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Accurate and full-length typing of the HLA region is important in many clini-

cal and research settings. With the advent of next generation sequencing

(NGS), several HLA typing algorithms have been developed, including many

that are applicable to whole exome sequencing (WES). However, most of these

solutions operate by providing the closest-matched HLA allele among the

known alleles in IPD-IMGT/HLA Database. These database-matching

approaches have demonstrated very high performance when typing well char-

acterized HLA alleles. However, as they rely on the completeness of the HLA

database, they are not optimal for detecting novel or less well characterized

alleles. Furthermore, the database-matching approaches are also not adequate

in the context of cancer, where a comprehensive characterization of somatic

HLA variation and expression patterns of a tumor's HLA locus may guide ther-

apy and clinical outcome, because of the pivotal role HLA alleles play in tumor

antigen recognition and immune escape. Here, we describe a personalized

HLA typing approach applied to WES data that leverages the strengths of

database-matching approaches while simultaneously allowing for the discov-

ery of novel HLA alleles and tumor-specific HLA variants, through the system-

atic integration of germline and somatic variant calling. We applied this

approach on WES from 10 metastatic melanoma patients and validated the

HLA typing results using HLA targeted NGS sequencing from patients where

at least one HLA germline candidate was detected on Class I HLA. Targeted

NGS sequencing confirmed 100% performance for the 1st and 2nd fields. In

total, five out of the six detected HLA germline variants were because of Class

I ambiguities at the third or fourth fields, and their detection recovered the

correct HLA allele genotype. The sixth germline variant let to the formal dis-

covery of a novel Class I allele. Finally, we demonstrated a substantially

improved somatic variant detection accuracy in HLA alleles with a 91% of suc-

cess rate in simulated experiments. The approach described here may allow

the field to genotype more accurately using WES data, leading to the discovery
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of novel HLA alleles and help characterize the relationship between somatic

variation in the HLA region and immunosurveillance.
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1 | INTRODUCTION

Full-length typing of the HLA (also known as high-
resolution HLA genotyping) is a continuous challenge, as it
is one of the most complex and polymorphic regions in the
human genome.1–3 The classical Class I HLA proteins bind
in a complex with peptides that may be presented on the
cell surface. Once presented at the cell surface, these com-
plexes may then be recognized by effector T cells of the
adaptive immune system. Class I HLA proteins present pep-
tides on the surface of all human cells, and consequently
the identification of the precise HLA genotype has implica-
tions in organ transplantation, with crucial implications in
hematopoietic stem cell transplantation, where donors and
recipients need to be HLA matched.4–6 Precise knowledge
of HLA genotypes of individuals is also important in disease
association studies, where HLA allelic variants have strong
genetic associations to many common human diseases.7

Additionally, variations in HLA alleles have been frequently
linked to disease susceptibility in many studies,4,8 in addi-
tion to drug sensitivity9 and susceptibility to adverse drug
responses.10 In cancer, it has been demonstrated that spe-
cific HLA genotypes,11 and in particular diversity in the
HLA genotype of a patient, can predict response to immune
checkpoint inhibitors (ICIs).11–13

The clinical importance of precise HLA typing is very
well established, and next generation sequencing (NGS)
data has recently been adopted by many diagnostic labora-
tories as the preferred data source to perform reliable HLA
typing.14,15 The main outcome of HLA typing is the assign-
ment of a unique HLA name, referred as an HLA allele,
that constitutes up to four fields of resolution separated by
colons, (e.g., HLA-A*02:01:01:01). The four fields of this
HLA nomenclature represent: (1) allelic group, (2) protein
group, (3) synonymous DNA changes within the protein
coding regions, and (4) variants in non-coding regions.

NGS-based HLA typing methods can currently be
divided into two categories related to the type of input data:
HLA-targeted sequencing (e.g., PCR-based target amplifica-
tion) with high sequence depth, and standard NGS
(e.g., whole exome sequencing [WES], whole genome
sequencing [WGS], and RNA-sequencing [RNA-Seq]) with
moderate sequence depth. Targeted HLA sequencing is the
most information-dense type of NGS, and therefore most

often used to discover novel HLA alleles and resolve HLA
typing ambiguities in the exons that encode the peptide
binding cleft (typed with all other protein coding exons at
the first and second fields of resolution). The emphasis on
the binding cleft exons is because of the critical importance
of determining the donor HLA-peptide complex presenta-
tion for tissue compatibility in transplantations. Although
targeted HLA sequencing may be subject to PCR amplifica-
tion errors16 in a small fraction of samples,17 it is arguably
considered the gold standard for HLA typing in clinical
applications.14 Targeted HLA sequencing, to date, has
mostly been used to resolve HLA genotypes and ambigui-
ties in the peptide binding cleft exons. Consequently, most
of the described HLA alleles have incomplete sequences
with enriched coverage for the binding cleft exons and only
a minority of the alleles come with complete and full-length
HLA sequences.18,19 This lack of full-length HLA
sequences is not optimal, as identification of the com-
plete HLA sequence has important clinical and research
applications. Full-length HLA sequence typing is use-
ful, for example, to generate ancestry-based analyses20

and has been shown to be critically important for iden-
tifying causal variants in HLA-based disease association
studies.21 The importance of full-length HLA sequence
typing has also been shown to help optimize donor
selection, improve clinical outcome, and result in fewer
transplant complications, as clearly demonstrated in
hematopoietic cell transplantations (HCT).22–26 Fur-
thermore, full-length HLA typing may provide novel
insights into the transcript expression regulation of
HLA genes, including epigenetic mechanisms leading
to improved understanding of complex immune
diseases.27,28

WES captures most exons in the coding regions of the
HLA region, not only the binding cleft exons. Although
deep intronic variants are difficult to sequence with
WES, most exome capture kits extend beyond the defined
exon boundaries and also sequence some intronic regions
at lower depth, leaving the possibility of complete or full-
length HLA typing and characterization of many intronic
HLA variants. Compared with WES; WGS29 and targeted
NGS sequencing is considered to be more laborious,14 or
particularly expensive in the case of WGS.29 As an esti-
mated 85% of Mendelian inherited disease causing
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mutations and many disease associated single nucleotide
polymorphisms (SNPs) are located in the exome,30 WES
has therefore become a very popular alternative in many
clinical and research settings.29 Given the widespread
accessibility, low cost, high speed, interpretability, and
broad abundance of WES data; there is arguably a neces-
sity to develop methods that allow full-length HLA typing
and novel allele discovery where sequencing has been
performed using WES only.

This advent of widely available NGS data has resulted
in an increased number of computational NGS-based HLA
typing solutions, many of which can be applied to
WES.16,18,19,31–33 However, the majority of these tools per-
form HLA typing by identifying the closest-matched HLA
allele through sequence alignment of WES NGS reads
against the reference sequences in the IPD-IMGT/HLA
Database.1 Unfortunately, because of the current incom-
plete nature of the HLA databases (an average of 10% Class
I HLA alleles have their full-length sequences available in
old versions of IPD-IMGT/HLA Database and 55% in the
latest to date 3.41.219); previous WES database-matching
based solutions do not reliably perform full-length HLA
typing. Importantly, although some of these computational
methods19 do provide the functionality to output full-length
HLA genotypes using WES data; until quite recently34–36

there was credible benchmarking data available only for
the protein coding sequence. De novo assembly methods
do not have the limitation of directly relying on the IPD-
IMGT/HLA Database, and therefore have the potential of
identifying novel HLA alleles.33,37 However, these tools are
computationally expensive, and their accuracy is dependent
on deep coverage of the HLA region and the necessity of
using long reads for correct phasing.

In cancer, typing of the HLA locus has critical impor-
tance, as it facilitates recognition and subsequent killing
of tumor cells by the adaptive immune system. Many of
the cancer immunotherapies developed in the recent
years are HLA-dependent immunotherapies.38 Although
these cancer immunotherapies improved clinical out-
come greatly, only a fraction of patients currently
respond to treatment.39,40 This may partially be because
of the lack of computational tools allowing a comprehen-
sive profiling of the HLA status in a tumor.41–43 Currently
a limited number of methods exist that allow the detec-
tion of somatic mutations in HLA.44,45 Unfortunately,
these current strategies are unable to discover novel
alleles, have a limited variant calling approach, do not
assess the expression of HLA in a tumor, and finally, use
an outdated version of the IPD-IMGT/HLA Database.

Here, we describe an HLA typing solution that
attempts to rectify all these shortcomings in somatic HLA
profiling in cancer. The approach is also based on align-
ments to known HLA sequences at the IPD-IMGT/HLA

Database, but simultaneously enables the discovery of
novel germline and somatic HLA alleles by leveraging
the systematic integration of variant calling. We applied
this personalized HLA typing method to WES data and
demonstrated its ability to identify novel HLA alleles and
rectify HLA ambiguities, particularly at the third and
fourth fields of resolution. We validated the approach
using targeted HLA sequencing from the normal blood of
10 metastatic melanoma patients and confirmed the pre-
diction of a novel Class I HLA allele not yet characterized
in the reference library. Furthermore, as somatic HLA
mutations in cancer have an association with tumor-
immune escape44,46–48; with the personalized HLA geno-
types in hand, we demonstrated the performance and
utility of our approach to identify tumor-specific variants
in HLA in the metastatic melanoma tumors.

2 | MATERIALS AND METHODS

2.1 | HLA database closest-matched
typing from WES data

An overview of the “NeoOncoHLA” workflow for person-
alized HLA typing and tumor-specific HLA variant call-
ing is illustrated in Figure 1. The first step involved the
assignment of the closest-matched HLA allele from the
IPD-IMGT/HLA Database (see step 1 in Figure 1), which
then further served as a reference for the personalized
HLA variant detection in subsequent steps. The enor-
mous complexity of the HLA region makes conventional
mapping approaches to the reference genome result in
inaccurate HLA typing. This complexity is resolved by
aligning NGS reads either to an HLA reference sequence
library or by applying de novo assembly methods. The
method outlined in Figure 1 is based on the former and
performed HLA typing by aligning reads to the IPD-
IMGT/HLA Database of known HLA sequences,2 using a
previously published HLA database closest-matched
approach, “OncoHLA.”19 Once WES reads were aligned
to all known HLA alleles, the HLA allele was then deter-
mined by the using an integer linear programing (ILP)
algorithm which uses prior probabilities of the allelic eth-
nic frequencies.19 The output includes the closest-
matched HLA allele from the HLA database and the
associated HLA sequence, up to four fields of resolution
for each allele (see step 1 in Figure 1).

2.2 | Integration of germline variant
calling to achieve personalized HLA typing
from WES data

NeoOncoHLA, which incorporated variant calling, then
processed the reads from the WES data and aligned them
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to the closest-matched HLA sequences produced from
the previous HLA typing step19 (see step 1 in Figure 1).
GSNAP49 (version 2020-05-30) was used for alignment,
because of its high accuracy in mapping NGS reads to
highly polymorphic regions.50 The resulting alignment
files were processed following standard practices (includ-
ing sorting and duplicate marking of the reads) and pro-
vided as input into two state-of-the-art germline variant
calling tools, GATK-HaplotypeCaller51 (v4.0.6) and
Strelka252 (v2.0.10; see step 2 in Figure 1). It was rea-
soned that each germline variant was potentially related
to a mistyped or a novel HLA allele. To reduce false posi-
tives, only those variants detected by both germline vari-
ant callers, having a read depth >10, and a variant allele
frequency (VAF) of >0.30 were considered for further
analyses.

2.3 | Integration of ensemble somatic
variant calling for the identification of
tumor-specific HLA variants

We extended the functionality of an ensemble somatic
variant calling pipeline,53 that incorporates six different
state-of-the art somatic variant calling tools, to identify
somatic mutations in the HLA region. To achieve this,
we aligned matched tumor-normal WES reads in the
HLA region against the previous typed personalized HLA
sequences (known or potentially novel; see Figure 1).
because of the high complexity of detecting somatic vari-
ants in HLA alleles, we fine-tuned the ensemble variant
calling pipeline to consider only high-quality candidate
variants reported by at least three out of six variant call-
ing tools.52,54–58 Each tool has its own algorithm and

FIGURE 1 NeoOncoHLA workflow. This figure illustrates the main steps executed during NeoOncoHLA framework, where NGS reads

are used to carry a comprehensive patient-tailored HLA typing, including the characterization of somatic HLA variants in the tumor and

expression quantification of the resultant MHC molecules. Its modular architecture consists in four main steps, each one highlighted in a

different color: (1) IPD-IMGT/HLA Database closest-matched HLA-typing (blue), (2) personalized HLA profiling enhanced by germline

variant calling (orange), (3) robust screening of tumor HLA status through comprehensive somatic variant characterization (green),

(4) allele-specific expression quantification of inferred HLA molecules (pink). Text boxes colored with dark blue represent major steps of

NeoOncoHLA pipeline, those in white with blue dashed edge are input files, those in gray stand for intermediate output files and those in

white with red edge correspond to final output files of the pipeline. MHC, major histocompatibility complex; NGS, next generation

sequencing
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intrinsic set of rules to distinguish a variant from back-
ground noise and therefore, combining them reduces the
false positive detection rate. Some additional filters were
also applied to discard potential false positive calls, includ-
ing minimum read depth of 10 for both tumor and normal
data at a variant position, and a minimum number of
alternative (mutant) reads of three in the tumor and zero
in the normal data. The Ensembl variant effect predictor
(VEP)59 toolkit was then used to evaluate the impact of
the detected variants on the resulting gene products.

2.4 | Reconstruction of personalized
HLA alleles and tumor-specific HLA alleles
with correct phased haplotypes

Identifying the correct genomic phase (or haplotype) of
the HLA variants was crucial for the subsequent accurate
reconstruction of fully phased candidate variant HLA
sequences. WhatsHap60 (v0.17) was used to determine the
phase relationship between heterozygous variants along
two target HLA alleles. Once the phasing was conducted,
Haplosaurus,61 a method embedded into the Ensembl
VEP59 (v95), was then used to evaluate the functional
impact of the detected variants in the HLA allele
sequences. We developed customized features that extends
the Haplosaurus functionality to annotate and fully recon-
struct candidate variant HLA gene, transcript, and protein
sequences. Once the variant HLA sequences were success-
fully reconstructed, a compulsory additional round of
HLA typing was conducted, providing the reconstructed
germline variant HLA alleles in addition to those available
in the IPD-IMGT/HLA Database (see Figure 1, step 2). In
this round of HLA typing, NGS reads were aligned not
only to the IPD-IMGT/HLA Database, but also to the can-
didate personalized HLA variant sequences, and the
closest-matched allele was assigned accordingly.

The reconstruction of tumor-specific HLA allele
sequences was performed in a similar manner as that
guided by germline variants, described above. However,
in contrast to the germline workflow, all the generated
tumor-specific HLA alleles were retained as valid poten-
tials, since tumors may violate the diploid background
assumption (because of somatic copy number alterations
[CNAs] affecting the ploidy of HLA genes, or tumor het-
erogeneity; see Figure 1, step 3).

2.5 | Allele-specific expression
quantification

We relied on the precise mapping of RNA-Seq reads to
the personalized HLA sequences from the patient to

obtain reliable expression levels for the patient's HLA
alleles. For that purpose, Kallisto62 (v0.43.1) was used for
transcript isoform-level expression quantification. How-
ever, we extended Kallisto's functionality whereby previ-
ously inferred HLA genotypes were used as an index to
assign RNA-Seq reads back to their corresponding HLA
sequences (see step 4 in Figure 1). The output included
patient-specific HLA allelic abundance measurements,
reported as transcripts per million mapped reads (TPM).
In addition, this step served to attempt to deconvolute
the correct allele from the expression of the
corresponding isoforms of the inferred HLA alleles when
phasing is not complete.

2.6 | In silico spike-in of germline
variants to simulate novel HLA allele
discovery

The ability of the personalized HLA typing step to infer
novel or uncharacterized HLA genotypes was first evalu-
ated on simulated novel HLA alleles. This simulation
framework is summarized here and in Figure 2. To pre-
serve the sequencing error profiles and complexity of bio-
logical data, and thus, keep the simulation as faithful as
possible to reality, we used BamSurgeon63 to spike
germline variations into the WES data. Three different
Class I alleles belonging to three different normal WES
patients were selected randomly to apply the simulations
(HLA-A*68:01:02:01, HLA-B*51:01:01:01 and HLA-
C*03:04:01:01). The WES with spiked-in variant reads
were then used as input to evaluate the capability our
approach to predict novel HLA alleles. In total 1800 inde-
pendent simulation experiments containing 3200 variants
overall were carried out including, SNPs, insertions, and
deletions. A wide range of effects in the resultant protein
were simulated, including missense, synonymous, in-
frame, frameshift, stop gain and stop loss variants. The
variants were spiked in both individually and in phased
co-occurrences for the purpose of modeling more dissimi-
lar alleles. The simulation framework first verified
whether the spiked in variants were detected by the
germline variant callers, if not, the experiment was
labeled as a miscall. If the variant was called correctly,
the variant HLA allele sequence was required to be cor-
rectly reconstructed and chosen as the best-matching
HLA allele over its reference HLA counterpart. If the ref-
erence allele was outputted in this process, the experi-
ment was labeled as an HLA mistype. These simulations
were performed for a further 36 HLA-A, -B and -C alleles
using 8450 spiked-in single variants to demonstrate the
robustness of novel HLA allele discovery across a broader
spectrum of HLA alleles.
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2.7 | Simulation of somatic variants
in HLA alleles

Following a similar workflow as in the novel HLA allele
simulation experiments, the performance detecting
somatic variants on HLA alleles was tested on simulated
somatic variants on real data. In this case, the somatic
variant was spiked in the tumor WES reads, while the
normal WES reads were kept unaltered. In total,
740 simulation experiments were performed, covering
the same three HLA alleles as before. The simulations

included single nucleotide variants (SNVs), and small
insertion and deletions with a VAF ranging from 0.01 to
0.5, allowing for the simulation of heterogeneous tumor
subclones or sample contamination. The simulation
results were benchmarked against POLYSOLVER (v4),44

a state-of-the art tumor-specific HLA profiling tool (see
Table S1 for the command used). The performance of
each tool was then assessed by its ability to detect each
simulated somatic variant.

2.8 | WES and HLA targeted sequencing
on normal PBMCs and WES on matched
metastatic melanoma patients

To assess the performance of the proposed solution on
clinical samples, we applied the HLA typing pipeline on
10 WES samples from the normal peripheral blood
mononuclear cell (PBMC) of 10 metastatic melanoma
donors. Additionally, WES was performed on 14 meta-
static melanoma samples (matched to the 10 normal
PBMCs from the same metastatic melanoma cohort64).
All the research and ethics approval and permits together
with the written informed consents from all the partici-
pants were obtained prior to sample collection. Exome
enrichment of the samples was performed using the
Agilent AllExome v5 kit, according to the vendor's proto-
col. The sequencing was carried out by the Illumina
HiSeq4000 system using paired-end mode with 151 bp
per read and producing 50 million reads per sample, on
average.

To validate the accuracy of the results, five samples
that presented at least one germline variant in at least
one HLA allele were subject to targeted HLA sequencing
using NGSgo-MX11-3 HLA-targeted amplification kit
and analyzed with NGSengine (v2.20) (GenDx, Utrecht,
Netherlands). The NGSgo-MX11-3 kit comprises amplifi-
cation primers for 11 loci (including HLA-A, -B, -C,
-DRB1, -DQB1, -DPB1, DRB3/4/5, DQA1, and DPA),
multiplexed in three tubes, resulting in HLA locus-
specific amplicons that were then used for HLA typing.
To eliminate the possibility of analyses performed on dif-
ferent versions of the IPD-IMGT/HLA Database, both the
WES and the HLA targeted sequencing analyses was per-
formed using identical versions of the IPD-IMGT/HLA
Database (v.3.41.2).

2.9 | Orthogonal validation of somatic
HLA variants using RNA-Seq

We next attempted to validate the somatic HLA variants
using WES data from 10 metastatic melanoma patients,

FIGURE 2 In silico novel allele experiment design. After

typing IPD-IMGT/HLA Database closest-matched reference HLA

alleles using real data, three different Class I alleles (HLA-

A*68:01:02:01, HLA-B*51:01:01:01 and HLA-C*03:04:01:01)

belonging to three different patients were chosen randomly to carry

the simulations. A comprehensive set of different germline variant

types were spiked-in to simulate novel HLA allele discovery,

including SNVs, insertions, deletions. NeoOncoHLA's performance

to type novel alleles was assessed attending to its ability to detect

the spiked variant and reconstruct the novel HLA allele sequence.

If the spiked variant is missed by the variant callers, the experiment

was labeled as “miscall,” while if the variant is detected but the

allele is not correctly inferred afterwards, it was tagged as

“mistype.” Text boxes colored with dark blue represent major steps

of the experiment, those in light blue are checkpoints and those in

gray stand for output files
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by also conducting an orthogonal validation using the
available RNA-Seq data for the same tumor samples.
Because of the nature of RNA-Seq data, only those
variants located on exons regions could be subject of
this validation. A variant discovered in the WES data
was considered confirmed when at least one read
harboring the alternate allele was found in the RNA-
Seq data. A variant remained unconfirmed because
of a false positive WES call, low quality of RNA-Seq
data or expression down-regulation, where the allele's
expression was switched off or lowly expressed. Con-
firming the presence of the detected variant at RNA
level (when feasible), significantly reduced the proba-
bility of the variant being called erroneously because
of a sequencing error.

3 | RESULTS

3.1 | Simulating the discovery of novel
HLA alleles from germline WES data

We first evaluated the capability of the personalized HLA
typing approach to capture novel HLA alleles from WES
data on simulated HLA variants. The HLA alleles HLA-
A*68:01:02:01, HLA-B*51:01:01:01 and HLA-C*03:04:01:01
were used to perform 1800 independent simulations by
applying different combinations of germline variations to
assess the performance of our approach (see Section 2,
Figure 2). We simulated a total of 3200 HLA variants ran-
domly distributed across the length of the selected alleles.
Table 1 summarizes the results, where experiments are

TABLE 1 Novel allele simulation results by spiked germline HLA variants

Allele
Simulated variant
combination

Total number of
simulations

Successful
experiments

Success
rate (%) Miscall Mistyped

A SNV 100 100 100.00 0 0

SNV x2 100 79 79.00 7 14

SNV x3 100 76 76.00 18 6

Deletion 100 98 98.00 0 2

Deletion x2 100 62 62.00 37 1

Insertion 100 100 100.00 0 0

Insertion x2 100 62 62.00 37 1

SNV + deletion 100 99 99.00 1 0

SNV + insertion 100 100 100.00 0 0

B SNV 50 47 94.00 0 3

SNV x2 50 46 92.00 1 3

SNV x3 50 36 72.00 14 0

Deletion 50 49 98.00 0 1

Deletion x2 50 28 56.00 22 0

Insertion 50 50 100.00 0 0

Insertion x2 50 31 62.00 17 2

SNV + deletion 50 49 98.00 0 1

SNV + insertion 50 50 100.00 0 0

C SNV 50 46 92.00 0 4

SNV x2 50 40 80.00 2 8

SNV x3 50 29 58.00 10 11

Deletion 50 39 78.00 0 11

Deletion x2 50 23 46.00 25 2

Insertion 50 42 84.00 0 8

Insertion x2 50 29 58.00 5 16

SNV + deletion 50 41 82.00 0 9

SNV + insertion 50 43 86.00 1 6

Note: The table shows a comprehensive overview of the results of 1800 simulation experiments grouped attending to reference allele and spiked variant type

combination. Alleles: A (HLA-A*68:01:02:01), B (HLA-B*51:01:01:01) and C (HLA-C*03:04:01:01).
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classified according to the mutated allele, variant type, and
number of co-occurring simulated variants. Overall, we
detected simulated variants and correctly inferred the novel
HLA allele at a success rate of 83% across all the experi-
ments. Considering only those experiments in which single
mutations were spiked in into the alleles, a 97%, 93% and
96% success rate was observed for SNVs, deletions and
insertions respectively (see Table S2). As expected, a reduc-
tion in the success rate was observed when simulating co-
occurring phased variants in the same allele (see Table 1).
This reduction was particularly notable when simulating
co-occurring indels, because of the challenge of mapping
reads with multiple indel related mismatches. With respect
to specific HLA genes, an 86%, 86% and 74% success rate
was observed for A, B and C alleles, respectively (see
Table S2 for detailed overview). To demonstrate the
approach's ability to identify novel alleles across a wider
spectrum of HLA alleles, we extended these experiments
with 8450 spiked-in single variants further simulations
across a diverse range of an additional 36 HLA-A, -B and -C
alleles to achieve an overall success rate of 97% (see
Table S2). Overall, the simulations summarized in Table 1
and Table S2 indicate the potential of the proposed
approach to accurately identify germline variants affecting
HLA alleles, leading to novel HLA sequences from WES-
based NGS data.

3.2 | Validation of WES-based HLA
typing at protein coding sequence level

We then ran NeoOncoHLA on WES data from the
PBMCs of 10 donors. For validation purposes, five sam-
ples from the 10 donors, where at least one germline vari-
ation in an HLA Class I allele was predicted, were also
subject to targeted HLA sequencing from the GenDx
NGSgo-MX11-3 kit (see Section 2). We compared the
HLA typing results obtained here with NeoOncoHLA,
OncoHLA (a previously published typing pipeline that
does not incorporate variant calling19) and the high-
resolution targeted HLA sequencing (GenDx). The vali-
dation results are described in Table 2. There was a 100%

overlap in the HLA typing between NeoOncoHLA and
OncoHLA using WES data and HLA targeted sequencing
at protein coding sequence level (i.e., at the first and sec-
ond field of resolution). This 100% performance overlap
with HLA targeted sequencing was a validation of both
NeoOncoHLA and OncoHLA, for the first and second
field of resolution.19

OncoHLA, the HLA typing from WES data without
variant calling integration,19 had a reduced performance
at the third and fourth fields, with 86.7% and 70% for the
third and fourth fields respectively (see Table 2). This
reduced performance was as expected, as for any WES-
based HLA typing solution, because of the lower cover-
age of HLA sequences in the IPD-IMGT/HLA Database
for all HLA exons and non-coding sequences in addition
to the moderate read depth of WES compared with
targeted NGS. The performance for our WES-based HLA
typing solutions however improved significantly when
using deep or targeted HLA NGS data as input (see
Table 2 and Table S3).

3.3 | Integration of germline variant
calling enhances personalized HLA typing
and enables novel HLA discovery from
WES data

Personalized HLA typing, through the integration of vari-
ant calling (see Figure 1), significantly improved the per-
formance at the third and fourth fields of resolution
using WES data (see Table 2). It was demonstrated that
the performance was enhanced through the integration
of variant calling, raising the accuracy to 96.7% from
86.7%, and to 86.7% from 70% for the third and fourth
fields, respectively. The complete results for all five
patients that had at least one germline mutated HLA
allele is available in Table S3. In Table 3, the HLA typing
results with a discrepancy using WES data versus
targeted HLA sequencing data is also depicted. In all the
six cases of variant HLA alleles among the normal PBMC
samples of five patients, where there was at least one
germline variant detected, NeoOncoHLA was able to

TABLE 2 Overlap percentage on the validation of HLA typing of Class I alleles by our previous tool OncoHLA using WES data versus

OncoHLA with targeted HLA NGS sequencing data versus NeoOncoHLA using WES data. NeoOncoHLA has incorporated variant calling,

whereas OncoHLA does not

Resolution OncoHLA with WES data OncoHLA with targeted NGS data NeoOncoHLA with WES data

1 field 100 100 100

2 field 100 100 100

3 field 86.67 93.33 96.67

4 field 70 86.67 86.67
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correct the HLA mistypes. In one of these cases, the anal-
ysis led to the discovery of a novel Class I HLA allele con-
firmed by both WES, targeted NGS sequencing, and
officially assigned the name HLA-B*44:02:01:52 (see
Table 3), and consequently improved the typing as shown
in Table 2. Figure 3 illustrates the germline variant found
in the 30UTR of the closest-matched reference HLA-
B*44:02:01:03 allele, responsible of the novel HLA-
B*44:02:01:52 allele. This Class I novel variant was also
subject to confirmation at the transcriptional level from
the tumor sample matched to the same patient (see
Section 2: “Allele-specific expression quantification”).

3.4 | Evaluation of ensemble somatic
variant calling for enhanced detection of
somatic variants in HLA alleles

The ability of NeoOncoHLA to detect somatic HLA vari-
ants was benchmarked against POLYSOLVER. In total,
740 simulation experiments were conducted, covering
three HLA alleles (one HLA-A, one HLA-B and one
HLA-C, see Section 2); including SNVs, small insertions
and deletions; with a VAF ranging from 0.01 to 0.5, to

mimic tumor heterogeneity. The performance of each
tool was assessed by its ability to detect the spiked
somatic variant. Overall, 677 (91%) and 556 (75%) of the
740 simulated somatic variants were detected by Neo-
OncoHLA and POLYSOLVER, respectively (see Section 2
for simulation description, and Table S4 for detailed
results). A summary of the benchmarking comparison is
illustrated in Figure 4. NeoOncoHLA outperformed
POLYSOLVER across all the alleles and variant types. In
addition, NeoOncoHLA had an improved performance
across all the various simulated VAF values (see
Table S4).

3.5 | Somatic variant calling in Class I
HLA alleles using personalized germline
HLA alleles as reference

We next applied NeoOncoHLA on WES data from
the 14 metastatic melanoma samples from 10 patients.
To capture somatic HLA variants with improved
fidelity, we called the variants by using the personal-
ized HLA sequences derived from the matched nor-
mal PBMCs.

TABLE 3 Validating potential mistype correction and discovery of novel HLA genotypes using personalized germline variant calling by

NeoOncoHLA

Sample_ID

OncoHLA HLA
typing using
WES data

GenDx HLA typing
using targeted HLA
sequencing data

Discrepancy with
targeted HLA
sequencing

HLA germline
variants detected by
NeoOncoHLA

Outcome of
NeoOncoHLA with
personalized
germline variant
calling

UV1-0001 HLA-B*40:01:01 HLA-B*40:01:02:01 3rd field Yes Mistyping fixed

UV1-0002 HLA-A*24:02:32 HLA-A*24:02:01:01 3rd field No No germline variants
detected

UV1-0002 HLA-
B*35:01:01:01

HLA-B*35:01:01:02 4th field Yes Mistyping fixed

UV1-0002 HLA-
C*04:01:01:01

HLA-C*04:01:01:13 4th field No No germline variants
detected

UV1-0002 HLA-C*04:01:115 HLA-C*04:01:01:05 3th field Yes Mistyping fixed

UV1-0006 HLA-B*40:01:01 HLA-B*40:01:02:01 3rd field Yes Mistyping fixed

UV1-0006 HLA-
C*03:04:01:01

HLA-C*03:04:01:02 4th field No No germline variants
detected

UV1-0011 HLA-
B*44:02:01:03

HLA-B*44:02:01:03 Equal Yes Potential new allele
characterization

UV1-0013 HLA-
B*52:01:01:01

HLA-B*52:01:01:02 4th field Yes Mistyping fixed

UV1-0013 HLA-
C*12:02:02:02

HLA-C*12:02:02:01 4th field No No germline variants
detected

Note: NeoOncoHLA has incorporated variant calling, whereas OncoHLA does not, enabling the rescue of the correct HLA allele when mistyping occurs and
importantly, the detection of novel alleles.
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In total, 15 somatic mutations were detected in classi-
cal Class I alleles across the 14 melanoma samples,
7 (47%) of those were found in HLA-A, five (33%) in
HLA-B and the remaining three (20%) in HLA-C alleles
(see table 1 in Table S5). The functional consequences of
the somatic variants were inferred from their predicted
effect on the resultant protein using VEP. In total, five
out of 15 (33%) variants were situated in protein-coding
regions, while 10 (66%) were in non-coding genomic
regions. The predicted functional effects of the 15 detected
somatic variants sorted from low to high impact were dis-
tributed as follows: five intron variants, two 50UTR vari-
ants, three 30UTR variants, one synonymous variant and
four missense variants (see table 2 in Table S5). One of
the four missense variants occurred, interestingly, in the
binding cleft of HLA-A*02:01:01:01.

The mean VAF across the detected somatic changes
was moderately low (0.13), indicating a broad genomic
heterogeneity and the presence of sub-clonal mutations
private to subpopulations of cancer cells. However, one
of the somatic HLA variants located at HLA-
A*03:01:01:01 of sample UV1-0009-T01 showed a high
VAF of 0.707. This variant was annotated as missense,
changing the second amino acid encoded by the allele
from an alanine to valine. The variant was also confirmed
in tumor RNA-Seq data, and the resultant novel somatic
allele expressed with a high abundance (TPM of 914.75).

Orthogonal validation using RNA-Seq data was con-
ducted to confirm the five somatic HLA variants on
protein-coding regions (see Section 2). A variant discov-
ered in the WES data was considered confirmed when at
least one read harboring the alternate allele was found in

FIGURE 3 Integrative Genomics Viewer (IGV) visualization of the germline variant conforming the detected novel allele. SNP affecting

the 30UTR region of reference HLA-B*44:02:01:03 allele, leading to the characterization of the novel HLA-B*44:02:01:52 allele

FIGURE 4 NeoOncoHLA VS POLYSOLVER performance benchmark in somatic HLA variant simulation experiments. The figure is

divided into three histograms, one per Class I allele under evaluation. The y-axis shows the success rate of each tool to detect the spiked

somatic variant type specified in the x-axis
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the RNA-Seq data. We observed three of the five exonic
variants confirmed in RNA-Seq data. The expression
abundance of the total of four mutant HLA alleles
sequences was calculated using Kallisto (see Section 2).
As expected, the mutant HLA alleles harboring those
unconfirmed RNA-seq variants and with very low VAF
(0.01–0.02) were not expressed. The remaining two alleles
had a TPM of 7.23 and 914.76 (the latter being the variant
with high VAF of 0.707 in HLA-A*03:01:01:01 of sample
UV1-0009-T01, mentioned above).

POLYSOLVER applied to the same 14 metastatic mel-
anoma samples detected 28 somatic variants compared
with the 15 from NeoOncoHLA. Only one variant was
called by both tools that being the high VAF (0.707) SNV,
mentioned above. One source of the large difference of
note was that NeoOncoHLA uses all the alleles available
at IPD-IMGT/HLA Database to align NGS reads, includ-
ing classical Class I, classical Class II and non-classical
alleles, allowing the NGS reads to map back and align to
their true origin, whereas POLYSOLVER uses classical
Class I alleles only. POLYSOLVER reported the same
variant twice, once per typed HLA allele (see table 3 in
Table S5). This was addressed in NeoOncoHLA by being
more stringent with the filters (see Section 2) where mul-
tiple variant calling tools must detect a somatic variant
compared with a single tool in POLYSOLVER, improving
the mapping of the NGS reads by allowing them to map
against Class II and non-classical HLA alleles, and also
by including allelic variant phasing steps taking advan-
tage of both WES and RNA-Seq data.

4 | DISCUSSION

We have reported herein an NGS-based HLA typing
approach that relies on alignments to known HLA
alleles in the IPD-IMGT/HLA Database, while simulta-
neously also enabling the discovery of novel HLA
alleles, and tumor-specific HLA variants. In summary,
the typing method described here maximizes the value
of HLA database-matching method and is also capable
of discovering novel and tumor-specific HLA alleles
through the systematic integration of variant calling
applied to WES data. The vast majority of NGS-based
HLA typing tools that use the IPD-IMGT/HLA Database
are limited to typing only known HLA alleles. Hence,
the accuracy of HLA typing from database-matching
based methods relies highly on the completeness of the
IPD-IMGT/HLA Database. This limitation, as previously
mentioned, is particularly problematic for individuals
harboring uncharacterized HLA alleles and can also
cause considerable challenges in the characterization of
tumor-specific HLA variants.

De novo assembly-based NGS algorithms33,37,65,66 can
achieve novel HLA discovery by building a consensus
sequence from reads without relying on a reference
library. However, these algorithms are computationally
expensive (particularly when deeper sequencing is
required) and require high coverage and longer reads for
accurate phased HLA typing. Furthermore, the outputted
sequences of de novo assembly methods still need to be
aligned to their closest match in the IPD-IMGT/HLA
Database to fully characterize the HLA allelic variants,
consequently resolving ambiguities and discovering full-
length novel HLA alleles remains challenging even for de
novo assembly methods. In addition to the de novo
assembly efforts, there are other methods designed with a
similar motivation as this study, namely, to detect HLA
allelic variants that are not characterized in the IPD-
IMGT/HLA Database. The ALPHLARD is one such study
that used a probabilistic model to infer new HLA
alleles.67 However, although demonstrating good perfor-
mance for HLA typing, no novel candidate HLA alleles
was identified in that study.67

A methodology capable of accurately typing the HLA
region and identify novel alleles, using standard WES
data alone, could help improve the completeness of HLA
libraries and therefore enhance the HLA typing accuracy
in clinical or research applications. In the approach
described in this study, we also relied on the IPD-IMGT/
HLA Database, however novel HLA allele discovery, and
tumor-specific HLA variants, was made possible through
the systematic integration of variant calling tools. Strong
validation for HLA typing was demonstrated at the first
and second fields of resolution using targeted HLA
sequencing data from the blood of the five donors that
had at least one candidate germline variant in their HLA
alleles. This validation performance was consistent with
much of the recent literature on the performance of
NGS-based HLA typing. The reduction of the validation
observed at the third and fourth fields of resolution was
improved when applying the germline variant calling
strategy, resulting in the recovery of the correct allele, or
inferring a novel allele not described in IPD-IMGT/HLA
Database. This was particularly promising given that
standard WES data was used to perform the HLA typing,
and therefore had very sparse coverage of reads in non-
coding regions (introns and UTR's), where ambiguities
lie at the fourth field of resolution. Interestingly, non-
synonymous HLA variants were never detected in exons
that encode the peptide-binding cleft in any of our ana-
lyses (i.e., in exons 2 and 3 for Class I); reflecting the
comprehensive coverage of these exons in the IPD-
IMGT/HLA Database for HLA allelic variants that
bestow different antigen presentation patterns. The abil-
ity of the approach described to discover new alleles was
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demonstrated by the detection of a novel HLA-B allele.
The novel allele has been assigned the name B*44:02:01:52
and officially cataloged by the WHO Nomenclature
Committee for Factors of the HLA System. Finally, an
improved toolkit to interrogate HLA variation in the
tumors, to help understand the interplay between cancer
progression and the adaptive immune system,41,68 was
demonstrated in simulated experiments and in metastatic
melanoma WES samples. Improved tools for the identifi-
cation of HLA variants from WES in tumors is important,
as large-scale WES studies have previously revealed that
somatic variation in HLA Class I genes69–72 and their
expression are associated to immunosurveillance and
clinical outcome.44,72

The approach described here is capable of effectively
identifying novel Class I HLA alleles and tumor-specific
HLA variants, through the systematic integration of var-
iant calling. However, the approach is limited to alleles
whose sequences share a relatively high degree of simi-
larity to those of already known alleles in the HLA refer-
ence databases. Hence, this approach has been mostly
tested on classical Class I alleles, the most extensive col-
lection of full-length allele sequences available in IPD-
IMGT/HLA Database. We hope to benchmark this
approach on Class II and non-classical alleles as full-
length HLA gene sequences become increasingly sub-
mitted for these groups into the IPD-IMGT/HLA Data-
base. For the identification of highly dissimilar novel
HLA alleles (as those presenting structural variants such
as large insertions or deletions) from NGS data, a de
novo alignment approach may be more optimal.45 Addi-
tionally, the personalized germline HLA variant calling
steps in this study were restricted to the consensus of
three state-of-the-art variant callers. As numerous NGS-
based germline variant callers have been developed in
recent years,73 with solutions to variant detection in
complex genome regions like HLA continuously emerg-
ing74,75; it may be beneficial to investigate ensemble
approaches to variant calling,53 taking input from
numerous germline variant callers in order to optimize
the accuracy of germline variant detection in the HLA
region.

A well-known source of ambiguous HLA typing
results is characterized by the difficulties to reliably infer
the phase relationship between variants along two HLA
alleles and consistently reconstruct the fully phased HLA
haplotypes.16 This limitation can be attributed to the very
nature of short reads in WES data. To correctly phase
alleles with short NGS reads, they must adequately cover
the variant region; making it particularly difficult to reli-
ably span the distance between variants located at both
ends of the HLA gene. Incorrect phasing is an arduous
challenge in the HLA genotype field, currently, and

constitutes a major source of spurious HLA typing
results.16 When ambiguous phasing occurs, our method
employs RNA-Seq to only select those reconstructed HLA
alleles with verification of RNA expression. Long read
sequencing could also be used to address the challenge of
haplotype phasing of HLA alleles harboring long intronic
regions, however, this was out of the scope of this current
study.

In summary, the HLA typing approach described
herein showed good performance for full-length HLA
typing from WES data, when validated using targeted
HLA sequencing and demonstrated an ability to detect
novel HLA alleles and tumor-specific HLA variants. With
a large amount of WES-based NGS data being continu-
ously accumulated in many clinical and research studies
worldwide, this approach may lead to the discovery of
more novel HLA alleles and help fill some of the gaps in
the IPD-IMGT/HLA Database. Furthermore, using a per-
sonalized germline reference HLA genotype to perform
somatic variant calling, allows tumor-specific HLA vari-
ants to be identified with increased fidelity, and help to
characterize HLA associated tumor-immune escape.
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