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Eriocheir sinensis is widely appreciated by the surrounding population due to its

culinary delicacy and rich nutrients. The E. sinensis breeding industry is very

prosperous and molting is one of the important growth characteristics.

Research on the regulation of molting in E. sinensis is still in the initial

stages. There is currently no relevant information on the regulatory

mechanisms of heart development following molting. Comparative

transcriptome analysis was used to study developmental regulation

mechanisms in the heart of E. sinensis at the post-molt and inter-molt

stages. The results indicated that many regulatory pathways and genes

involved in regeneration, anti-oxidation, anti-aging and the immune

response were significantly upregulated after molting in E. sinensis. Aside

from cardiac development, the differentially expressed genes (DEGs) were

relevant to myocardial movement and neuronal signal transduction. DEGs

were also related to the regulation of glutathione homeostasis and

biological rhythms in regard to anti-oxidation and anti-aging, and to the

regulation of immune cell development and the immune response. This

study provides a theoretical framework for understanding the regulation of

molting in E. sinensis and in other economically important crustaceans.
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Introduction

The Yangtze River is 6,397 km long and ranks third in the

world in both length and water flow. The Yangtze River basin

has very rich biodiversity and contains 424 different fish

species and more than 29,000 kinds of phytoplankton and

benthic organisms, making it an important region for global

biodiversity conservation (Lv et al., 2016; Jin et al., 2022;

Zhang et al., 2022). E. sinensis is an economically valuable

catadromous species found in the Yangtze River. Due to its

high mobility and ability for osmotic regulation, E. sinensis

now has a global distribution that includes Europe and

America (Gillard et al., 2017; Spiridonov and Zalota, 2017).

E. sinensis is rich in nutrients and flavor and is known as “one

of the three delicacies of the Yangtze River”. It has high

economic value and the E. sinensis breeding industry has

developed rapidly (Song and Zhao, 2018; Wang et al.,

2018). Molting is a typical characteristic of crustaceans

including crabs and shrimps, allowing them to grow

discontinuously throughout their life cycle. Study of the

regulatory mechanism of E. sinensis molting is important

for the protection of wild crab resources and for

the development of an economically viable crab breeding

industry.

Based on the morphological characteristics of the setae and

on the retraction degree of the epidermis, the molting cycle can

be divided into four stages: pre-molting (D), inter-molting

(C), post-molting (AB) and molting (E). During the post-molt

stage, water is quickly absorbed and the exoskeleton gradually

hardens. During the inter-molt stage, the exoskeleton

continues to harden and mineralize, while the muscle

gradually enlarges and the water content decreases. During

the pre-molt period, the old skeleton decomposes and is

absorbed, while a new skeleton and pigment layer begin to

form (Kang et al., 2012). Molting appears to be coordinated

by several hormones produced in the central nervous

and endocrine systems. This occurs mainly through

secretion of the molting inhibition hormone (MIH) by the

X-organ/sinus gland complex in the eye-stalk. In addition, a

transcription factor composed of the ecdysone receptor

and retinoid X receptor acts on Y organs to regulate the

synthesis and secretion of the hormone ecdysone by

these organs. These two antagonistic hormones act

jointly to regulate the molting process of E. sinensis (Das

et al., 2018).

Current research on the regulation of E. sinensis

molting focuses mainly on the influence of external

environmental factors and nutritional elements,

including temperature, pH, vitamins, etc. (Yu et al., 2018;

Chen et al., 2019; Wang et al., 2020a; Liu et al., 2021a; Zhang

et al., 2021). Moreover, the role of several regulatory genes

such as V-ATPase subunit B (VATB), transforming growth

factor-beta type I receptor (TGFBR1) and S6 kinase has also

been studied (Tian et al., 2019; Hou et al., 2020; Tian et al.,

2020). The results indicated that V-ATPase subunit B

plays essential roles in the cuticle formation process of

Eriocheir sinensis. Transforming growth factor-β type

I receptor regulates gonad and muscle development of E.

sinensis. S6 kinase also plays an important

regulatory role in muscle growth during E. sinensis

molting process (Tian et al., 2019; Hou et al., 2020; Tian

et al., 2020).

Following molting, the newly formed epidermis is soft

and therefore prone to invasion and infection by

pathogens. Frequent death after molting greatly influences

the survival rate of adult E. sinensis and is one of the

main problems of the E. sinensis culture industry (Wang

et al., 2015). So far there have been few reports on the

regulation of E. sinensis at the post-molting stage, with

only one study reporting on the structure and composition

of the exoskeleton during the molting process (Tian et al.,

2013).

As one of the critical organs and a core component of the

circulatory system, the heart plays an important role in various

life activities such as development and reproduction (Goepel

and Wirkner, 2020). Currently, only a few studies have been

published on the heart in crabs and these involve the influence

of different environmental factors such as hypoxia and

temperature on the heart rate (Kushinsky et al., 2019;

Zainal and Noorani, 2019; Singh et al., 2020a; Singh et al.,

2020b; Levinton et al., 2020). The results indicated that crab

performed cardiac compensation in response to declining

dissolved oxygen. They had different strategies on heart

rate under water, air and different temperature

condition. Their heart rate had strong dependence to

temperature. Their heart rhythm stability was better than

polyric rhythm under high temperature condition

(Kushinsky et al., 2019; Zainal and Noorani, 2019;

Singh et al., 2020a; Singh et al., 2020b; Levinton et al.,

2020). In contrast to vertebrates, the hearts of crustaceans

have strong regenerative potential. After each molting, the

hearts of crustaceans such as crabs and shrimps can

regenerate (Xiong, 2020). It is therefore interesting to

explore the regulatory mechanism of heart development in

E. sinensis after molting. High-throughput sequencing

allows molecular analysis to be carried out on a broader

and more profound level (Min et al., 2019; Avarre, 2020;

Liu et al., 2021b; Feng et al., 2022). Studies on the

regulation of molting in E. sinensis are still at the

preliminary stage and hence transcriptome analysis should
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allow rapid screening of the regulatory pathways and genes

involved.

In the present study, comparative transcriptome analysis

was performed on the heart tissue of E. sinensis at the post-

molt and inter-molt stages. The aim was to identify critical

regulatory pathways and genes during the post-molt

developmental stage of E. sinensis, thereby providing a

theoretical framework for better understanding of this

process. This study should also provide a theoretical basis

for use in the breeding industries of E. sinensis and other

crustaceans, as well as for further research into organ

regeneration in vertebrates.

Materials and methods

Ethics statement

The study was approved by the Animal Care and

Use Committee of the Freshwater Fisheries Research

Center at the Chinese Academy of Fishery Sciences. All

the experiments conformed to the Guidelines for the

Care and Use of Laboratory Animals set by the Animal

Care and Use Committee of the Freshwater Fisheries

Research Center (2003WXEP61, Jan 6th of 2003), and the

study was carried out under a field permit (No.

20182AC1699).

Experimental crabs and sample collection

One-year-old juvenile E. sinensis crabs (average body

weight of (11.6 ± 0.68 g)) were obtained from the Jiangsu

Noah’s Ark Agricultural Science and Technology Co. Ltd.

Animals at the same developmental stage were selected and

cultured in three aquariums. Twenty female E. sinensis crabs

and the same number of male juveniles were grown in the same

aquarium. The aquariums were continuously aerated and

the water quality monitored every day, Water temperature

was (19 ± 0.5)°C, pH was (7.5 ± 0.2), concentration of

dissolved oxygen was (6 ± 0.3) mg/L, concentration of

NH3-N and NO2
− was lower than 0.1 mg/L and 0.005 mg/L,

respectively. E. sinensis were given a compound feed each

day at 14:00 and 17:00. The molting stage was

determined according to Kang et al. (Wang et al., 2018).

Cameras were installed in each aquarium and the molting

process was observed continuously for 24 h each day.

The heart was collected within 30 min after molting, with

one male sample and one female sample collected from each

tank. The same number of heart samples was also

collected from crabs at the inter-molt phase. The body size

parameters of all E. sinensis crabs were measured before heart

collection.

Total RNA extraction and illumina
sequencing

Total RNA was extracted with RNAiso reagent according

to the manufacturer’s instructions (TaKaRa, Japan). Equal

amounts of total RNA from the heart of one female crab

and one male crab at the same developmental stage and from

each tank were pooled to form one sample. In total, three

samples were obtained from the post-molt stage (MP) and

three from the inter-molt stage (MI). RNA samples were

checked for quality and the quantification of extracted total

RNA, construction of cDNA library, and high-throughput

sequencing were performed according to the methods

reported in our previous study (Wang et al., 2020b). The

raw data generated in this study was submitted to the

NCBI (NCBI, United States) with accession number

PRJNA836628.

Data filtering and assembly

Raw data were filtered using the NGS QC TOOLKIT

V2.3.3 software (Roche, United States). Some low quality

reads, contaminated reads, and primer and adapter

sequences were removed (Patel and Jain, 2012). The filtered

clean data was assembled using Trinity software (v2.2.0)

(Grabherr et al., 2011).

Transcriptome annotation

Unigenes were aligned in accordance with the following

databases: non-redundant protein (Nr), non-redundant

nucleotides (Nt), Swiss-prot (http://www.uniprot.org/

downloads), clusters of orthologous groups for eukaryotic

complete genomes (KOG, ftp://ftp.ncbi.nih.gov/pub/COG/

KOG/kyva), and the Kyoto Encyclopedia of Genes and

Genomes (KEGG, http://www.genome.jp/kegg/pathway.html)

(Altschul et al., 1990; Kanehisa et al., 2008). Gene ontology

(GO) homology annotation was carried out using Blast2GO

software (Conesa et al., 2005).

Differential gene expression analysis

Differential gene expression analysis was carried out using

the DESeq R package (1.18.0) (Anders and Huber, 2012). Fold-

change was calculated as the ratio of the expression level of

genes in the MI sample to the MP sample. |log2foldchange| >
1 and padj < 0.05 (adjusted p value) were set as the cutoff

thresholds for DEGs. The detailed method for DGE analysis

was described in our previous study (Wang et al., 2020b). GO

and KEGG enrichment analyses were carried out on DEGs
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(padj <0.05). Finally, the top 30 GO terms and top 30 KEGG

pathways were identified using methods described in our

previous study (Wang et al., 2020b).

Quantitative real-time PCR (qPCR)
validation

The accuracy of high-throughput sequencing data was

validated with qPCR. Ten DEGs were randomly selected from

the transcriptome data for qPCR analysis using the ABI

7500 real-time PCR system (ABI, United States). Primers were

designed with Primer Premier six software and the primer

sequences are shown in Supplementary Material S1. Beta-actin

was used as the internal reference. Amplifications were

performed with the following program: 95°C for 30 s,

40 cycles of 95°C for 5 s, 60 °C for 35 s, and 72°C for 52 s.

Each sample was studied in triplicate and gene expression levels

were calculated with the 2−ΔΔCT method (Livak and Schmittgen,

2001).

Statistical analysis

Statistical significance (p < 0.05) was calculated using one-

way ANOVA and Duncan’s multiple range tests (SPSS 21.0).

Values were shown as (Mean ± Standard Error). The minimum

significance level was set to 0.05. When distribution of data was

skewed, the Dunn–Bonferroni post hoc method following

Kruskal–Wallis test was used (Cai et al., 2020a).

Results

Sequencing and assembly of the E.
sinensis heart transcriptome

Body size parameters for E. sinensis at post-molt and inter-

molt stages are shown in Table 1. In total, 271,145,476 clean data

were generated (Table 2). In this study, Q20 value were more

than 95%, these indicated that base calling accuracy for more

than 95% data reached 99% and thus met the requirement for

TABLE 1 Body size parameters for the E. sinensis study samples.

ID Weight (g) Carapace length (mm) Carapace width (mm)

MP1-F 9.1 25.1 27.7

MP1-M 10.6 25.7 29.9

MP2-F 8.9 24.6 27.1

MP2-M 11.1 26.5 28.8

MP3-F 8.8 24.9 27.2

MP3-M 9.9 25.6 27.5

MI1-F 9.3 24.3 27.9

MI1-M 12.1 27.4 29.9

MI2-F 9.3 24.6 28.1

MI2-M 10.3 25.9 28.9

MI3-F 9 23.1 26.1

MI3-M 11.6 26.6 29.1

NOTE: MP1-F ~ MP3-F: three female E. sinensis at post-molt stage in three aquariums; MP1-M ~ MP3-M: three male E. sinensis at post-molt stage in three aquariums.

MI1-F ~ MI3-F: three female E. sinensis at inter-molt stage in three aquariums; MI1-M ~ MI3-M: three male E. sinensis at inter-molt stage in three aquariums.

TABLE 2 Summary of heart transcriptome sequencing for E. sinensis.

Sample Raw reads Raw bases Clean reads Clean bases Q20 (%) GC (%)

MP1 45,247,234 6,787,085,100 44,927,568 6,638,048,172 95.26 49.9

MP2 45,992,206 6,898,830,900 44,973,304 6,646,604,598 96.02 50.3

MP3 46,182,912 6,927,436,800 45,784,144 6,773,764,105 95.9 51.1

MI1 45,969,580 6,895,437,000 45,114,446 6,683,254,030 95.70 50.64

MI2 45,288,168 6,793,225,200 4,4501,478 6,592,448,951 95.61 50.1

MI3 46,311,928 6,946,789,200 45,844,536 6,788,658,891 95.59 49.7

NOTE: MP1-3: three replicates of heart of postmolt E. sinensis; MI1-3:three replicates of heart of Intermolt E. sinensis.

Q20: ratio of bases with Phred quality score larger than 20 in raw bases.
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further analysis. After assembly, 169,812 unigenes were obtained.

Of these, 103,924 unigenes ranged from 501 to 1000bp,

6,113 unigenes were grater than 1000bp in length. The

average length was 961bp, N50 was 1109bp.

Top 30 GO enrichment analysis of DEGs at
the post-molt and inter-molt stages

As shown in Figure 1, GO can be divided into the three levels

of Biological Process (BP), Molecular Function (MF), and

Cellular Component (CC). These were further classified using

the online program Ontobee analysis. The results indicated that

BP was mainly involved in the regulation of anti-oxidation

(cellular response to topologically incorrect protein, positive

regulation of peptidyl-cysteine S-nitrosylation, glutathione

metabolic process, aging, oxidation-reduction process),

circulatory system regulation (regulation of heart rate by

chemical signal) and nucleic acid metabolic processes (tRNA

thio-modification, mRNA cleavage involved in gene silencing by

miRNA, mRNA cis splicing via spliceosome, regulation of

alternative mRNA splicing via spliceosome, DNA replication),

cytoskeleton and organelle organization (spindle organization,

chromosome condensation). CC mainly involved the regulation

of myocardial movement (troponin complex, A band), organelle

relevant to energy metabolism (mitochondrion) and organelle

relevant to nucleic acid metabolism (mRNA cleavage stimulating

factor complex, cytosolic tRNA wobble base tiouridylase

complex). MF involved mainly binding activity relevant to

cytoskeleton protein and signal transduction regulatory

protein (calmodulin binding, actin binding), antioxidant

enzyme regulation (cysteine dioxygenase activity, 17-beta-

ketosteroid reductase activity, glutathione transferase activity),

energy metabolism relevant enzyme activity (ATPase activity,

coupled) and nuclease activity (endoribonuclease activity,

cleaving siRNA-paired mRNA).

Top 30 KEGG enrichment analysis

As shown in Figure 2, the top 30 KEGG pathways were

classified into five categories: Organismal Systems,

Environmental Information Processing, Cellular processes,

Genetic Information Processing, and Human Diseases. In

FIGURE 1
Top 30 GO terms. The numbers on the right represent the number of DEGs in each term.
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general, these mainly involve regulation of the immune system

(Leukocyte transendothelial migration, the phagosome, and

antigen processing and presentation), regulation of

regeneration and development (Rap1 signaling pathway,

Hippo signaling pathway-fly, Hippo signaling pathway,

Thyroid hormone signaling pathway, regulation of actin

cytoskeleton and apoptosis) and genetic information

processing and signal transduction (protein processing in

endoplasmic reticulum, spliceosome, adherens junction, tight

junction).

Regulatory network between post-molt
and inter-molt stages in the heart of E.
sinensis

In this study, there were 17,064 DEGs in total (Figure 3). The

top 30 GO terms, top 30 KEGG pathways, and key DEGs can be

classified into three categories: regulation of regeneration,

regulation of anti-oxidation and anti-aging, and regulation of

the immune response. The key functional DEGs identified in this

study are listed in Table 3, and all DEGs are shown in

Supplementary Material S1. The regulatory network in the

heart of E. sinensis between the post-molt and inter-molt

stages is shown in Figure 4.

Validation of transcriptome data by qPCR

Primers for 10 of the DEGs identified here are shown in

Supplementary Material S2. The relative expression levels of

these DEGs as measured by qRT-PCR were consistent with

those determined by high-throughput sequencing (Figure 5),

indicating the reliability of the transcriptome data. Correlation

analysis was shown in Figure 6.

Discussion

This study identified regulatory pathways and functional

genes relevant to tissue regeneration, anti-oxidation, anti-

aging and immune regulation that were differentially

FIGURE 2
Top 30 KEGG pathways. The numbers on the right represent the number of DEGs in each term.
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expressed after E. sinensis molting compared to the inter-molt

stage.

Tissue regeneration in the post-molt stage

Several pathways involved in tissue regeneration including

the Hippo signaling pathway, Rap1 signaling pathway, thyroid

hormone signaling pathway and apoptosis were significantly

upregulated at the post-molt stage of E. sinensis.

The Hippo signaling pathway is highly conserved among

different species and was first discovered in drosophila, where it

plays an important regulatory role in cell proliferation,

differentiation and migration, and organ size control (Fulford

et al., 2018; Hong et al., 2018). The Wnt pathway is also highly

conserved. Relevant studies have mainly been conducted on

vertebrate species and indicate the Wnt signaling pathway

plays an important regulatory role in cardiac development.

Wnt binds to Frizzled receptor, with both molecules being

essential regulators of cardiac development. Inhibition of the

Wnt signaling pathway can block cardiac development during

the early differentiation of human pluripotent stem cells (Pahnke

et al., 2016; Guo et al., 2019; Kaplan et al., 2019). Rap1 is a small

GTPase protein with high homology to Ras protein. It acts as a

molecular switch and plays an important role in modulating cell

movement and the formation of cellular connections. Rap1 can

participate in the regulation of tight connections and in the

formation of adhesion connections between epithelial cells and

endothelial cells, thus affecting the integrity of barrier functions

(Yang et al., 2021). Apoptosis is the spontaneous and orderly

death of cells required to maintain internal environmental

homeostasis. It plays an important regulatory role in the

evolution of internal homeostasis and in the development of

many organ systems. The release of cytochrome C from

mitochondria is a key step in apoptosis. Caspase can act on

several enzymes related to cytoskeleton regulation and hence

alter the cell structure (Klemm et al., 2021). Damaged cells

undergo apoptosis to clear out irreparable cells, thereby

initiating tissue regeneration (Onishchenko et al., 2021).

In the present study we found differential expression of

hippo, Rap1 and apoptosis pathway genes, as well as some

regulatory genes relevant to cardiac development, heart rate

regulation and calcium signal transduction in the neuronal

system. The WNT-5B developmental protein together with

frizzled receptors play a modulatory role in tissue

morphogenesis (Ghosh et al., 2008; Yu et al., 2010; Sunkara

et al., 2021). Studies on Xenopus have shown that FZD7 is

required for heart development (Abu-Elmagd et al., 2017). In

the present study, WNT-5B, FZD1 and FZD7 were all up-

regulated after molting, suggesting they play a synergistic

regulatory role in the cardiac development of E. sinensis

during the post-molt period. COX15 is essential for the

synthesis of heme A and plays a regulatory function in the

blood circulatory system (De Oliveira et al., 2021). Myocytes

invaginate to form T-tubes and prevent the negative effects of

rapid changes in extracellular fluid induced by calcium.

BIN1 plays a regulatory role in T-tube formation (Draeger

et al., 2017). BIN1 also modulates calcium flow and cardiac

myocyte movement. The function of UNC-22 is to modulate

muscle contraction and relaxation (Matsunaga et al., 2015).

CNN1 plays a regulatory role in muscle contraction via

binding to actin and calmodulin (Feng et al., 2019).

ARPP21 has a negative regulatory role for calmodulin-

dependent enzymes. In the present study, upregulation of

ARPP21 expression may help to maintain the homeostasis of

cardiac myocyte contraction (Chen et al., 2018). IQGAP1 plays a

modulatory role in cytoskeleton assembly of actin (Cheung et al.,

2013). ATP2B2 has an active regulatory role in calcium

homeostasis in neuronal systems (Martin-De-Saavedra et al.,

2022). Glutamate is an important excitatory neurotransmitter

that together with its receptor has a regulatory role in autonomy,

conductivity and self-discipline (Hearn et al., 2022). Research on

cultured rat myocardial cells indicate that glutamate can increase

the concentration of calcium, thus increasing the contraction rate

of cardiac myocytes (Hasan and Nabika, 2021). GRIN1 plays a

positive role in regulating myocardial contraction.

BAP60 participates in the regulation of neurogenesis (Koe

et al., 2014). NTRK2 plays a regulatory role in the

development and maturation of central and peripheral

nervous systems and synaptic plasticity (Pattwell et al., 2021).

The heart of crustaceans is neurogenic. Cardiac ganglion in

the heart modulates cardiac signal transduction and initiates and

regulates cardiac myocyte contraction (Garcia-Crescioni et al.,

FIGURE 3
Volcano plot of DEGs in this study.
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2010). In the present study, some of the regulatory DEGs

involved in heart development after molting were related to

neuronal signal transduction, myocardial movement, heart

development and apoptosis.

Anti-oxidation and anti-aging at the post-
molt stage

Aging is a complex natural phenomenon that manifests as

a decline in physiological function, weakened resistance to the

environment, slower metabolism and slower response to

stress. The free radical theory is one of the most

convincing modern theories to explain the aging

mechanism (Cai et al., 2020b). High concentrations of free

radicals and their derivatives in tissues have harmful effects on

biological macromolecules and can accelerate the aging

process. The scavenging of free radicals and subsequent

prevention of lipid peroxidation can improve the anti-

oxidation capacity, thus causing a delay in aging

(Fernandez-Marcos and Nobrega-PereiraNADPH, 2016;

Hajam et al., 2022).

TABLE 3 Key DEGs in heart transcriptome of E. sinensis.

Category Gene name Gene definition log2Foldchange padj

Regeneration ACTA2 Actin, aortic smooth muscle 1.537 0.008

COX15 Cytochrome c oxidase assembly protein COX15 homolog 1.133 0.014

ARPP21 cAMP-regulated phosphoprotein 21 1.609 0.021

FZD1 Frizzled-1 2.029 0.031

IQGAP1 Ras GTPase-activating-like protein IQGAP1 4.369 0.000

CNN1 Calponin-1 2.489 0.002

FZD7 Frizzled-7 3.668 0.000

BAP60 Brahma-associated protein of 60 kDa 7.206 0.000

WNT2 Protein Wnt-2 3.262 0.005

WNT5B Protein Wnt-5b 5.171 0.020

NMDAR1 Glutamate [NMDA] receptor subunit 1 6.389 0.001

ATP2B2 Plasma membrane calcium-transporting ATPase 2 5.779 0.005

NTRK2 BDNF/NT-3 growth factors receptor 6.034 0.003

ECR Ecdysone receptor -5.224 0.019

UNC-22 Twitchin 6.974 0.000

NOS1AP Carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein 8.685 0.000

BIN1 Myc box-dependent-interacting protein 1 1.107 0.031

TIM Protein timeless 2.210 0.045

Antioxidation and anti-aging GCLC Glutamate--cysteine ligase catalytic subunit 3.617 0.000

GGT1 Glutathione hydrolase 1 proenzyme 1.256 0.000

GSTD1 Glutathione S-transferase 1, isoform C 6.480 0.001

DJR-1.1 Glutathione-independent glyoxalase DJR-1.1 8.008 0.000

ERCC2 General transcription and DNA repair factor IIH helicase subunit XPD 3.737 0.000

ALDH3A1 Aldehyde dehydrogenase, dimeric NADP-preferring 3.037 0.000

DAO D-amino-acid oxidase -2.806 0.034

RAD3 The general transcription and DNA repair factor IIH helicase subunit XPD 3.23 0.002

ENOX2 Ecto-NOX disulfide-thiol exchanger 2 8.626 0.000

NAMPT Nicotinamide phosphoribosyltransferase 2.080 0.005

Immune response regulaiton ITGA4 Integrin alpha-4 4.098 0.000

ATG5 Autophagy protein 5 1.488 0.019

KIFAP3 Kinesin-associated protein 3 4.712 0.047

LGMN Legumain 2.024 0.000

NFYC Nuclear transcription factor Y subunit gamma 1.286 0.002

PCNA Proliferating cell nuclear antigen 2.856 0.000

SPON2 Spondin-2 1.567 0.000

CBLB E3 ubiquitin-protein ligase CBL-B 6.695 0.000
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Glutathione (GSH) is an important non-enzymatic

antioxidant and efficient nucleophile. GSH reacts with

electrophiles to remove harmful metabolites such as free

radicals. Its concentration is an important indicator of the

antioxidant capacity of the body (Lopez-Navarro et al., 2020).

In the present study, some of the DEGs were related to the

“glutathione metabolic process/glutathione transferase activity/

oxidation-reduction process/anti-aging”. GCLC is an essential

FIGURE 4
Regulatory network in the heart of E. sinensis identified between the post-molt and inter-molt stages.

FIGURE 5
Validation of RNA-seq data by qPCR. X-axis, detected gene names; Y-axis, the relative expression level was expressed as log2 (fold change) in
gene expression.
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component for GSH biosynthesis (Fu et al., 2020). GGT1 also

plays an active role in the regulation of cysteine homeostasis and

glutathione homeostasis (West et al., 2013). DJR-1.1 participates

in the detoxification of endogenous glyoxal and in the protection

of cell death induced by glyoxal (Hasim et al., 2014). The NMDA

receptor is an excitatory neurotransmitter with a critical role in

regulating synaptic plasticity, memory, etc. DAO can degrade

D–serine, thereby inhibiting NMDA (Lin et al., 2017). In the

present study, downregulation of DAO had a positive role in the

delay of aging. ALDH3A1 inhibits lipid peroxidation (Black et al.,

2012). Upregulation of ALDH3A1 observed in this study

enhances the removal of toxic substances and strengthens the

anti-aging capability. The accumulation of protein synthesis

errors is also an important contributor to aging. Upregulation

of RAD3 is conducive to the fidelity of DNA replication, which

ultimately benefits protein synthesis (Yeo et al., 2020). Thus,

RAD3 can delay the aging process. Many physiological activities

have circadian rhythms and the biological clock is closely related

to aging. Dysfunction of the biological clock seriously affects the

physiological and behavioral rhythms of organisms, leading to

endocrine disorders and the acceleration of aging (Radman,

2012). ENOX2 has a positive regulatory role in the organism’s

biological clock (Morre and Morre, 2008). NAMPT acts to

maintain biological clock homeostasis and thus prevent aging

(Khaidizar et al., 2021).

Surprisingly, some of the pathways and regulatory genes

involved in anti-oxidation (regulation of GSH homeostasis,

inhibition of lipid peroxidation), anti-aging (regulation of

biological clock homeostasis) were found in this study to be

upregulated during the post-molt stage of E. sinensis. In contrast

to vertebrates, the heart of E. sinensis has strong regenerative

ability. Regeneration is the opposite process to aging and hence

this study could provide a theoretical framework for research into

the anti-aging molecular mechanism in vertebrates.

Immune regulation during the post-molt
stage

The migration of white blood cells from the blood to tissues

(leukocyte transendothelial migration) is essential for immune

surveillance and inflammation. Inflammatory cells migrate from

peripheral blood vessels to inflammatory sites under the

stimulation of inflammatory factors, resulting in an immune

response (Van Steen et al., 2021). Antigen processing and

presentation is the process by which antigen molecules are

captured by antigen presenting cells, digested into peptides

and then combined with MHC molecules to form complexes

that are presented at the cell surface and recognized by

immunoactive cells (Gannage et al., 2019).

In this study, some regulatory genes related to immune cell

development and immune response regulation were differentially

expressed after molting. CBLB has a negative regulatory role with

regard to lymphocyte receptors (Nanjappa et al., 2020). The

down-regulation of CBLB observed here may help to maintain

immune response homeostasis.

During their lifetime, cells face a variety of endogenous and

exogenous stresses, including protein misfolding, organelle

damage, nutrient deficiency and pathogen invasion.

Autophagy is an important way for cells to respond to these

stresses. The substances to be removed are wrapped and then

transported to lysosomes for degradation (Rakesh et al., 2022;

Zhou et al., 2022). ATG5 is an essential component in the

formation of autophagy vesicles and plays a key regulatory

role in many aspects of lymphocyte development and

proliferation (Kim et al., 2020). Upregulation of ATG5 has a

positive regulatory role in immune system development and in

the immune response. ITGA4 triggers the aggregation of

homogenous leukocyte lines onto activated endothelial cells

and is involved in T-cell interactions with target cells. In the

present study, ITGA4 contributed to enhancement of the

immune response. Asparagine is an essential component for

the assembly of MHC class I molecules (Fu et al., 2022).

LGMN has strict specificity for the hydrolysis of asparagine

bonds and participates in the processing of MHC Class II

antigen-presenting proteins in the lysosomal/endosomal

system. Research conducted in vertebrates has shown that

LGMN can promote cardiac repair (Jia et al., 2022). In the

present study, LGMN was beneficial for antigen processing

and presentation during the immune response and may also

play a positive role in tissue repair and regeneration after E.

sinensis molting. SPON2 acts as an opsonin for macrophages. It

binds directly to bacteria and is critical for initiating

innate immune responses (Zhou et al., 2021). SPON2 may

have a positive regulatory role by enhancing resistance to

pathogenic microorganisms during the post-molt period of E.

sinensis.

FIGURE 6
Correlation analysis on the detected DEGs of qPCR.
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Conclusion

In this study, comparative transcriptome analysis was carried

out on the heart of E. sinensis at the post-molt and inter-molt

stages. The results showed significant differential expression of

many regulatory pathways and genes involved in regeneration,

antioxidation, anti-aging and the immune response. Aside from

cardiac development and with regard to the regulation of

regeneration, these DEGs were relevant to myocardial

movement and to neuronal signal transduction. With regard

to antioxidation and anti-aging, the DEGs were involved with

regulation on GSH homeostasis and biological rhythms. With

regard to the immune response, the DEGs were involved in the

regulation of immune cell development and the immune

response. This study provides a theoretical background for

further research into regulatory mechanisms in E. sinensis and

other economically valuable crustaceans (eg. procambarus

clarkii) and the crustacean breeding industry in general. In

contrast to vertebrates, the heart of E. sinensis has strong

regenerative potential. This study may provide a theoretical

framework for further research into the regulatory

mechanisms of organ regeneration and anti-aging in vertebrates.
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