or epigenetic
modifiers may also influence SLC20A2 expression, leading to
recurrent headaches or repetitive dizziness.
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FIGURE 2 | (A) Brain CT images of the HLJ-PFBC patient. (B) The PDGFB c.456+1G>C mutation in the HLJ-PFBC patient and normal control. (C) The impact

of the PDGFB c.456+1G>Cmutation on its mRNA splicing revealed by TA-cloning sequencing and cDNA-PCR sequencing in the HLJ-PFBC patient and normal control.

(Continued)
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FIGURE 2 | (D) The overall and wild-type allele-specific expression of PDGFB in the peripheral leukocytes of the HLJ-PFBC patient (red) and normal controls revealed

by SYBR Green dye- and TaqMan probe-based assays. Control-mix indicated a mixture of cDNA templates from six other normal controls. (E) Fusion protein

expression of the PDGFB-Flag construct in the HEK293T cell line. The c.329T>C and c.356T>C of PDGFB are two previously reported PFBC-causative mutations.

CHX (cycloheximide), a protein synthesis inhibitor; MG132, a ubiquitin-proteasome inhibitor. (F) The sketch of the mRNA splicing process of PDGFB c.456+1G>C.

The GD-PFBC patient showed moderate to severe
hypertriglyceridemia and hyperhomocysteinemia, both of
which are traditional risk factors for cardiovascular diseases
(CVDs). Genetic variations and other secondary acquired factors
could affect serum or plasma TG, HDL-C, LDL-C, and apoA-I
levels, thereby modifying the risk of CVDs (Miller et al., 2011;
Nordestgaard and Tybjaerg-Hansen, 2011; Nordestgaard, 2016;
Ference et al., 2017; Rosenson et al., 2018). Elevated HCY levels
are generally considered to be independent and strong risk
factors for the incidence and progression of coronary artery
calcification (Kullo et al., 2006; Karger et al., 2020), aortic
calcification (Hirose et al., 2001; Karger et al., 2020), intracranial
arterial calcification, and cerebral atherosclerosis (Kim et al.,
2016). Hyperhomocysteinemia can induce vascular smooth
muscle cell osteogenic differentiation and calcification, and
increase endothelial cell apoptosis and vascular inflammation,
all of which are adverse and pathogenic cardiovascular events
(Hofmann et al., 2001; Van Campenhout et al., 2009; Fang
et al., 2015; Zhu et al., 2019). High plasma homocysteine could
also decrease HDL-C levels by enhancing its clearance and
inhibiting apoA-I protein synthesis (Liao et al., 2006), which
is in accordance with the lower HDL-C levels in patients
with GD-PFBC. In addition, hyperhomocysteinemia might
independently result in multifocal calcifications in the brain
and coronary arteries, as revealed by brain and coronary CT
scans in human patients (Nah and Kim, 2010). Homocysteine
metabolism is largely dependent on the folate and methionine-
homocysteine cycles (McCully, 1996; Welch and Loscalzo,
1998; Hankey and Eikelboom, 1999). Genetic variations in
methylenetetrahydrofolate reductase encoded by the MTHFR
gene could lead to variations in HCY concentrations at the
individual and population levels (Frosst et al., 1995; Klerk et al.,
2002; Selzer et al., 2003). In the GD-PFBC case, no common
hypomorphic alleles were detected in four key enzymes closely
associated with folate and methionine-homocysteine metabolism
(MTHFR, 677C>T, 1298A>C;MTR, 2756A>G;MTRR, 66A>G;
CBS, 844 ins68) (Kluijtmans et al., 2003; Moll and Varga, 2015).
Treatment of this patient with vitamin B supplements (vitamin
B6, B12, and folic acid) might alleviate hyperhomocysteinemia
and improve clinical outcomes. However, dyslipidemia and
hypertriglyceridemia, which are closely associated with critical
cardiovascular events, such as mitral annular and aortic valve
calcification and coronary artery calcification (Greif et al.,
2013; Thanassoulis et al., 2013; Afshar et al., 2017; Zheng
et al., 2019), also deserve special attention in this patient.
We could not perform an informative analysis in the GD-
PFBC patient due to the non-availability of RNA samples.
However, we evaluated the pathogenicity of the c.1154delG
variation in SLC20A2 (NM_001257180.2) in ten function-
predicting scoring systems (ACMG, DDIG-in, FATHMM-Indel,

MutPred-LOF, PROVEAN, SIFT-Indel, CADD/CADD-Splice,
CAPICE/GAVIN, MutationTaster, and VEST/VEST-Indel), three
software programs providing conservation scores (GERP++,
phyloP100way, and phastCons100way), and four variation
databases (gnomAD, ExAC, dbSNP, and 1000 Genomes Project),
most of which supported the deleterious effect of this variation
(Table 2).

The HLJ-PFBC patient, harboring the c.456+1G>Cmutation
of PDGFB, presented with nausea and higher blood pressure,
which has rarely been reported previously. It seemed that her
nausea was the result of elevated blood pressure because no
other risk factors were found for this symptom. The PDGFB
gene encodes platelet-derived growth factor beta, which is
functionally activated when forming PDGF-BB homodimers or
PDGF-AB heterodimers with PDGFA (Betsholtz and Keller,
2014). Loss-of-function mutations in PDGFB could affect its
synthesis, maturation, and dimerization, resulting in impairment
of the PDGFB-PDGFRB pathway and dysfunction of the
BBB, eventually leading to PFBC (Vanlandewijck et al., 2015).
We confirmed that the c.456+1G>C mutation removed the
canonical 5-prime splice donor site and resulted in aberrant
mRNA splicing, creating an in-frame deleted transcript. A similar
splice donor site mutation, c.456+1G>A, was reported in a
nuclear family, and predicted to lead to exon 4 (NM_002608.4)
skipping and introduction of a frameshift version of PDGFB.
However, both patients in the nuclear family had a severe
migraine, a history of depression, and calcification in the basal
ganglia, thalamus (only mother affected), cerebral cortex (only
proband affected), and subcortical white matter (Ramos et al.,
2018). Another splice acceptor site mutation in the same intron
(c.457-1G>T) may lead to exon 5 (NM_002608.4) skipping
and frameshift protein in carriers, leading to chronic headache
and intellectual disability (Sekine et al., 2019). These results
suggest that different substitutions on the same splicing unit
(GT-AG in DNA code) could result in distinct molecular events
and disease phenotypes. Of note, another three splice site
mutations in PDGFB (c.64-3C>G, c.160+2T>A, and c.602-
1G>T) also resulted in aberrant splicing processes and frameshift
outcomes (Nicolas et al., 2015; Koyama et al., 2017; Sekine et al.,
2019). In our study, the c.456+1G>C variant was functionally
deleterious, as revealed by the comprehensive bioinformatic
analyses (Table 2), and could activate the upstream cryptic splice
donor site residing in exon 4 and create a novel mature transcript
with an in-frame 21 bp deletion (NM_002608.4, r.436_456del).
This novel transcript and its translated protein might be more
stable than and promote the compensatory expression of the
wild-type mRNA and protein in the peripheral blood and
HEK293T cell line. The mutant PDGFB protein was resistant
to degradation, perhaps via the lysosomal pathway, but not the
ubiquitin-proteasome system, as revealed by the combinational
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TABLE 2 | Computational evidence for the pathogenicity of three novel variations.

Variation/Genea c.806delC,

SLC20A2

c.1154delG,

SLC20A2

c.456+1G>C,

PDGFB

Position (Hg38) Chr8: 42439578 Chr8: 42437358 Chr22:

39231621

Transcript ID NM_001257180.2 NM_001257180.2 NM_002608.4

Exon Exon 7 of 11 Exon 8 of 11 Intron 4 of 6

Proteina p.(Pro269Glnfs*49) p.(Ser385Ilefs*70) p.(Val146_

Gln152del)

ACMG 5, Pathogenic 5, Pathogenic 5, Pathogenic

DDIG-in 0.924259,

Disease

0.936076,

Disease

—

FATHMM-Indelb 0.9765,

Pathogenic

0.9945,

Pathogenic

—

MutPred-LOF 0.58397,

Pathogenic

0.57958,

Pathogenic

—

PROVEANb NAd NAd —

SIFT-Indel Damaging Damaging —

FATHMM-MKL — — 0.9714,

Deleterious

BayesDelb Not tested Not tested 0.5693,

Pathogenic

CADD/CADD-

Spliceb
32, Deleterious 32, Deleterious 34, Deleterious

CAPICE/GAVINb 0.7224,

Pathogenic

0.2847,

Pathogenic

0.2293,

Pathogenic

DANNb Not tested Not tested 0.9908,

Deleterious

Eigen Not tested Not tested 13.21783,

Pathogenic

MutationTaster Disease causing Disease causing Disease causing

VEST/VEST-

Indel

0.917,

Pathogenic

0.955,

Pathogenic

0.927,

Pathogenic

GERP++
b 6.060,

Conserved

5.630,

Conserved

5.270,

Conserved

phyloP100way 9.012,

Conserved

7.726,

Conserved

7.279,

Conserved

phastCons100way 1.000,

Conserved

1.000,

Conserved

1.000,

Conserved

gnomADc Absent Absent Absent

ExACc Absent Absent Absent

dbSNPc Absent Absent Absent

1KGPc Absent Absent Absent

aVariations named according to current recommendations of the Human Genome Variant

Society (http://www.HGVS.org/varnomen).
bPathogenicity Threshold: FATHMM-Indel > 0.967; PROVEAN < −2.5; BayesDel >

0.0692655; CADD/CADD-Splice > 20; CAPICE/GAVIN > 0.02; DANN > 0.97; Cut-

offs for other prediction tools > 0.5 or no score provided. Conservation threshold:

GERP++ > 2.
cgnomAD, The Genome Aggregation Database; ExAC, The Exome Aggregation

Consortium; dbSNP, The Single Nucleotide Polymorphism Database; 1KGP, The 1,000

Genomes Project.
dNA, Not available.

post-treatment HEK293T cell line with cycloheximide and
MG132 (Ostman et al., 1992). These results suggest that the
mutant PDGFB protein might impair the PDGFB-PDGFRB
pathway by disrupting disulfide bond formation and affecting its
dimerization with wild-type PDGFB protein, thus producing a

dominant negative effect (Shim et al., 2010). However, the exact
and real molecular and functional effects of the c.456+1G>C
mutation in the brain of patients with PFBC remain unclear.

Patients with PFBC can exhibit peripheral calcification,
presenting as skin microangiopathy (Biancheri et al., 2016;
Nicolas et al., 2017). Intracranial senile calcification is a common
neuroimaging sign in healthy individuals. During the human
lifespan, the choroid plexus, pineal gland, and habenular nuclei
tend to accumulate physiologic calcium and phosphate, which
is likely due to organ functional decline or insufficient hormone
concentration (Grech et al., 2012). In addition, brain calcification
load and location show significant inter-individual differences in
PFBC patients and mouse models (Zarb et al., 2019b).

SLC20A2 and PDGFB Dosage and
Functional Effect in Brain Calcification
SLC20A2 gene haploinsufficiency is a likely pathogenic
mechanism of brain calcification; half dosage of SLC20A2
expression cannot maintain the phosphate transport demand in
the brain (Baker et al., 2014; Fujioka et al., 2015; Guo et al., 2019;
Mu et al., 2019). Deletions adjacent to the regulatory element
in the SLC20A2 coding region may also cause PFBC (Pasanen
et al., 2017; Cassinari et al., 2020). SLC20A2 expression might
be related to the severity of brain calcification to some extent,
such as the genetic dosage effect observed in patients harboring
MYORG mutations (Chen et al., 2019b, 2020; Grangeon et al.,
2019). Some studies have also suggested a dominant negative
function of SLC20A2 genetic variations (Kimura et al., 2016;
Larsen et al., 2017), with bi-allelic pathogenic mutations in
SLC20A2, resulting in more severe brain calcification (de
Oliveira et al., 2013; Chen et al., 2019a). Phosphoric acid
transport activities were significantly maintained in the presence
of the c.680C>T mutation in SLC20A2. However, those
harboring this mutation revealed severe and bilateral basal
ganglia calcification (Nishii et al., 2019), suggesting that this
mutation might exert a dominant negative effect, as seen
in SLC20A2 variants encoding D28N, H502A, and E575K
(Larsen et al., 2017). The effect of SLC20A2 dosage on PFBC
remains controversial, and environmental factors and genetic
or epigenetic modifiers need to be taken into consideration.
PFBC-causative mutations in PDGFBmight lead to complete loss
of PDGFB function either through abolished protein synthesis or
defective stimulation of PDGFRB and its downstream pathways
(Vanlandewijck et al., 2015). However, some discrepancies were
observed, such as when Pdgfrbredeye/redeye mice, which showed
nearly complete reduction of PDGFB-PDGFRB signaling, did
not develop brain calcification (Vanlandewijck et al., 2015). The
relationship between impaired PDGFB-PDGFRB signaling and
brain calcification requires further examination.

CONCLUSION

As of the end of January 2021, according to the Human Gene
Mutation Database (HGMD, www.hgmd.cf.ac.uk/ac/index.php),
142 mutations in SLC20A2 have been identified, including 75
missense and non-sense mutations, 15 splice-site mutations, 32
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small deletions, 5 small insertions and duplications, and 15 gross
mutations; 24 mutations were identified in PDGFB, including 19
missense and non-sense mutations, three splice-site mutations,
and two gross deletions. We summarized and compiled the
other four pathogenic mutations in PDGFB from the literature
(Sekine et al., 2019). In the present study, we identified two novel
frameshift mutations in SLC20A2 (c.806delC and c.1154delG)
and one splice donor site mutation in PDGFB (c.456+1G>C),
which have broadened and enriched the SLC20A2 and PDGFB
mutation spectrum (Supplementary Figure 2).
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