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Abstract: This paper proposed a liquid level measurement and classification system based on a fiber
Bragg grating (FBG) temperature sensor array. For the oil classification, the fluids were dichotomized
into oil and nonoil, i.e., water and emulsion. Due to the low variability of the classes, the random
forest (RF) algorithm was chosen for the classification. Three different fluids, namely water, mineral
oil, and silicone oil (Kryo 51), were identified by three FBGs located at 21.5 cm, 10.5 cm, and 3 cm
from the bottom. The fluids were heated by a Peltier device placed at the bottom of the beaker and
maintained at a temperature of 318.15 K during the entire experiment. The fluid identification by
the RF algorithm achieved an accuracy of 100%. An average root mean squared error (RMSE) of
0.2603 cm, with a maximum RMSE lower than 0.4 cm, was obtained in the fluid level measurement
also using the RF algorithm. Thus, the proposed method is a feasible tool for fluid identification and
level estimation under temperature variation conditions and provides important benefits in practical
applications due to its easy assembly and straightforward operation.

Keywords: fiber Bragg gratings; temperature sensor; random forest; oil classification; fluid identifica-
tion; liquid level estimation

1. Introduction

Liquid level sensing is an important task in many industries, such as agriculture, auto-
mobile, food, storage, chemical, medical, oil, and gas [1]. An accurate level measurement
can be critical to prevent environmental hazards, increase operational efficiency, and en-
hance performance [2]. Liquid level sensors are responsible for detecting the interface level
in vessels, tanks, wells, reservoirs, and hoppers [3], e.g., in the oil and gas industry, in which
water, oils, and gases, with different properties, such as density and viscosity, are processed
in the same tank [3]. Crude oil processing produces flammable gases with explosion risk,
requiring more complex and more robust sensors for interface level measuring [4].

Different methods for measuring the liquid level, based on acoustic, infrared, X-
ray, ultrasonic, mechanical, electrical, capacitive, and optical technologies, have been
reported [2,5–9]. Electrical liquid level sensors have been employed in most applications
due to their high commercial availability and low cost. Electronic sensors suffer nonetheless
from intrinsic safety concerns in the harsh environments of the oil and gas industry,
especially with corrosive or flammable atmospheres [4]. For that reason, capacitive and
optical sensors are frequently proposed to measure the interface level in oil tanks, since
neither technique uses electric current to perform the measurement [1,9].

Fiber optic-based liquid level sensors (FOLLSs) provide advantageous characteristics
demanded by the oil and gas industry, such as intrinsic safety, chemical corrosion resistance,
electromagnetic interference immunity, electrical insulation, small size, and easy multiplex-
ing capacity and remote monitoring capabilities [4]. Different approaches and operation
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principles, such as Fabry–Perot interferometry (FPI) [10,11], Mach–Zehnder interferometry
(MZI) [12], and fiber Bragg gratings (FBGs), are used in fiber optic sensors to measure
numerous parameters, e.g., temperature [13], pressure [14], vibration [15], strains [16],
density [11], thermal conductivity [17], and liquid level [1].

Regarding the FOLLSs, Díaz et. al. [4] reported an FBG-embedded diaphragm struc-
ture to estimate the liquid level in an industrial water tank. The operating principle of the
sensor was based on the relation between the hydrostatic pressure generated by the liquids
and the Bragg wavelength of the FBG sensors to estimate the water level in the tank. A
similar FOLLS based on an FPI sensor was proposed in [18], in which an all-fused silica
structure was composed of a lead-in single-mode fiber SMF, a silica ferrule, and a thin silica
diaphragm used for large-range measurements. Despite the large-range liquid level sensing
in harsh environments, the method is complex and expensive, since three components are
fused with CO2 laser heating fusion bonding technology. A simpler methodology was
reported in [19], where Archimedes’ law of buoyancy was applied to an FBG-based sensor,
in which a reduction of the total load exerted by the suspended mass resulted in a strain
variation in the FBG sensor. The three most promising optical technologies for liquid level
monitoring, i.e., FPI, MZI, and FBG, were discussed in [4].

The FOLLSs, especially the ones based on FBGs, need a transduction mechanism in
order to obtain the liquid level assessment, which can be achieved using cantilevers, floating
devices, or diaphragms [4], where the latter is a popular mechanism for pressure and liquid
level sensing [20]. Such designs lead to additional fabrication methods to incorporate
the optical fiber sensors into the transduction structure. In the case of diaphragm-based
sensors, there are additional parameters to be analyze, since the diaphragm fabrication and
optical fiber incorporation can affect the sensor response [20]. Furthermore, the diaphragm
material’s thermal and mechanical properties directly influence the sensor response [21].
It is also worth noting that in many FOLLS approaches, the liquid level estimation is
obtained from the hydrostatic pressure, which is proportional to the fluid’s density [1].
Thus, for multiphase (or multifluid) liquids’ level assessment, multiple sensors (distributed
along the tank) are needed [1], which further increases the system’s fabrication complexity.
In general, optical fiber sensors also present temperature sensitivity. Therefore, FOLLSs
generally need a temperature compensation technique to mitigate temperature cross-
sensitivity in liquid level assessment [22]. For this reason, the direct estimation of the
liquid level using only temperature sensors brings operational advantages (as additional
fabrication and assemblies in the FBG are not necessary) and also leads to a higher spectral
efficiency, as the same sensor is used for the temperature estimation, where the liquid level
is estimated from the temperature data. In this case, the sensor is based on the differences
between the temperature distribution and the thermal properties of liquids and air. To that
extent, it is also possible to classify and estimate different fluids based on the thermal
gradient differences between oil and water, for example [23].

The use of machine learning algorithms in FBG sensor applications has been widely
employed. An extreme learning machine was applied in the separation of overlapping
spectra generated at wavelength division multiplexing [24]. A Gaussian process regression
was applied in temperature measurements with an FBG temperature sensor, obtaining
improvements in the measurement accuracy and speed [25]. A support vector machine,
along with particle swarm optimization, was applied to identify and locate pipeline leakage
accidents using FBG hoop strain sensors [26].

Random forest (RF) is an ensemble learning algorithm, which is more robust and more
accurate than algorithms that use unique learning [27]. In RF, multiple decision trees are
combined to perform a regression from the average output of the trees or a classification by
considering the votes of the trees. Since RF is based on decision trees, the RF algorithm
can adapt to the nonlinear relations in the data to generate predictions [28]. Each decision
tree is built using a bootstrap sample set, i.e., randomly selected samples with replacement,
with only a number of randomly selected variables being used to produce the potential
splits [27]. The error is thus reduced by using a model with low bias and decreasing its
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variance by the random forest algorithm, which reduces the overfitting risk. The variance
is decreased by the combination of decision trees, and the correlations between trees are
reduced by selecting different random subsets when building them. The number of selected
variables in node splitting should be tuned to balance the decreasing correlation between
trees and the effects on the bias and variance from using fewer attributes in prediction [27].

Aiming at this background and the advantages of liquid level classification and
estimation using temperature responses, this paper proposed the use of a temperature
sensor array, based on FBGs, for liquid level estimation and fluids’ classification. In this
case, three different fluids (water, mineral, and silicone oil) were used, where one fluid was
tested at a time. Machine learning algorithms were used to perform both the classification
of the tested liquid and the regression of the liquid level inside the container. In this case,
the RF algorithm was used due to its simplicity, as it can be implemented in local devices,
without long training times. The FBG-based temperature sensors were characterized and
applied to a tank with different fluids, where the fluids were classified (as oil or nonoil),
then the level of each fluid was estimated.

2. Materials and Methods

The experimental analyses were performed using a beaker with a 2.2 cm radius and
a 22.5 cm height filled with only one liquid. Water, mineral oil, and silicone oil Kryo 51
(LAUDA, Berlin, Germany) were the the fluids used for liquid level estimation in varying
level conditions. Initially, each fluid was heated with a 12 W heat power provided by a
Peltier heat sink TEC1-12706 (Hebei I.T., Shanghai, China), placed at the bottom of the
beaker (see Figure 1), until it reached a temperature of 318.15 K, in order to simulate the
heat flux variation common in crude oil tanks. As depicted in Figure 1, three FBGs were
immersed in the fluids, located at 21.5 cm, 10.5 cm, and 3 cm from the bottom. In addition,
an external FBG was used to measure the room temperature. An optical interrogator sm125
(Micron Optics, Atlanta, GA, USA), with a sampling rate of 2 Hz, was used to read the
Bragg wavelength of the FBG sensors through the experiments. In this case, the Peltier
plate was positioned beneath the container to emulate a temperature variation condition
inside the container, which resembled the operation conditions in practical applications,
where liquids at different temperatures are added in processing or storage tanks. Thus,
the Peltier plate was not a component of the sensor system, which was only comprised of
the FBGs and, therefore, could be used in the classified areas.

Figure 1. Experimental setup employed for fluid classification and level measurement.
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To fabricate the FBGs, the phase mask technique described in [29] was employed. Briefly,
a photosensitive single-mode fiber (ThorLabs GF1B) was inscribed using a nanosecond-pulsed
Nd:YAG laser emitting at 266 nm (LOTIS TII LS-2137ULaser) with an 8 ns pulse time. In
order to make the grating inscription, the acrylate protection of the fiber needed to be
removed, at around 45 mm, which also improved the sensitivity of the sensor due to the
higher thermal conductivity of the silica when compared with the acrylate protection, which
influenced the heat transfer from the liquids to the optical fiber. It is worth mentioning that
the silica optical fiber without the acrylate protection was prone to damage and breakage
due to the brittle nature of silica. However, in this case, the optical fiber was not subjected to
large stresses or pressures, which greatly reduced the risk of fiber damage during the tests.
The physical length of the FBG was 10 mm. In order to obtain the central Bragg wavelength
of the fabricated FBGs, the FBG spectra were analyzed with the optical interrogator sm125
(Micron Optics, Atlanta, GA, USA). The Bragg wavelength (λB) measured is given by [30]:

λB = 2ne f f Λ, (1)

where ne f f is the effective refractive index and Λ is the Bragg grating period. Both ne f f and
Λ are affected by the strain and temperature of the grating by means of the elongation and
thermal expansion effects of the material, which implies that Bragg wavelength shift ∆λB
can be calculated by [7]:

∆λB = λ0[(1− Pε)ε + (α + ζ)∆T], (2)

where λ0 is the initial value of the Bragg wavelength, Pε is the effective photoelastic
constant, ε is the strain applied to the gratings, α is the thermal expansion coefficient of the
fiber material, ζ is the thermo-optic coefficient, and ∆T is the temperature variation. Since
no stress was applied to the FBGs during all the experiments, strain measurements of the
FBGs could be neglected, and Equation (2) can be rewritten as:

λB = λ0[1 + (α + ζ)∆T]. (3)

The temperature characterization was performed with temperatures ranging from
298.15 K to 323.15 K in 5 K steps. Three measurement cycles consisting of increasing
and decreasing temperatures were conducted in an immersion thermostat ECO RE 630 S
(LAUDA, Berlin, Germany), without any forces acting on the fiber through the characteri-
zation. Subsequently, the sensor response to temperature, along with its repeatability, was
analyzed by means of the wavelength shift caused by the temperature variations.

In the varying liquid level experiments, a measurement cycle consisted of first de-
creasing the liquid level from 22.5 cm to 0.9 cm from the bottom in steps of 5.4 cm, then
increasing the level from 0.9 cm to 22.5 cm in the same steps of 5.4 cm. A total of three
cycles were performed for each of the three liquids.

RF algorithms were used for both the classification of the fluids and the estimation of
their levels. First, the fluid was identified, and then, the liquid level was estimated. For
the classification, the RF algorithm was performed as discussed in our previous work [23].
The final prediction, oil or nonoil in this case, was decided by selecting the class that
most of the trees identified as correct. For the regression, the final predicted level was
calculated as the arithmetic mean of the tree forest results [31]. The physical principle of the
fluid classification and liquid level estimation was based on the differences in the thermal
properties of each fluid. These properties included the specific heat capacity and, especially,
the thermal conductivity of the liquids. In a transient analysis, the liquids with different
thermal properties resulted in differences in the temporal evolution of the wavelength shift.
It was demonstrated in [17] that the thermal properties of the liquids can be estimated in
different experimental conditions. For this reason, machine learning algorithms are able to
detect such differences in the wavelength shift and classify the liquid in a straightforward
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approach. As it was based on the intrinsic properties of the fluids, the method can be
applied to different containers and setup conditions.

For both the classification and regression by the random forest algorithm, the data
samples were split into training data and testing data. The random forest algorithms were
trained, i.e., the models were built using the data from the first two cycles and tested with
the data from the last cycle. The data were obtained from the wavelength shifts of the
corresponding fluids and liquid level measurements.

The RF construction for each tree is given by:

h(x, θk), k = 1, 2, . . . (4)

where x is the input vector and θk are the independent and identically distributed random
vectors [27]. When RF increases the nodes of the classification tree, a better division of a
random subset of input observations or predictive variables is chosen for the division of its
nodes [32].

The RF classification uses the Gini index as the attribute selection measure. This index
measures the degree of randomness of an attribute within a partition [27]. For an arbitrary
set of T formations, randomly selected and belonging to class Ci, the Gini index can be
written as:

∑ ∑
j 6=i

=

(
f (Ci, T)
|T|

)( f (Cj, T)
|T|

)
(5)

where f (Ci, T)/|T| is the probability that the selected case belongs to class Ci. To classify a
new dataset, each new observation passes through each of the previously created N trees.
The forest chooses the class with the highest number of votes and classifies it according to
the vote.

The RF regression algorithm was used to estimate the level. A model was created
for both the decreasing and increasing level of each liquid, and the liquid was selected by
the fluid classification. In the model building, two different model approaches were used,
namely Models 1 and 2. Model 1 considered all the FBG interactions, and Model 2 consid-
ered no interaction between the sensors. The variables present in Model 2 were each FBG,
i.e., FBG 1, FBG 2, and FBG 3, whereas the ones of Model 2 were, besides the FBGs alone,
(FBG 1) × (FBG 2), (FBG 1) × (FBG 3), (FBG 2) × (FBG 3), and (FBG 1) × (FBG 2) × (FBG 3).

In order to reduce the computational effort in the choice of the model, Model 2 was
prioritized, because of its parsimony due to its fewer calculated coefficients, when the
increase in RMSE of Model 2 in regard to Model 1 was lower than 15%.

3. Results and Discussion

The temperature characterization of the FBG-based sensor is shown in Figure 2.
The sensitivity calculated was 10.93 pm/ºC, with R2 = 0.99 for both, increasing and
decreasing. In addition, both coefficients of determination R2 were greater than 99% for
the linear regressions.

As mentioned in Section 2, the experiments were performed in three measurement
cycles with three different liquids: water, mineral oil, and Kryo 51. Figures 3–5 present
the variation of the Bragg wavelength along the sampling time of the four FBGs used
in the setup for the first measurement cycle, with a sampling rate of 2 Hz. Figure 3a,b
presents the measurements of Cycle 1 of water’s decreasing and increasing level measure-
ments, respectively. Figure 4a,b corresponds to the first Kryo 51 measurement cycle, and
Figure 5a,b corresponds to that of mineral oil. The highest observable signal variation was
when there was a variation of the surrounding fluid at each FBG, i.e., there was a higher
wavelength shift when the FBG was dipped into the liquid or the liquid level reduced and
the FBG was not submerged. However, these signal variations depended on the liquid
heat transfer characteristics (such as the thermal conductivity) and depended on the heat
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transfer from the Peltier plate and surrounding environment. For these reasons, machine
learning algorithms were used to increase the accuracy of the sensors’ response analyses.

The measurements of the first cycle were compared to those of the other two cycles by
their corresponding standard errors (SEs). The obtained SEs between the three cycles were
low, as expect for controlled experiments, with obtained standard errors of Cycles 2 and 3
lower than 0.2% with regard to Cycle 1.

Figure 2. Increasing and decreasing temperature responses of the FBGs in the temperature character-
ization tests.

(a)

(b)

Figure 3. Measurements of decreasing (a) and increasing (b) liquid levels for water.
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(a)

(b)

Figure 4. Measurements of decreasing (a) and increasing (b) liquid levels for Kryo 51.

The Pearson correlation coefficient ρ between the FBG measurements was calculated
for the four FBG temperature sensors. The correlation coefficient represents the linear
relations among the variables, and it is analyzed in order to avoid the multicollinearity
of the data, which increases the variance of the model and the errors in the prediction.
The correlation coefficients are shown in Tables 1–3 for the water, mineral oil, and Kryo
51, respectively. If the absolute value of ρ is greater than 0.85, one of the variables can be
removed, in order to avoid duplicate information in the model [33].

The correlation coefficients between the FBG measurements were not greater than the
limit of 0.85, except for the FBG–air in the oil measurements, the correlation coefficients of
which were greater than 30% with all the other variables. Since FBG–air has no contact with
the fluids, it was removed from the model building of the oil level. It can nevertheless be
used as a reference sensor for the room temperature. In the water and Kryo 51 experiments,
the calculated correlation of FBG 1 in regard to the other FBGs was greater than the
correlations of the other FBGs. Since the correlations were less than 0.85, the variables
were preserved, except for the FBG–air, which was used to monitor the room temperature.



Sensors 2021, 21, 4568 8 of 14

The liquid container had a heat input on the bottom (though the Peltier plate). However,
the container walls were not thermally isolated (as also occurs in practical applications),
which can lead to heat exchange with the environment. As the heat transfer occurred
from the hot object to the colder one, there was a heat transfer from the container to the
environment due to the higher temperature of the liquids inside the container (heated
by the Peltier plate). Nevertheless, if there was a high increase of the room temperature
in such a way that the room temperature was hotter than the liquids, the heat exchange
would occur in the opposite direction, i.e., from the environment to the liquids through the
liquid container walls, which resulted in two heat inputs: on the bottom from the Peltier
plate and on the container walls. These different thermal dynamics can result in variations
in the temperature gradient along the container, which may lead to errors in the liquid
classification and level estimation. The assessment of room temperature was beneficial,
since high variations in the room temperature can lead to different thermal dynamics and
heat transfer conditions inside the liquid container. Thus, the FBG–air was used as the
room temperature reference.

(a)

(b)

Figure 5. Measurements of decreasing (a) and increasing (b) liquid levels for mineral oil.
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Table 1. Pearson correlation coefficients among the observed FBGs for the decreasing and increasing
water level measurements.

Water
Decreasing Level

FBG 1 FBG 2 FBG 3 FBG–Air

FBG 1 1.00 −0.53 −0.13 0.6
FBG 2 1.00 0.01 −0.13
FBG 3 1.00 −0.02

FBG–Air 1.00

Increasing Level

FBG 1 FBG 2 FBG 3 FBG–Air

FBG 1 1.00 −0.28 −0.17 0.60
FBG 2 1.00 0.04 −0.18
FBG 3 1.00 −0.13

FBG–Air 1.00

Table 2. Pearson correlation coefficients among the observed FBGs for the decreasing and increasing
mineral oil level measurements.

Mineral Oil
Decreasing Level

FBG 1 FBG 2 FBG 3 FBG–Air

FBG 1 1.00 −0.02 0.11 0.31
FBG 2 1.00 0.69 0.53
FBG 3 1.00 0.77

FBG–Air 1.00

Increasing Level

FBG 1 FBG 2 FBG 3 FBG–Air

FBG 1 1.00 0.08 0.42 0.77
FBG 2 1.00 0.82 0.62
FBG 3 1.00 0.86

FBG–Air 1.00

Table 3. Pearson correlation coefficients among the observed FBGs for the decreasing and increasing
Kryo 51 level measurements.

Kryo 51
Decreasing Level

FBG 1 FBG 2 FBG 3 FBG–Air

FBG 1 1.00 −0.36 0.60 0.48
FBG 2 1.00 0.03 −0.17
FBG 3 1.00 0.15

FBG–Air 1.00

Increasing Level

FBG 1 FBG 2 FBG 3 FBG–Air

FBG 1 1.00 −0.25 −0.61 0.53
FBG 2 1.00 −0.34 0.09
FBG 3 1.00 0.03

FBG–Air 1.00

The classification results of the RF generated models are presented in the confusion
matrix of Table 4, which shows an identity matrix resulting from the correct classification
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of the analyzed fluids. The FBG temperature sensors were able to identify the liquids in all
analyzed cases. However, it is important to mention that a higher number of liquids and
the temperature conditions can reduce the classification accuracy, as shown in [23], where
the simulations showed that an accuracy higher than 90% can also be achieved in different
fluid and heat transfer conditions. Moreover, there were intrinsic uncertainties due to the
methodological and instrumental uncertainties that could influence the accuracy of the
whole system. Compared with our previous work [23], the accuracy in the liquid classi-
fication increased due to the different experimental conditions of the analyses presented
in this paper. In [23], the simulations were performed considering a larger storage tank
and with only an estimation of the heat transfer from the Sun to the container. In contrast,
the experimental analysis presented here employed a Peltier plate beneath a smaller liquid
container (with 22.5 cm height). These different experimental conditions led to a larger
thermal gradient along the liquid container, resulting in higher temperature differences in
the liquids. As the wavelength shift was proportional to the temperature variations, this
experimental condition aided inn the fluid classification using the wavelength shift of the
FBGs as the input to the machine learning algorithms.

Table 4. Confusion matrix for fluid identification.

Water Mineral Oil Kryo 51

Water 1 0 0
Mineral Oil 0 1 0

Kryo 51 0 0 1

Table 5 shows the RMSE of Models 1 and 2 for each fluid for both the decreasing and
increasing levels. An average RMSE of 0.2603 cm, with a maximum RMSE lower than
0.4 cm, was obtained in the liquid level measurement also using the RF algorithm. The
RMSE values were thus low regarding the liquid level range from 0.9 cm to 22.5 cm. The
RMSE was obtained from the liquid level estimation using regression approaches, which
led to a continuous variation in the wavelength shift of each FBG as a function of the level.
Thus, it was possible to obtain subcentimeter errors (and even a submillimeter resolution,
as summarized in [4]), which was below the FBG physical length, as the limiting factor for
the sensor liquid level estimation resolution was the wavelength resolution and accuracy of
the optical interrogation. In this case, the optical interrogator used (Micron Optics, sm125)
had a wavelength resolution of 1.0 pm.

Table 5. RMSE, in cm, of the proposed models for the decreasing and increasing liquid level
measurements of each fluid.

Fluid
RMSE (Decreasing Level) RMSE (Increasing Level)

Model 1 Model 2 Model 1 Model 2

Water 0.367 1.620 0.382 1.712
Mineral Oil 0.136 0.155 0.166 0.156

Kryo 51 0.247 0.446 0.255 0.444

The results of the liquid level predictions, with the estimated levels and the corre-
sponding observed levels, are presented in Figures 6–8 for water, mineral oil, and Kryo
51, respectively. Model 1 was used in the water and Kryo 51 for both the decreasing and
increasing level estimations due to its lower error in regard to the corresponding error of
Model 2. In the mineral oil level estimations, Model 2, which was less complex and had a
lower overfitting risk, was used in both the decreasing and increasing oil predictions due
to the proximity between the errors of Models 1 and 2, with an increase of 13.97% and a
decrease of 6.02% in the RMSE of Model 2 in regard to that of Model 1 for decreasing and
increasing levels, respectively.
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Figure 6. Estimation of the water level by the FBG measurements and the corresponding RF model.
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Figure 7. Prediction of mineral oil level variation.
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Figure 8. Prediction of Kryo 51 level variation.

4. Conclusions

This paper proposed the use of an array of FBG-based temperature sensors for the
liquid identification and level estimation in a tank. For the analysis, the fluids were di-
chotomized into oil and nonoil. The algorithm inputs were ∆λ and the location of the
FBG from the bottom of the tank. The fluid was identified and the liquid level estimated
based on the temperature variations of the liquid inside the tank. The fluid identification
by the RF algorithm achieved the correct detection of the liquids in all analyzed cases. An
average RMSE of 0.2603 cm, with a maximum RMSE lower than 0.4 cm, was obtained in the
liquid level measurements also using the RF algorithm. The low RMSE of the estimations,
regarding the liquid level range from 0.9 cm to 22.5 cm, along with its high accuracy in
classification, indicated the feasibility of using RF algorithms in fluid identification and
liquid level estimations. Thus, this work indicated a novel approach for liquid level estima-
tion in conjunction with liquid classification using a single sensor array, which provides
economical and operational advantages in practical applications. The dichotomization
into oil and nonoil can result in the separation between the oil (used in the next steps of
its processing) and the other liquids (or liquid mixtures) generated in oil extraction and
manipulation such as water and stable emulsions, even when these data are not known by
the operators. Future works include the liquid classification and liquid level estimations in
multiphase liquids and oil–water mixtures, as well as in different fluids and temperature
variation conditions.
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