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ABSTRACT
In southern African waters, information about species distribution and habitat
preferences of many cetacean species is limited, despite the recent economic growth
that may affect them. We determined the relative importance of eight environmental
variables (bathymetry, distance to shore, slope, chlorophyll-a, salinity, eastwards sea
water velocity, northwards sea water velocity and sea surface temperature) as drivers of
seasonal habitat preferences of Bryde’s whales (Balaenoptera brydei), humpback whales
(Megaptera novaeangliae), southern right whales (Eubalaena australis) and sperm
whales (Physeter macrocephalus). Using presence only data from multiple sources, we
constructed predictive species distribution models (SDMs) consisting of ensembles
of seven algorithms for these species during both summer and winter. Predicted
distribution for all cetaceans was high in southern Africa and, in particular, within
the South African Exclusive Economic Zone (EEZ). Predictive models indicated a
more pronounced seasonal variation for humpback, sperm and southern right whales
than for Bryde’s whales. Southern right whales occurred closer to shore during winter,
humpback whales were more likely to occur along the east coast in winter and the west
coast in summer, and sperm whales were more concentrated off the shelf in winter.
Our study shows that ensemble models using historical, incidental and scientific data,
in conjunction with modern environmental variables, can provide baseline knowledge
on important environmental drivers of cetacean distribution for conservation purposes.
Results of this study can further be used to help developmarine spatial plans and identify
important marine mammal areas.
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INTRODUCTION
Worldwide, cetaceans are increasingly threatened by anthropogenic activities (Williams et
al., 2014; Braulik et al., 2017). These activities are likely to increase in South Africa with
the initiation of Operation Phakisa (Harris et al., 2018; Purdon et al., 2020b). Operation
Phakisa is a South African government initiative created to unlock the economic potential
of the country’s oceans through increasing industry in five focal areas: marine transport
and manufacturing; offshore oil and gas exploration; aquaculture; tourism and small
harbour development and infrastructure (Van Wyk, 2015; Findlay, 2018). Understanding
the potential impacts of these developing industries on cetaceans in South Africa requires a
detailed understanding of cetacean distribution (Waggitt et al., 2020; Purdon et al., 2020b).

In order to protect cetaceans, information about their distribution is essential for
their protection (Hoyt, 2012; Pennino et al., 2017). One way to get this information is
to use species distribution models (SDMs), which are fitted using environmental biotic
and abiotic factors to define distribution patterns (Bucklin et al., 2015; Breen et al., 2016).
SDMs have been used extensively in the terrestrial environment and are slowly gaining
recognition in the marine research environment (Redfern et al., 2006; Gregr et al., 2014;
Reisinger et al., 2018; Waggitt et al., 2020). Modelling cetacean distribution is challenging
because of the dynamic nature of ocean environments, the often highly mobile nature of
cetacean species, and the difficulty and expense of obtaining adequate species distribution
information (Gregr & Trites, 2001; Redfern et al., 2006). This has led to the development
of SDMs based on data from several sources (Torres et al., 2013; Waggitt et al., 2020). The
use of such datasets has two important challenges, the first being that the data are often
spatially biased (Aiello-Lammens et al., 2015) and the second being that absence data are
seldom available (Hirzel et al., 2006; Purdon et al., 2020a).

For SDMs to accurately predict species distribution, they require unbiased presence and
absence data (Redfern et al., 2006) but such data are not always available. Several papers
describe themost suitablemethods to account for spatially biased data (Barbet-Massin et al.,
2012; Aiello-Lammens et al., 2015; Stolar & Nielsen, 2015; Merow et al., 2016) and how to
select pseudo-absences where real absences are unavailable (e.g., Hirzel et al., 2006; Phillips
et al., 2009;Wisz & Guisan, 2009; Barbet-Massin et al., 2012). Spatially thinning data is one
such method used to account for spatial biases in data; it involves the removal of as few
presence points as possible without altering the quality of the data (Aiello-Lammens et al.,
2015; Schmitt et al., 2017). To account for the lack of absence data, Barbet-Massin et al.
(2012) suggest that the structure of presence data and the type of models used to create the
SDMs will play a role in the pseudo-absence selection process.

There are varying advantages and disadvantages in individual SDMs, with documented
discrepancies obtained in their performance (e.g., Phillips et al., 2009; Thuiller et al., 2009;
Bucklin et al., 2015). To address some of these uncertainties, ensemble modelling (which
combines multiple SDMs) is proving to be a robust method (e.g., Coetzee et al., 2009;Oppel
et al., 2012; Zanardo et al., 2017; Pereira et al., 2018). The scope of ensemble modelling is
relatively new in the marine environment with only a few studies being carried out on
cetaceans (Zanardo et al., 2017; Purdon et al., 2020a).
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There have been limited studies on the distribution of cetaceans in South Africa (e.g.,
Findlay, 1989; Findlay et al., 1992; Best, 2007). Given the sparsity of data related to cetacean
sightings, the existing data need to be supplemented and updated so as to determine areas
that could protect cetaceans from the potential threats of ocean economy development.
Operation Phakisa aims to balance economic growth and environmental integrity (Sink,
2016) in the oceans, through a dedicated Marine Protection Services and Governance
initiative, that includes the recently (23 May 2019) approved marine protected areas
(MPAs) network (RSA, 2019) and the promulgation of a Marine Spatial Planning Act.
Within the MPAs, only one, the seasonal Walker Bay whale sanctuary, was established for
cetacean conservation. It is aimed at protecting southern right whales during their breeding
season, despite this not being the primary calving ground of the species. Considering South
Africa’s high cetacean diversity (Findlay et al., 1992; Best, 2007), the low number of MPAs
directly protecting them is a concern (Purdon et al., 2020a).

We selected four large commonly encountered whale species in South African waters:
Bryde’s whales (Balaenoptera brydei, where two forms are found), humpback whales
(Megaptera novaeangliae), southern right whales (Eubalaena australis) and sperm whales
(Physeter macrocephalus) for this study in accordance with the following rationale. (1)
Their presence data are sufficient to construct SDMs. (2) They were harvested almost to
extinction during the whaling era (Hoyt, 2012) (Bryde’s whale to a lesser extent), and today,
despite the international moratorium on commercial whaling initiated in 1985/1986, they
face new anthropogenic threats that could affect their recovery (Purdon et al., 2020b).
Humpback whales and southern right whales are recovering at about 10% and 7% a year,
respectively. Bryde’s whales and sperm whales are data deficient in this regard (Best, 2007).
(3) These cetacean species are an important source of income for the tourism industry,
with the South African whale watching industry bringing in 105 million Rand in 2014
(Duncan et al., 2016). (4) South Africa offers the required habitats for important life stages
for each of these four cetaceans (Best, 2007).

In this study, we model the seasonal distribution of four large commonly-encountered
whale species in southern African waters using an ensemble of SDMs with presence only
data. The results of this study will help to identify potential habitats of these four species.
It will enable policy makers, conservationists and managers to better conserve and protect
these cetaceans from anthropogenic activities associated with the expansion of the South
African ocean economy proposed under Operation Phakisa.

METHODS
Study area
The study area (limited by the co-ordinates 16◦S, 0◦E to 38◦S, 80◦E) encompasses the
western Indian Ocean and the southeast Atlantic Ocean (Fig. 1), covering both cold and
warm water habitats of these cetaceans (Findlay et al., 1992; Best, 2007). We chose this area
to include all the available information on species sightings and to determine habitats
suitable for whale distribution within the area.
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Figure 1 Study area within the southern African region (top: delineated by the blue line)
and the South African EEZ and associatedMPAsmagnified. Maps plotted using QGIS (https:
//www.qgis.org/en/site/). Bathymetry is from GEBCO (GEBCO Compilation Group, 2019).

Full-size DOI: 10.7717/peerj.9997/fig-1

Presence data
We collated data for all four species from opportunistic and dedicated scientific surveys
covering the period from 1913 to 2016 (Table 1, Fig. 2, Fig. S1 and Table S1). This specific
period was used as it included as many presence points as possible and because data falling
outside these dates were not available. The majority of the data we used originated from the
Whale Unit of the Mammal Research Institute at the University of Pretoria (44%) and the
Ocean Biogeographic Information System Spatial Ecological Analysis of Megavertebrate
Populations (OBIS-SEAMAP) (47%) (Halpin et al., 2009). Incidental sightings (7%) (Nan
Rice, CEO: Dolphin Action and Protection Group, Fish Hoek) and seismic survey marine
mammal observations in South Africa (2%) (Petroleum Agency of South Africa, PASA)
made up the rest of the dataset.
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Table 1 Numbers of spatially thinned presence points, original presence points, and pseudo- absences used in the species distributionmodelling of the Brydes
whale, humpback whale, southern right whale and sperm whale during both seasons. ANN is Artificial Neural Network (Venables & Ripley, 2002), CTA is Classification
Tree Analysis (De’ath & Fabricius, 2000), GBM is Generalized Boosting Model (Elith, Leathwick & Hastie, 2008), GLM is Generalized Linear Model (Lee & Nelder, 2001),
MARS is Multivariate Adaptive Regression Splines (Friedman, 1991), RF is Random forest (Cutler et al., 2007), SVM is Support Vector Machines (Schmitt et al., 2017).

Algorithm acronym
(algorithm type)

Presence and
pseudo-absence data

Bryde’s whale Humpback whale Southern right whale Sperm whale

Summer Winter Summer Winter Summer Winter Summer Winter

Presence points 210 100 81 75 1,219 202 908 1,789
ANN (Machine learning)

Pseudo-absence 210 82 81 59 1,219 157 908 1419
Presence points 210 100 81 75 1219 202 908 1,789

CTA (Classification)
Pseudo-absence 210 88 81 62 1,219 157 908 1,367
Presence points 210 100 81 75 1219 202 908 1,789

GBM (Regression)
Pseudo-absence 210 74 81 61 1,219 162 908 1,390
Presence points 210 100 81 75 1219 202 908 1,789

GLM (Regression)
Pseudo-absence 1,000 769 1,000 774 1,000 790 1,000 791
Presence points 210 100 81 75 1219 202 908 1,789

MARS (Regression)
Pseudo-absence 1000 793 1,000 813 1,000 788 1,000 786
Presence points 210 100 81 75 1219 202 908 1,789

RF (Machine learning)
Pseudo-absence 210 81 81 62 1219 152 908 1,398
Presence points 210 100 81 75 1219 202 908 1,789

SVM (Machine learning)
Pseudo-absence 210 76 81 57 1219 168 908 1,414

Original number of presence points 227 129 81 75 1,271 204 972 2,046
MRI 38 5 7 29 56 17 31 49
OBIS 1 1 46 28 44 81 67 49
Citizen Science 54 93 8 9 0 2 0 0

Percentage contribution from
each source

PASA 7 1 39 34 0 0 2 2
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Figure 2 Presence points and their source for Bryde’s whale, humpback whale, southern right whale
and sperm whale during summer and winter that were used in the individual algorithms and the en-
semble model. Bathymetry is from GEBCO (GEBCO Compilation Group, 2019).

Full-size DOI: 10.7717/peerj.9997/fig-2

Environmental data
We selected environmental variables based on known ecological relationships between
cetaceans and environmental variables (Table 2) (Best, 2007; Torres et al., 2013; Breen et al.,
2016). Topographic variables included bathymetry (metres), distance to shore (kilometres)
and slope (degrees). Oceanographic variables included sea surface temperature (SST
in ◦C) chlorophyll-a concentration (chl-a in mg m−3), salinity (in psu), eastwards sea
water velocity (Uo in m s−1) and westwards sea water velocity (Vo in m s−1) (Fig. S2).
We used SST, salinity, Uo and Vo data derived from satellites. Wernand, Van de rWoerd
& Gieskes (2013) have shown that there has been an increase of chl-a concentration in
the Atlantic Ocean and a decrease in the Indian Ocean with no overall significant chl-a
trends worldwide from 1989 to 2000. SST has risen between 1.2 ◦C and 1.6 ◦C in the
high latitudes and between 0.4 ◦C and 1 ◦C in the tropics and sub-tropics over the last
100 years (Deser, Phillips & Alexander, 2010). Despite these changes, studies by Purdon
et al. (2020a), Purdon et al. (2020b) and Torres, Read & Halpin (2016) used averages of
oceanographic variables, suggesting that they provide sufficient information for modelling
baseline cetacean distribution in conjunction with presence data that dates back to 1913.
In this study we averaged chl-a seasonally over the period 2002 to 2016, and salinity, Uo,

Vo and SST seasonally over the period 1991 to 2016 in their original projection (WGS 84
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(EPSG 4326)) and at their origional spatial resolution (∼8 km) in ArcMap (Table 2, Esri,
Redlands, CA, USA).

To ensure all variables maintained the same spatial resolution and projection, we
resampled them to a 0.083◦ (∼8 km) grid using a nearest neighbour interpolation and
re-projected them to a standardWGS84, EPSG4326 geographic projection inArcMap. They
were then clipped to the study area extent using ArcMap. We evaluated multi-collinearity
between environmental variables by testing the variable inflation factor (VIF) using the
‘car’ package (Fox & Weisberg, 2011) in R (R Core Team, 2020). We retained all variables
as the VIF was less than three, indicating no multi-collinearity (O’Brien, 2007).

Species distribution modelling
We used ensemble modelling implemented in the ‘SSDM’ package (Schmitt et al., 2017)
within R to predict preferred species habitat using seven algorithms (Table 1). We used the
algorithms as they consisted of different modelling approaches, including three regression
methods, one classification method and three machine learning methods to build ensemble
models for each species seasonally (Table 1). To determine seasonal variation, we followed
Findlay (1989) in creating SDMs separately for summer (October to March) and winter
(April to September) months.

The dataset contained both presence and absence data from scientific surveys, andmarine
mammal observers and passive acoustic monitors on oil and gas exploration surveys, and
presence only records from opportunistic sightings. To compensate for the lack of effort
data, we used pseudo-absences selected randomly in the study area (Fig. S1). The number
of pseudo-absence points selected was based on the recommendations of Barbet-Massin et
al. (2012) for the different types of algorithms used (Table 1). Barbet-Massin et al. (2012)
suggest that, for classification and machine learning techniques, the same number of
pseudo-absence points as presence points should be selected and averaged over several
runs. For regression techniques, many pseudo-absence points (2% of the study area which
is 25 218 188 km2 for our study) should be chosen, whereas for techniques such as multi
adaptive regression splines and discriminant analysis, fewer pseudo-absence points should
be chosen and both averaged over several runs. We selected the number of pseudo-absence
points 10 times on a random basis using the ‘SSDM’ package default settings based on the
recommendations of Barbet-Massin et al. (2012) (Table 1 and Fig. S1).

To account for spatially biased data, which are prone to spatial autocorrelation, we
used spatial thinning within the ‘SSDM’ package (Schmitt et al., 2017). We evaluated the
algorithms and ensemble model performance using the holdout method in the SSDM
package, where the initial dataset was split into separate training (70% of the data) and
evaluation (30% of the data) sets (Schmitt et al., 2017). This process was repeated 10 times.
We used a standard evaluation metric, area under the receiver operating characteristic
curve (AUC). Scores ranged between 0.5 and 1, with those close to 1 indicating that the
model has excellent performance, whereas values around 0.5 denote models that are no
better than random.
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Table 2 The environmental variables used for species distributionmodels. MARSPEC=MARine SPatial ECology.

Environmental variable Resolution Source Units Reference

Bathymetry 30 arc-sec (∼1 km) MARSPEC Metres http://www.marspec.org

Slope 30 arc-sec (∼1 km) MARSPEC Degrees http://www.marspec.org

Distance to Shore 30 arc-sec (∼1 km) MARSPEC Kilometres http://www.marspec.org

Chlorophyll-a (chl-a) 4 km Copernicus - OCEANCOLOUR_GLO_CHL_L4_REP_OBSERVATIONS_009_082 mg m−3 (Volpe et al. 2019)

Sea surface temperature (SST) 0.083◦ (∼8 km) Copernicus –GLOBAL_REANALYSIS_PHY_001_030 ◦C (Fernandez & Lellouche 2018)

Salinity 0.083◦ (∼8 km) Copernicus –GLOBAL_REANALYSIS_PHY_001_030 Psu (Fernandez & Lellouche 2018)

Eastwards seawater velocity (Vo) 0.083◦ (∼8 km) Copernicus –GLOBAL_REANALYSIS_PHY_001_030 m s−1 (Fernandez & Lellouche 2018)

Northwards seawater velocity (Uo) 0.083◦ (∼8 km) Copernicus –GLOBAL_REANALYSIS_PHY_001_030 m s−1 (Fernandez & Lellouche 2018)
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Variable importance was measured by determining how much the correlation changed
between predicted values before and after permuting each variable.

Iv = 1−Cor(Pf ,Pv)

where Iv is index of importance of a variable, Cor is correlation coefficient, Pf is prediction
from the full model, Pv is prediction after permuting or reshuffling the variable v.

We computed the partial effects of each environmental variable by predicting the
response for a specific variable while holding the other variables at their mean. For example,
if bathymetry was the variable that best explained the cetacean species distribution, scores
of the partial effects closer to one would indicate at what depths the cetaceans were likely
to be found.

To create the final ensemble model, we calculated the average of all seven algorithms if
their AUC scores were over 0.7. We projected the final ensemble models for each species
and season (summer and winter) on to a predicted distribution map. Probability of
occurrence ranged between zero and one, with one indicating the highest probability of
species presence. We created uncertainty maps using the variance of predicted probability
of occurrence among the algorithms, where areas of agreement are characterised by low
variance amongst algorithms (Schmitt et al., 2017).

RESULTS
Ensemble model and algorithm performance
Overall, we predicted that the ensemble models would produce higher AUC scores than the
individual algorithms. Analysis of the results, however, indicates that, with the exception
of artificial neural network, ANN, the performance of individual algorithms was equal to
or better than the ensemble model (Fig. 3 and Table S2). The RF algorithm produced the
highest AUC scores for all species in both seasons except for the Bryde’s whale in winter
where the algorithm GBM produced the highest AUC score (Fig. 3 and Table S2).

Species distribution modelling
The most influential environmental variables driving distribution differed among species,
seasons and algorithms (Fig. 4). Figure 5 shows themost influential environmental variables
for the RF algorithm, and it indicates predicted preferred ranges for each species (see Figs.
S3A–S3F for the most influential environmental variables for the other algorithms).
Environmental variables influenced the predicted occurrence of the four cetacean species
and can be seen in ensemble model predictions in Fig. 6. Seasonally, southern right whales,
sperm whales and humpback whales showed a more pronounced variation in distribution
than Bryde’s whales (Fig. 6). Variance in the uncertainty maps for all species during both
seasons was low, with values less than 0.16, indicating close agreement between algorithms
in the ensemble models (Fig. 7). When looking at the individual algorithms and their
predictive ability, the RF algorithm produced probability maps that were more similar to
the ensemble model predictions than the other individual algorithms did (Figs. S4A–S4H).
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Figure 3 The Area Under the Curve (AUC) scores for the ensemble model (dashed lines) and seven in-
dividual algorithms for Bryde’s whale, humpback whale, southern right whale and sperm whale during
the summer and winter season. AUC scores over 0.5 indicate that the algorithm performed better than
random. ANN is Artificial Neural Network (Venables & Ripley, 2002), CTA is Classification Tree Analysis
(De’ath & Fabricius, 2000), GBM is Generalized Boosting Model (Elith, Leathwick & Hastie, 2008), GLM
is Generalized Linear Model (Lee & Nelder, 2001), MARS is Multivariate Adaptive Regression Splines
(Friedman, 1991), RF is Random forest (Cutler et al., 2007), SVM is Support Vector Machines (Schmitt et
al., 2017). The dashed line for Bryde’s whale ensemble model summer is overlaid by the dashed line for
Bryde’s whale winter ensemble model.

Full-size DOI: 10.7717/peerj.9997/fig-3

Bryde’s whales
SST, distance to shore, chl-a and bathymetry best explained the predicted occurrence of
Bryde’s whales during both seasons in the ensemble model, CTA, GBM, MARS and RF
algorithms (Fig. 4). According to the RF algorithm, Bryde’s whales were predicted to occur
in chl-a concentrations of more than 0.5 mg m−3 in summer and more than 0.4 mg m−3

in winter (Fig. 5). They were more likely to occur in areas where distance to shore was less
than 180 km in summer and less than 100 km in winter, in water depths of less than 700
m in summer and less than 800 m in winter and in SSTs of less than 26 ◦C in summer and
between 16 ◦C and 25 ◦C in winter (Fig. 5).

The predictive habitat distribution maps indicate that Bryde’s whales occur in both
seasons on the south coast of South Africa, along the west coast of South Africa and along
the Namibian coast, remaining in areas that are productive and shallow (Fig. 6). There was a
high probability of Bryde’s whales in local distributions along the east coast of South Africa
and Mozambique (Fig. 6). The southernmost tip of Madagascar showed a high-predicted
prevalence of Bryde’s whales throughout the year. On the west coast of southern Africa,
the probability of occurrence increases slightly in the areas offshore in winter (Fig. 6).
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Figure 4 Index of relative importance of the eight predictors for each algorithm and the ensemble
model (EM) for the Bryde’s whale, humpback whale, southern right whale and sperm whale during
winter and summer. ANN is Artificial Neural Network (Venables & Ripley, 2002), CTA is Classification
Tree Analysis (De’ath & Fabricius, 2000), GBM is Generalized Boosting Model (Elith, Leathwick & Hastie,
2008), GLM is Generalized Linear Model (Lee & Nelder, 2001), MARS is Multivariate Adaptive Regres-
sion Splines (Friedman, 1991), RF is Random forest (Cutler et al., 2007), SVM is Support Vector Machines
(Schmitt et al., 2017). Bathy, bathymetry (m): Chl, chlorophyll-a concentration (mg m−3); Dist, distance to
shore (km): Sal, salinity (psu); Slope, angle of slope (degrees); SST, sea surface temperature (◦C); uo, east-
wards sea water velocity (m s−1) and vo, northwards sea water velocity (m s−1).

Full-size DOI: 10.7717/peerj.9997/fig-4

Humpback whales
In both seasons, distance to shore, chl-a and bathymetry best explained the distribution of
humpback whales for the ensemble model, CTA, GBM and RF algorithms (Fig. 4). The RF
algorithm indicated that humpback whales are more likely to occur in waters that are less
than 200 km from shore during summer and less than 170 km from shore during winter
(Fig. 5). They are predicted to occur in waters with chl-a concentrations of less than 4 mg
m−3 in summer and less than 0.3 mg m−3 in winter and water depths of less than 2,000 m
in summer and less than 2,500 m in winter (Fig. 5).

The predicted distribution maps show that humpback whales occur slightly further
offshore in the summer months, but with a lower probability of occurrence (Fig. 6).
The predicted habitat distribution maps indicate that, during winter, humpback whale
distribution shrinks to a small coastal band around Madagascar, South Africa and
Mozambique with a high probability of occurrence (Fig. 6). Around the west coast of
South Africa and Namibia during winter the probability of occurrence is less than the
eastern part of southern Africa and Madagascar. This pattern is reversed during summer,
where the likelihood of occurrence is greater along the west and south coasts of southern
Africa (Fig. 6).
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Figure 5 The most influential variables from the RF algorithm for Bryde’s whale, humpback whale,
southern right whale and sperm whale during summer and winter. The y-axis indicates the probability
of occurrence (partial effect), and the x-axis indicates the range of the predictor variables. Bathy,
bathymetry (m); Chl, chlorophyll-a concentration (mg m−3); Dist, distance to shore (km); Sal, salinity
(psu); Slope, angle of slope (degrees); SST, sea surface temperature (◦C); uo, eastwards sea water velocity
(m s −1) and vo, northwards sea water velocity (m s−1).

Full-size DOI: 10.7717/peerj.9997/fig-5

Southern right whales
In summer, SST explained the southern right whale predicted occurrence best in the
ensemble model as well as all the other algorithms, except ANN (Fig. 4). For the RF
algorithm in summer, SST explained nearly 50% of the variation in distribution (Fig. 4)
with southern right whales preferring temperatures of less than 20 ◦C (Fig. 5). The data
in Fig. 6 indicates movement towards higher latitudes into cooler waters. The predicted
occurrence includes the Agulhas Bank, most of the inshore west coast of southern Africa
and offshore of the west coast. Predicted occurrence of southern right whales in the Indian
Ocean only occurred south of 30 ◦S (Fig. 6).

In winter, SST, chl-a and bathymetry explained the predicted distribution for the
southern right whale in the ensemblemodel which wasmost similar to theMARS algorithm
(Fig. 4). For the best performing algorithm, RF, chl-a explained over 40% of the variation
in distribution (Fig. 4) with southern right whales occurring in concentrations of more
than 0.5 mg m−3 (Fig. 5). The predictive habitat distribution maps show that southern
right whales are more concentrated around the coastline in winter, ranging from northern
Namibia to the southernmost tip of Madagascar (Fig. 6).
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Figure 6 Ensemble model projection using the mean probabilities for each season for the Bryde’s
whale, humpback whale, southern right whale and sperm whale. The legend depicts the habitat suitabil-
ity, the darker red the colour, the higher the predicted occurrence. The South African exclusive economic
zone is denoted by the black line.

Full-size DOI: 10.7717/peerj.9997/fig-6

Sperm whales
The distance to shore in both seasons explained 50% of the sperm whale predicted
distribution when looking at the ensemble model. It also dominated all other algorithms
(Fig. 4). For the best performing algorithm, RF, sperm whales were predicted to occur at
distances of less than 150 km to shore in summer and less than 270 km to shore in winter
(Fig. 5).

Spermwhales were predicted to occur throughout the region. They have lowprobabilities
of predicted occurrence in the Mozambique Channel in summer, and for both seasons
in the area between 20◦S to 30◦S and 60◦E to 80◦E. During winter, the probability of
occurrence is higher along the west coast, the east coast and around Madagascar and the
Indian Ocean islands (Fig. 6).

DISCUSSION
Model performance and sensitivity
The quality of data used in this study varies as the data are obtained from both opportunistic
platforms and dedicated scientific surveys. Associated effort, which determines absence
data, was not recorded in the opportunistic datasets which, despite its constraints,
can be useful for cetacean modelling (Torres et al., 2013). Associated effort provides a
comprehensive set of absence data over space and time, enabling more robust models to
be built. The selection of pseudo-absences (in the lack of absence data) plays a pivotal
role in the outcome of the predicted species distribution. By selecting different numbers
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Figure 7 Uncertainty maps measuring algorithm agreement in predictions and depicting regions of
varying agreement in the seven different algorithms for Bryde’s whale, humpback whale, southern
right whale and sperm whale in both seasons. The higher the uncertainty the more red the colour. The
South African exclusive economic zone is denoted by the black line.

Full-size DOI: 10.7717/peerj.9997/fig-7

of pseudo-absence points based on the recommendations of Barbet-Massin et al. (2012)
for each algorithm, this study, along with spatial thinning, was able to produce ensemble
models using high performing SDMs.

Certain data in this study, due to their opportunistic nature, were spatially biased (Fig. 1).
Spatial thinning was used to reduce this bias, but the predicted occurrence (Fig. 6) showed
strong evidence that it had not been eliminated completely. When interpreting the results
of this study, readers need to be aware of this and take biases into account when applying
this study for spatial planning, management and conservation.

Despite its varied data and the biases, this study produced high performing models
(Fig. 3), although the ensemble models did not perform as well as expected. Our study, and
a study done byHao et al. (2020), indicates that ensemblemodels do not always outperform
single algorithms as they produce varied results. Hao et al. (2020) suggest that ensemble
models can be outperformed by single algorithms when predicting to distant areas and
when single algorithms are finely tuned. In this study, the RF algorithms, on average,
produced the highest AUC scores (Table S2). RF algorithms in this study have complex
trees with no spatial blocking during validation and are, therefore, prone to overfitting
(Hao et al., 2020). Looking at Fig. 5, the response curves of the RF algorithms indicate that
overfitting was not substantial, especially when compared to the response curves of the
GBM algorithms (Fig. S3C). The response curves of the GBM algorithms are flat, indicating
overfitting (Derville et al., 2018). One way to address this would be to use spatial blocking
(Hao et al., 2020). In spatial blocking, data are split into different blocks used for either
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calibrating or validating models, allowing the testing data to be spatially distant from the
training data, making it more independent (Hao et al., 2020).

Key findings
Bryde’s whales
Recent genetic work by Penry et al. (2018) suggests that, in South African waters, there
are two forms of B. brydei consisting of the inshore and offshore stocks. They recommend
that the B. brydei forms should be separated entirely from B. edeni as they appear to
be morphologically and genetically different in South African waters. A third stock of
Bryde’s whales has been described in the waters of Madagascar (Best, 2001). The recent
identification of Omuras whales (Balaenoptera omurai) a whale similar to the Bryde’s
whale, in the north west of Madagascar (Cerchio et al., 2015), casts some uncertainty on
the distribution of Bryde’s whales in Malagasy waters. Due to the lack of clarification of the
genetic structure of these whale populations, determining population status from historical
whaling records is problematic. These problems are compounded by the whaling records
of Bryde’s whale in which there are multiple misidentifications of Bryde’s whales as sei
whales (Balaenoptera borealis) (Jefferson, Leatherwood & Webber, 1993). Our distribution
results confirm Best’s (2001) description of the presence of three stocks of Bryde’s whales
in southern Africa. These results must be interpreted with care as they more than likely
consist of the two forms of B brydei, B. edeni and Omura’s whale.

Little is known about Bryde’s whales’ migration, but Best (2001) indicated that the
offshore stock migrates north in the southeastern Atlantic during the spring and summer
months, while the inshore stock is resident throughout the year. Our results do not indicate
any seasonal variation in habitat preference for the offshore stock. The Agulhas Bank and
the west coast are productive systems and vital habitats for pelagic fish that form the diet
of the inshore whales (Krug, Tournadre & Dufois, 2014). Our results confirm Best’s (2001)
hypothesis that there is little seasonal migration in the inshore whale stocks, presumably
owing to the presence of food all year round. In future, separate modelling of the three
stocks of Bryde’s whales may provide more information on seasonal distribution.

Humpback whales
Humpback whales make seasonal migrations from higher latitudes in summer through
the South African EEZ to the coastal waters of more northerly countries (Mozambique,
Madagascar, Tanzania, Angola and Gabon) in winter where the water is warmer to calve
(Findlay et al., 2011). When their winter breeding season is over, they migrate back to
the higher latitudes to feed during the austral summer (Findlay et al., 2011). There is also
evidence of the year-round presence of humpback whales in Antarctica (Van Opzeeland
et al., 2013) and South Africa (e.g., Findlay & Best, 1995; Barendse et al., 2011; Findlay et
al., 2017). Acoustic recordings off the South African west coast indicate that humpback
whales are seasonally present (mainly in winter/spring) (Shabangu, 2018). Together, these
findings suggest that part of the population migrates seasonally between high and low
latitudes, while some individuals do not.

Our data show a slight variation between summer and winter distributions with
humpback whales concentrating along the east coast of southern Africa and the Malagasy
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coastline in winter. Figure 6 shows a strong likelihood of humpback whales close to shore
around the west coast and south coast of southern Africa and Namibia in the summer
months, which is contrary to what the literature indicates. Humpback whale numbers have
increased along the south-west coast of South Africa in the summer months, where there
are documented accounts of feeding supergroups in the highly productive waters of the
Benguela ecosystem (Findlay & Best, 1995; Findlay et al., 2017). Our results could either
indicate the possibility of humpback whales being present all year round or they could be
related to sampling bias as there were very few recorded presence points for humpback
whales (particularly offshore sightings) in summer. In future, a more extensive database to
model humpback whale distribution may provide a model with more sensitive AUC scores
and lower prediction in the summer months around the lower latitude coastline.

Southern right whales
Southern right whales, like the humpback whales, migrate to lower latitudes in southern
Africa to calve during the austral winter (Elwen & Best, 2004). They generally do not
migrate further north into warmer waters, although historical records indicate that they
were found on the west coast as far north as the southern region of Angola and on the east
coast up to Maputo Bay in Mozambique (Best, 2007). Our predicted distribution suggests
that their likelihood of occurrence in this region is high (Fig. 6). Heavy harvesting from
1770 onwards resulted in their global numbers declining from between 55,000 and 70,000
to as few as 300 (Best, 2007). Information on their distribution has shown that the species
breeding range has shrunk to the region between Port Elizabeth and Cape Town (Best,
2007).

During the summer season, southern right whales move offshore into the south east
Atlantic and south to higher latitudes where waters are more productive (Tormosov et al.,
1998; Torres et al., 2013). Our data suggest that SST over 20 ◦C in summer and winter are
limiting for southern right whale distributions due to their preference for cooler water
temperatures (Mate et al., 2010).

Sperm whales
After large scale exploitation was terminated, the sperm whale population was estimated
to be 32% of its original numbers (Whitehead, 2002). Recovery is difficult to estimate due
to the widespread distribution of the species, ranging in deep waters (>200 m) from the
pack ice (males only) to the equator (Jaquet & Whitehead, 1996) with high concentrations
between 40◦N and 40◦S (Best, 2007).

Results from this study suggest that, in southern African waters, sperm whales are
widespread, with a low probability of occurrence along the coastal shelf (Fig. 6). Historic
whaling records indicate that some males were caught in South African waters between
200 m and 500 m deep, with the majority in waters 2500 m deep. Females, however, were
rarely caught in waters less than 1,000 m deep (Best, 1999).

Whaling catch and sighting records indicate that there is a pronounced seasonal
distribution of sperm whales that differs by sex and age (e.g., Best, 1999; Findlay & Best,
2016). Acoustic occurrences of sperm whales off the west coast of South Africa also indicate
few sperm whale clicks in autumn and winter (Shabangu & Andrew, 2020, unpublished
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data). Our results show only a slight seasonal difference, with the probability of predicted
distribution decreasing in winter. A better understanding of sperm whale distribution and
migratory patterns may be attained by modelling separate sexes and age classes and may
help improve the understanding of the environmental variables that drive their distribution.

Management implications
This study shows that southern Africa provides important habitats for these four cetacean
species and, according to the literature, fulfil requirements during different life stages in
both coastal and offshore habitats throughout the year (Best, 2007). The importance of
these areas underpins their need for protection from increasing anthropogenic activities.

Golden et al. (2017) highlight the plight of ocean decision makers in the 21st century:
maintaining and expanding an ocean economy to supply the demands of the rapidly
growing world population while balancing resource protection through ocean governance.
South Africa is not unique in this regard and is currently trying to maintain this balance in
the expansion of its ocean economy (Findlay, 2018; Van Wyk, 2015) through the recently
implementedMPAs (Findlay, 2020). At a 90% probability of occurrence, the MPA network
in South Africa protects less than 10% of seven out of the nine odontocete species modelled
habitats (Purdon et al., 2020a; Purdon et al., 2020b). Our results indicate that the predicted
occurrence for the four cetaceans studied in this paper is widespread in South Africa, with
a small percentage of their habitat being protected by the current MPAs. Important marine
mammal areas (IMMAs) could help in identifying more areas that could be delineated as
MPAs (Corrigan et al., 2014) in the future.

IMMAs do not have the same regulatory jurisdiction as MPAs over the protection of
marine fauna, but they can aid in marine spatial planning, conservation and management
of the oceans (Agardy et al., 2019). Delineation of IMMAs is based on four categories, (1)
species status based on the International Union for the Conservation of Nature red list, (2)
marine mammal distribution and abundance, (3) critical life stage habitats for behaviours
such as breeding, feeding and migrating and (4) unique characteristics such as species
richness and diversity (Agardy et al., 2019). Recently these criteria were used to identify two
IMMAs in South Africa. The first one stretches along the 200 m isobath up the east coast of
South Africa and Mozambique. This IMMA was proclaimed to identify the calving areas of
humpback whales (Marine Mammal Protected Areas Task Force, 2019a). The second IMMA
covers the southern coastal and shelf waters of South Africa, identifying the Indian Ocean
humpback dolphin (Sousa plumbea), Bryde’s whale (B. edeni), Indo-Pacific bottlenose
dolphin (Tursiops aduncus), common dolphin (Delphinus delphis) and the Cape fur seal
(Arctocephalus pusillus) habitats (Marine Mammal Protected Areas Task Force, 2019b).
Within these two IMMAs are not only the species that meet the IMMA criteria but others
too. For example, within the second IMMA there are the calving areas of the southern
right whale on top of the other eight species it was identified for. These IMMAs, however,
include mainly coastal species, reducing the chances of more offshore protection when
new MPAs are delineated for offshore species like the sperm whale that occurs on the shelf
edge and further offshore. With more distribution modelling and better data, including age
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and sex classes, critical sperm whale habitats could be identified for IMMAs and eventually
protected through MPAs.

CONCLUSION
This study has shown that the use of multiple databases, spanning various spatial and
temporal frames, can give baseline knowledge of the environmental variables that drive
species distribution. There are limitations to using this type of dataset, and results should be
interpreted with appropriate care. For example, by looking at the Bryde’s whale predicted
distribution, it appears as if they are widely spread throughout southern Africa. However,
a closer look at their stock structure has indicated that this distribution is possibly split
between the two forms of B brydei, B. edeni and Omura’s whales. This study also highlights
the importance of accounting for biases in the data structure. For example, by spatially
thinning the presence data, some but not all spatial biases were removed. Also, to prevent
overfitting and improve this study, spatial blocks should be used, similar to the study by
Hao et al. (2020). Overall, the use of ensemble models does not necessarily provide the best
model performance as individual algorithms can produce AUC values that are as high,
or higher than ensemble models. Without a priori knowledge of algorithm performance,
however, the ensemble models remain a robust option with good generalised performance
across species and seasons. Results such as these can be used to identify key areas and
potential IMMAs or MPAs that need to be examined in more detail to protect cetaceans
from increasing anthropogenic activities.
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