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Feature selection is of paramount importance for text-mining classifiers with high-dimensional features. The Turku Event
Extraction System (TEES) is the best performing tool in the GENIA BioNLP 2009/2011 shared tasks, which relies heavily on high-
dimensional features.This paper describes research which, based on an implementation of an accumulated effect evaluation (AEE)
algorithm applying the greedy search strategy, analyses the contribution of every single feature class in TEES with a view to identify
important features and modify the feature set accordingly. With an updated feature set, a new system is acquired with enhanced
performance which achieves an increased 𝐹-score of 53.27% up from 51.21% for Task 1 under strict evaluation criteria and 57.24%
according to the approximate span and recursive criterion.

1. Introduction

Knowledge discovery based on text mining technology
has long been a challenging issue for both linguists and
knowledge engineering scientists. The application of text
mining technologies based on large collections of known
texts, such as theMEDLINE data base, has become especially
popular in the area of biological and medical information
processing [1, 2]. However, the rate of data accumulation is
ever increasing at an astonishing speed [3]. The published
literature grows exponentially and huge amounts of scientific
information such as protein property and gene function
are widely hidden in prohibitively large collections of text.
For example, the literature in PubMed grows at a speed of
two printed pages per second. As a result, it is practically
impossible to manually curate experimental results from
texts. As a result of this information explosion, text mining
and linguistic methods have been used to perform automatic
named entity recognition (NER) including biomedical NER
[4], the extraction of clinical narratives [5] and clinical trials
[6], analysis of the similarity in gene ontology [7], and the
prioritization of vital function genes [8].

While entity recognition has been exploited as a powerful
approach towards automatic NER retrieval, there has recently
been an increased interest to find more complex structural
information and more abundant knowledge in documents
[9].Hence, as amore recent development,moving beyond the
purpose of entity recognition, the GENIA task in the BioNLP
2009/2011 shared tasks [10, 11] was set to identify and extract
nine biomedical events from GENIA-based corpus texts [12],
including gene expression, transcription, protein catabolism,
localization, binding, phosphorylation, regulation, positive
regulation, and negative regulation. The GENIA task is a
publicly accepted task within the BioNLP communities and it
is a leading pioneer in the area of structured event extraction.

Designed by Bjorne et al. [13], the Turku Event Extraction
System (TEES) was the leading participant tool in both the
BioNLP 2009 and 2011 shared tasks. Among the twenty-
four participants of BioNLP shared tasks, TEES ranked
first place in the GENIA task in 2009. While Riedel et
al. performed best (with an 𝐹-score of 56.0%) for the
GENIA task in 2011 ST [14], TEES was the third for the
GENIA task and ranked number one for the other four
of the eight subtasks. In 2011 and 2012, Björne et al. [15,
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16] enhanced TEES and the 𝐹-score was increased further
from 52.86% to 53.15%. The system was kept updated, and
its 1.01 version achieved 55.65% in 𝐹-score. Meanwhile,
TEES was also utilized for practical database searching. The
system was applied to all PubMed citations and a number
of analyses of the extracted information were illustrated [17–
19]. TEES is now available at http://bionlp.utu.fi/. In 2011,
the BioNLP shared task expanded from the GENIA task to
eight generalized tasks including GENIA task, epigenetics
and posttranslational modification task, infectious disease
task, bacteria biotope task, and bacteria interaction task [11].
As the only system that participated in all the tasks in 2011,
TEES was again ranked first place for four out of the eight
tasks. Afterwards, Bjorne and Salakoski updated TEES 1.01 to
TEES 2.0 in August 2012. The updated system is now capable
of handling the DDI’11 (drug-drug interaction extraction)
challenge (http://jbjorne.github.io/TEES/) in addition to all
the BioNLP 2011 shared tasks. At the moment, the most up-
to-date version is TEES 2.1 released in 2013 [20] and a major
change is the wider coverage for serving more XML format
corpus, and the core algorithm remains unchanged.

As a sophisticated text mining classifier, TEES uses
enormous feature classes. For the BioNLP 2009 shared tasks,
it produced 405,165 features for trigger detection and 477,840
features for edge detection out of the training data, which
not only consume large amounts of processing time but also
create undesirable noises to affect system performance. To
address this issue and achieve even better system perfor-
mance in terms of processing time and recognition accuracy,
a natural starting point is to performan in-depth examination
of the system processes for feature selection (FS) and feature
reduction (FR).

The integration of FS and FR has been demonstrated
to hold good potentials to enhance an existing system [21–
24]. Feature reduction can delete redundant features, avoid
overfitting, provide more efficient modelling, and help gain
a deeper insight into the importance of features. It aims to
obtain a subset through an optimization between the feature
size and the performance [25]. Amongst all of the feature
reduction algorithms, the greedy search algorithm, also called
hill climbing algorithm, is such an optimal technique for
the identification and selection of important features [26].
van Landeghem et al. [27] introduced a feature selection
strategy in the Turku system for a different testing data set
and illustrated how feature selection could be applied to
better understand the extraction framework. In their scheme,
candidate events were trained to create a feature selector for
each event type. The classifier was then built with the filtered
training samples. By doing this, different trigger words for
different event types were discriminated and those individual
features with a higher occurrence frequency were assigned
higher weights. Tag clouds of lexical vertex walks showed
certain properties that are interesting from a linguistic point
of view.

The purpose of this paper is to focus on the feature
selection rules of TEES and aim to improve its performance
for the GENIA task. By designing an objective function in the
greedy search algorithm, we propose an accumulated effect
evaluation (AEE) algorithm, which is simple and effective

and can be used to numerically evaluate the contribution
of each feature separately concerning its performance in the
combined test. Moreover, we make further changes to the
core feature class by incorporating new features and merging
redundant features in the system. The updated system was
evaluated and found to produce a better performance in both
Tasks 1 and 2. In Task 1, our system achieves a higher 𝐹-score
of 53.27% according to the “strict evaluation” criterion and
57.24% according to the “approximate span and recursive”
criterion. In Task 2, the new strategy achieved an 𝐹-score
of 51.77% under the “strict evaluation” criterion and 55.79%
under the “approximate span and recursive” criterion. These
represent the best performance scores till now for event
recognition and extraction.

2. Materials and Method

2.1. GENIA Task and Scheme of Turku TEES System

2.1.1. GENIATask and the Evaluation Criteria. Different from
the previous NER task, the GENIA task aims to recognize
both the entities and the event relationship between such
entities. Extended from the idea of semantic networks, the
recognition task includes the classification of entities (nodes)
and their associated events (edges). The participants of the
shared task were expected to identify nine events concern-
ing given proteins, that is, gene expression, transcription,
protein catabolism, localization, binding, phosphorylation,
regulation, positive regulation, and negative regulation. The
mandatory core task, Task 1, involves event trigger detection,
event typing, and primary argument recognition [10]. An
additional optional task, Task 2, involves the recognition of
entities and the assignment of these entities. Finally, Task 3
targets the recognition of negation and speculation. Because
of their fundamental importance and vast potential for future
developments, researchers mainly focus on Tasks 1 and 2.

Like the other text mining systems, the performance of
TEES is evaluated by precision, recall, and 𝐹-score. The first
measure equals the fraction of obtained relevant documents
and the retrieved documents represent the correctness of the
extraction system; that is,

Precision

=
|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents}|
.

(1)

The second measure, recall, is defined as

Recall = |{relevant documents} ∩ {retrieved documents}|
|{relevant documents}|

.

(2)

Recall is used to assess the fraction of the documents
relevant to the query that are successfully retrieved. Precision
and recall indicators are well-known performance measures
in textmining, while𝐹-score is a thirdmeasure that combines

http://bionlp.utu.fi/
http://jbjorne.github.io/TEES/
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Figure 1:The graphical representation of a complex biological event
(refer to [5]).

precision and recall and is the harmonic mean of precision
and recall:

𝐹-score = 2 ⋅ precision ⋅ recall
precision + recall

. (3)

The 𝐹-score evenly weighs the precision and recall and
forms a reliable measure to evaluate the performance of a text
mining system. For more information, refer to [28].

2.1.2. Scheme of TEES. The core of TEES consists of two
components, that is, classification-style trigger/event detec-
tion and rich features in graph structure. By mapping the
tokenized word and entity to the node and mapping event
relation to edge between entities, TEES regards the event
extraction as a task of recognizing graph nodes and edges as
shown in Figure 1.

Generally, TEES first convert the node recognition to
a problem of 10-class classification, which corresponds to
9 events defined in the shared task and another class for
negative case. This procedure is defined as trigger detection.
Thereafter, the edge detection is defined by the recognition
of concrete relationships between entities, including semantic
direction and theme/cause relation.

As in Figure 1, the word “IL-4” is assigned to class “pro-
tein,” while “involves” is assigned to class “regulation.” The
edge between “IL-4” and “regulation” is labelled as “theme.”
Hence we obtain a simple regulation event, namely, “IL-4
regulation,” which means “IL-4” is the theme of “regulation.”
Similarly, the representation in Figure 1 indicates that the
simple event “IL-4 regulation” is the theme of “involves” and
the protein “NFAT1” is the cause of “involves,” from which
a complex regulation event can be extracted; that is, “IL-
4 regulation” regulates protein “NFAT1.” For more detailed
information, refer to Bjorne’s work [5] and the website of
TEES, http://bionlp.utu.fi/eventextractionsoftware.html.

The data set used in TEES consists of four files in GENIA
corpus [3]. Each file is given in a stand-off XML format
with split sentences, annotation of known proteins, parts of
speech (POS), and syntactic dependency tree information.
One is train123.xml, which contains 800 abstracts with
7,482 sentences; another is devel123.xml, which contains 150
abstracts with 1,450 sentences. The file everything123.xml is
the sum of the two files above, and test.xml is the test data
set, which contains 950 abstracts with 8,932 sentences.

The scheme of TEES system consists of three phases. First,
linguistic features are generated in the feature generation
phase. Second, in the training phase, train123.xml is used as
the training data set, devel123.xml is used as development set,

and optimum of parameters is obtained. Then in the third
phase, using everything123.xml (sum of train123.xml and
devel123.xml) as the training set, test.xml is used as unknown
data set for event prediction. Events are extracted from this
unknown set and accuracy is subsequently evaluated. See
Figure 2.

Mainly, there are two parameters in grid searching at the
training stage. The first parameter is 𝐶 in polynomial kernel
function of support vector machine. Second, in order to set
a proper precision-recall trade-off, a parameter 𝛽 (𝛽 > 0)
is introduced in trigger detection. For “no trigger” class, the
given classification score is multiplied by 𝛽 so as to increase
the possibility of tokens falling into “trigger” class. Optionally,
𝛽 is set as 0.6, and it will be put into grid searching for
obtaining optimum value.

2.2. Definition of Feature Generation Rule of Turku System.
Features used for trigger detection are designed in a rational
way, and abundant features are generated from training data
set.

In terms of the training data set with GENIA format, the
dependency relation of each sentence is output by Stanford
parser [29], which addresses the syntactic relations between
word tokens and thus converts the sentence to a graph, where
the node denotes a word token and the edge corresponds
to the grammatical relation between two tokens. By doing
this, a directed acyclic graph (DAG) is constructed based on
the dependency parse tree, and the shortest dependency path
(SDP) is located.

For a targeted word in sentence which represents a node
in graph, the purpose of trigger detection is to recognize the
event type belonging to the word. Meanwhile, edge detection
is to recognize the theme/cause type between two entities.
Therefore, both detections can be considered as multiclass
classification.

The features produced in trigger detection are cat-
egorized into six classes, as listed in Figure 3, and the
whole feature generation rule is listed in Supplementary
Appendix A in the Supplementary Material available online
at http://dx.doi.org/10.1155/2014/205239. First, for a sentence
inwhich the targetword occurs, token information is counted
for the whole sentence as a bag of words (BOW).This feature
class is defined as “sentence feature.” The second feature
class is “main feature” of the target word, including part
of speech (POS) and stem information output by Porter
Stemmer [29]. The third class, “linear order feature,” focuses
on the information about the neighboring word tokens in
natural order of the sentence. TEES also maintains a fourth
class about the microlexical information of the word token,
for example, upper or lower case of the word, existence of
digital number, double letter in the word, and three letters
in the word. These features constitute a “content feature”
class, while the “attached edge feature” class focuses on the
information about the neighboring word tokens of the target
word in SDP. Finally, there is a sixth “chain feature” class,
which focuses on the information of the whole SDP instead.

Here, the features arewell structured from themacro- and
microperspectives about the sentence. Basically, the feature

http://bionlp.utu.fi/eventextractionsoftware.html
http://dx.doi.org/10.1155/2014/205239
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Figure 2: Data set and pipeline of TEES, cited from TEES Toolkit. Location: TurkuEvent ExtractionSystem readme.pdf, p. 7 in the zip file,
http://bionlp.utu.fi/static/event-extractor/TurkuEventExtractionSystem-1.0.zip.
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Path edge feature (25038)
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Figure 3: Feature class in trigger detection and edge detection.

generation rule of “main feature” and “content feature”mostly
relies on microlevel information about the word token itself,
while “sentence feature” and “linear order feature” rely on
the macrolevel information about the sentence. Differently,
“attached edge” and “chain feature” rely on the dependency
tree and graph information, especially the SDP.

Similarly, features used for edge detection can be classi-
fied into 8 classes, namely, entity feature, path length feature,
terminus token feature, single element feature, path grams

feature, path edge feature, sentence feature, and GENIA fea-
ture. Among the features above, the third feature is omitted,
since it is considered part of the first feature.

2.3. Feature Evaluation Method: Accumulated Effect Evalu-
ation (AEE) Algorithm. A quantitative method is designed
to evaluate the importance of feature classes. Here, the
feature combination methods are ranked by 𝐹-score, and the

http://bionlp.utu.fi/static/event-extractor/TurkuEventExtractionSystem-1.0.zip
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Step 1. Categorize features into 𝑛 feature classes and there are 2𝑛 − 1 possibilities for all kinds of feature
combination. Denote𝑁 = 2𝑛 − 1, and run all of classifying test. 𝐹-score is recorded for
each experiment.

Step 2. Sort𝑁 feature combinations according to 𝐹-score with the descending order.
Step 3. FOR 𝑖 = 1 to 𝑛, 𝑗 = 1 to𝑁,

𝑂
𝑖𝑗
= 0, 𝑐
𝑖𝑗
= 0;

END FOR
// 𝑂
𝑖𝑗
is used to calculate the occurrence of the 𝑖th feature among 𝑗 experiments.

// 𝑐
𝑖𝑗
evaluates the partial importance of the 𝑖th feature after 𝑗 times experiments.

Step 4. FOR 𝑗 = 1 to𝑁, // For each feature combination in the 𝑗th experiment.
FOR 𝑖 = 1 to 𝑛, // For each feature.

IF the 𝑖th feature occur in the 𝑗th feature combination,
𝑂
𝑖𝑗
++;

// For each experiment, the occurrence of the 𝑖th feature is accumulated.
END IF
𝑐
𝑖𝑗
= 𝑂
𝑖𝑗
/𝑗;

// By dividing 𝑂
𝑖𝑗
by 𝑗, we get a numerical value to evaluate the importance

// of the 𝑖th feature. Since the items are ranked by 𝐹-score with a descending
// order, the first ranked features combination corresponds to a smaller 𝑗 and
// hence a bigger 𝑐

𝑖𝑗
.

END FOR
END FOR

Step 5. FOR 𝑖 = 1 to 𝑛,

AEE1(𝑖) =
𝑛

∑

𝑗=1

𝑐
𝑖𝑗
;

END FOR
// By summing up 𝑐

𝑖𝑗
for a fixed 𝑖, we get the accumulated effect of the 𝑖th feature.

Step 6. AEE1(𝑖) is the objective function of greedy search algorithm, and we sort AEE1(𝑖)
to get the most important feature.

Algorithm 1: AEE1 algorithm.

occurrence of 𝑖th feature class in the top 𝑗th combinations
(𝑗 runs from the top one to the last one) is counted, the
rate of occurrence is computed, and finally the sum of
the occurrence is calculated. The total calculation is shown
in Supplementary Material Appendix C. The algorithm is
denoted as AEE1 algorithm as shown in Algorithm 1.

Here, AEE1(𝑖) is the contribution value of the 𝑖th feature
and also the objective function of the greedy search algo-
rithm, which reflects the accumulated effect of the 𝑖th feature
among the top classifiers. Since AEE1(𝑖) makes sense in a
comparative way, the theoretical maximum and minimum of
AEE1(𝑖) are calculated by

Max AEE1 = 1 × 2𝑛−1 + 2
𝑛−1

2𝑛−1 + 1
+
2
𝑛−1

2𝑛−1 + 2
⋅ ⋅ ⋅ +
2
𝑛−1

2𝑛 − 1
,

Min AEE1 = 0 × (2𝑛−1 − 1) + 1
2𝑛−1
+
2

2𝑛−1 + 1
⋅ ⋅ ⋅ +
2
𝑛−1

2𝑛 − 1
.

(4)

The idea of AEE1 comes from the understanding that the
top classifiers with higher𝐹-scores includemore efficient and
important features. However, this consideration disregards
the feature size in terms of those top classifiers.

For better understanding, a simple case is considered.
Assume there are two feature classes that could be used in the

classifier and so there are three feature combinations for the
classifier, namely, 1, 2, and 1&2. Without loss of generality, we
assume that the best classifier uses the feature class 1&2, the
second one uses the feature class 1, and the worst classifier
uses the feature class 2. Here, we denote the rank list 1&2, 1,
and 2 as Rank Result A. According to the third column in
Table 1(a), AEE value will be calculated as AEE1(1) = 1/1 + 2/2
+ 2/3 = 2.667.

As another example, we assume a rank list 1, 1&2, and 2,
which is denoted as Rank Result B and shown in Table 1(b).
As can be seen fromTable 1(b), AEE1(1) equals 2.667, the same
as in Table 1(a). However, this is not a reasonable result, since
feature 1 is more significant in Rank Result A than in Rank
Result B if the feature class size is considered.

Therefore, an alternative algorithm, AEE2, is proposed by
updating 𝑐

𝑖𝑗
= 𝑂
𝑖𝑗
/𝑗 in Step 4 of AEE1 as 𝑐

𝑖𝑗
= 𝑂
𝑖𝑗
/∑
𝑛

𝑖=1
𝑂
𝑖𝑗
.

Here, the size of feature class is considered for the compu-
tation of 𝑐

𝑖𝑗
and a classifier with higher performance and

smaller feature size will ensure a high score for the feature
it owns. As an example, column 4 in Tables 1(a) and 1(b)
shows that AEE2(1) = 1.667 in Rank Result A and AEE2(1)
= 2.167 in Rank Result B. The result ensures the comparative
advantage for feature class 1 in Rank Result A. Similarly,
AEE2(𝑖) mainly makes sense in a comparative way with the
theoretical maximum and minimum values, which are also
similarly computed.
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Table 1: Examples for AEEi algorithm.

(a) AEEi result for Ranking Result A

Rank Result A 𝑂
𝑖𝑗

AEE1 𝑐
𝑖𝑗

AEE2 𝑐
𝑖𝑗

𝑖 = 1 𝑖 = 2 𝑖 = 1 𝑖 = 2 𝑖 = 1 𝑖 = 2

𝑗 = 1 1&2 1 1 1/1 1/1 1/2 1/2
𝑗 = 2 1 2 1 2/2 1/2 2/3 1/3
𝑗 = 3 2 2 2 2/3 2/3 2/4 2/4

AEE1(𝑖) 2.667 2.167 AEE2(𝑖) 1.667 1.333

(b) AEEi result for Ranking Result B

Rank Result B 𝑂
𝑖𝑗

AEE1 𝑐
𝑖𝑗

AEE2 𝑐
𝑖𝑗

𝑖 = 1 𝑖 = 2 𝑖 = 1 𝑖 = 2 𝑖 = 1 𝑖 = 2

𝑗 = 1 1 1 0 1/1 0/1 1/1 0/1
𝑗 = 2 1&2 2 1 2/2 1/2 2/3 1/3
𝑗 = 3 2 2 2 2/3 2/3 2/4 2/4

AEE1(𝑖) 2.667 1.167 AEE2(𝑖) 2.167 0.833

Input data with chosen feature

classes under all combination

Fixed features in edge detection

try trigger features combination

Fixed features in trigger detection

try edge features combination

Test the classifier performance

in Turku system

Evaluate the contribution

of feature classes

Best?

Yes

No Modify and replace

important features

Output feature set

and build new system

Figure 4: Flowchart of the research.

Considering AEE1(1) = 2.667 > AEE1(2) = 2.167 and
AEE2(1) = 1.667 > AEE2(2) = 1.333 in Table 1(a), the impor-
tance of feature class 1 prevails over that of feature class 2 in
both cases. This ensures a reasonable consistency. Actually,
both AEE1 and AEE2 algorithms ensure a correct weighting
rank among different feature classes and a hybrid of the two
methods is used in the experiments.

2.4. Flowchart of the Research. Unlike a trial-and-error pro-
cedure, the scheme of this research is oriented towards
better feature selection so that important feature classes are
identified by evaluating the contribution of the individual
features.

Accordingly, codes are written to enhance vital features.
Thereafter, the classifiers with new updated features are tested
and better performance is presumed. Compared with the
previous TEES system, our main contribution is to import
feature selection strategy in Phase 1, that is, “linguistic feature
selection,” as shown in Figure 2.The flowchart of our research
is shown in Figure 4.

3. Results

3.1. Evaluation of Individual Feature Classes by Quantitative
Method. Based on the AEE algorithm, all of the combina-
tions of the feature classes are used in classifiers and their
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Table 2: Top 10 best classifiers with corresponding feature classes in combination experiment.

Rank 𝐹-score (%)
Trigger feature

combination with fixed
trigger feature

𝐹-score (%) Edge feature combination
with fixed edge feature

1st 51.34 1&2&3&4&5 52.16 1&2&4&5&6&7&8
2nd 51.21 1&2&3&4&5&6 51.81 1&2&4&5&6&8
3rd 50.71 1&2&4&5 51.29 1&2&5&6&7&8
4th 50.19 1&2&3&4&6 51.18 1&2&5&6&8
5th 49.9 1&2&4&5&6 50.33 1&2&4&6&7&8
6th 49.74 1&3&4&5 50.23 1&2&4&6&8
7th 49.44 1&4&5 49.26 2&4&5&6&8
8th 49.16 1&2&3&4 49.02 1&2&4&5&6
9th 48.82 1&2&4&6 48.32 2&4&5&6&7&8
10th 47.82 1&2&4 47.42 2&5&6&8

Table 3: Score of features in trigger detection.

Feature ID 1 2 3 4 5 6

Feature name Sentence
feature Main feature Linear order

feature
Content
feature

Attached
edge feature Chain feature Theoretical

maximum
Theoretical
minimum

AEE1 score 40.83 39.94 32.99 52.23 36.12 30.09 53.43 10.27
AEE2 score 10.80 10.82 8.99 14.16 9.80 8.43 20.52 3.28

Table 4: Score of features in edge detection.

Feature ID 1 2 4 5 6 7 8
Feature Entity Path length Single element Path grams Path edge Sentence GENIA Theoretical Theoretical
Name Feature Feature Feature Feature Feature Feature Feature Maximum Minimum
AEE1 score 77.60 83.84 68.45 74.88 77.76 56.09 66.35 107.61 20.08
AEE2
score 18.63 19.57 16.57 17.51 17.88 13.40 15.45 35.80 5.54

corresponding 𝐹-scores are ranked so as to evaluate the
contribution of the individual feature classes.

Using the quantitative algorithm, the importance of
feature classes is addressed in the two-phase TEES procedure
that involves trigger detection and edge detection. For better
understanding, the top ten classifiers with respective feature
combinations are shown in Table 2, and the total calculation
is shown in Supplementary Material Appendix B. The final
results are collected in Tables 3 and 4.

During the trigger detection, the results show that the
4th feature performs best and 6th feature performs worst. By
calculating AEEi value of features, Figures 5 and 6 show plots
of the best and the worst feature classes in trigger detection.

The comparison between the two features shows how the
4th feature performs better than 6th feature. And 52.23 and
30.09 also correspond to the value of area below the curve.
The AEE1 and AEE2 plot of the best and worst features in
trigger and edge detections are shown in Figures 5 and 6.

3.2. Modification of Features and New Experiment Results.
Combinations of features for trigger detection show that the

“content feature” in trigger detection is the most important
one, and the “chain feature” is the worst. This result shows
that, in terms of identifying a target word token, the tar-
get itself provides more information than the neighboring
tokens.

Taking the feature generation rule of 4th feature into con-
sideration, the “content feature” class contains four features,
“upper,” “has,” “dt,” and “tt.” Specifically, “upper” is to identify
the upper case or lower case of letters, “has” is to address the
existence of a digit or hyphen, “dt” is to record the continuous
double letters, and “tt” is to record three continuous letters.
Since the content feature is vital for trigger detection, the
feature generation rule could be strengthened similarly.
Accordingly, a new “ft” feature is inserted into the “content
feature” class by which the consecutive four letters in the
word are considered. Moreover, modification is performed
on the 6th feature class by merging similar features related to
dependency trees in both the 5th and the 6th feature classes.
For simplicity, the updated features are denoted as 4󸀠 and 6󸀠.

Furthermore, if we compare the best performance
between classifiers with trigger feature comprising the orig-
inal features, 4󸀠 features, 6󸀠 features, or 4󸀠&6󸀠 features
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Figure 5: AEE1 and AEE2 plots of the best/worst feature in trigger detection.

(all include original edge features), we get that the best
ones for trigger features are 1&2&3&4&5, 1&2&3&4󸀠&5,
1&2&3&4&5&6󸀠, and 1&2&3&4󸀠&5&6󸀠, respectively, while
the 𝐹-score reaches 51.34, 52.21, 51.93, and 51.99. The new
combination result is listed in Supplementary Material
Appendix D.

The complete combination experiment shows that the
best combination of trigger feature is 1&2&3&4󸀠&5, with
an 𝐹-score of 52.21. Generally, the best feature combination
covers the major part of feature sets. An interesting phe-
nomenon in the best combination is the absence of the 6th
or 6󸀠th feature class, which indicates that this feature class is
redundant and can be done without it.

Similarly, for feature selection in edge detection, various
experiments are carried out based on the best combination of
trigger features. Here, the best feature and the worst feature
(2nd and 7th feature) are chosen to be modified in edge
detection, and we denote the new feature classes as 2󸀠 and

7󸀠. With the fixed trigger feature 1&2&3&4󸀠&5, we test the
classifier with the original edge features, 2󸀠 feature, 7󸀠 feature,
and 2󸀠&7󸀠 feature. We obtain the best classifier in each com-
bination experiment. The best classifier in each combination
owns a feature set 1&2&4&5&6&7&8, 1&2󸀠&4&5&6&7&8,
1&2&4&5&6&7󸀠&8, or 1&2󸀠&4&5&6&7󸀠&8, separately, and
the achieved 𝐹-score is 52.16, 52.37, 52.47, or 52.68, respec-
tively.

In the above experiments, we test the performance of
trigger feature class by fixing edge features. Likewise, we
test edge features by fixing trigger features. We observe that
feature modifications in this phase are indeed capable of
achieving improvement, where all of the best combinations
perform better than the result of the best trigger. Finally,
we use the best trigger feature (1&2&3&4󸀠&5) and best
edge feature (1&2󸀠&4&5&6&7󸀠&8), and eventually the best
combination of feature set achieved the highest score of 53.27,
which is better than the best performance of 51.21 previously
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Figure 6: AEE1 and AEE2 plots of the best/worst feature in edge detection.

reported for TEES 2.0.Therefore, it is concluded that the best
classifier has a feature set with trigger feature 1&2&3&4󸀠&5
and edge feature 1&2󸀠&4&5&6&7󸀠&8, where trigger-𝑐 =
250000, edge-𝑐 = 28000, and 𝛽 = 0.7. The final result is listed
in Table 5.

Comparing with the 24 participants in GENIA task of
BioNLP 2009 and historical progress of Bjorne’s work, a
contour performance is given in Figure 7.

As Figure 6 indicates, our system ranks the first among
the 24 systems. Comparisons of 𝐹-scores are listed in Table 6.

4. Discussions and Conclusions

4.1. An Analysis of the Contribution of Features. In this
research, we designed a feature selection strategy, AEE, to
evaluate the performance of individual feature classes to
identify the best performing feature sets. An important
finding is that the greatest contribution comes from the

content feature class in trigger detection. In this section, a
routine analysis of the contribution is shown, which yields
the same finding and supports the same conclusion that
the content feature class contributes the most towards event
recognition and extraction.

First, retaining one feature class in the classifier, we can
get separate 𝐹-scores based on these features. Dividing the
𝐹-score by feature size, we calculate the average contribution
roughly. This value partly reflects the contribution by feature
classes in terms of class size. The result in Table 6 shows that
the average contribution of the 4th feature is 0.003, which is
the greatest score achieved by individual feature class.

Second, we observe all of the double combinations involv-
ing the 𝑖th feature and observe that, in most cases, when
the 𝑖th feature is combined with the 4th feature, it reaches
the best performance score. Even the worst performance of
the double feature combinations involving the 4th feature
performs much better than the other settings.
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Table 5:The best feature combination after choosing the best trigger
feature (1&2&3&4󸀠&5) and best edge feature (1&2󸀠&4&5&6&7󸀠&8).

Task 1 Recall Precision 𝐹-score
Strict evaluation mode 46.23 62.84 53.27
Approximate span and
recursive mode 49.69 67.48 57.24

Event decomposition in the
approximate span mode 51.19 73.21 60.25

Task 2 Recall Precision 𝐹-score
Strict evaluation mode 44.90 61.11 51.77
Approximate span and
recursive mode 48.41 65.81 55.79

Event decomposition in the
approximate span mode 50.52 73.15 59.76

Recall = TP/(TP + FN), Precision = TP/(TP + FP), and
𝐹-score = 2((Recall × Precision)/(Recall + Precision)).
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Figure 7: 𝐹-score contour performance of participants in GENIA
task.This𝐹-score is evaluated under approximate span and recursive
mode. Our current system is marked with a full triangular label.

Third, a similar phenomenon occurs in the case
of three-feature-combination experiment and four-
feature-combination experiment. In all cases, when 𝑖th
feature is combined with the 4th feature, it reaches the
best performance. The same as before, even the worst
performance of double feature combination involving the
4th feature is much better than the other combinations. See
Table 7.

Finally, in yet another analysis, we observe the cases
where the 𝑖th feature is cancelled out. The results show that
the combination without the 4th class performs worst, which
in turn confirms the importance of the 4th feature.

Through the routine analysis above, there is ample evi-
dence arguing in support of the importance of the 4th feature
in trigger detection. Compared with the results in numerical

scores, the contribution value of the 4th feature is greater than
the others, which confirms the judgment. Furthermore, we
can sort these features according to their contribution values.
These results can further prove our decision tomodify the 4th
feature and thereafter enhance system performance.

It is interesting that the routine analysis shows the
substantial positive evaluation for the 4th trigger feature,
which is proved by the results of quantitative analysis of
AEE algorithm. This shows a consistent tendency of feature
importance, which in turn proves the reliability of the AEE
algorithm. Since it is clumsy to use routine analysis to analyze
all of the features, we expect that the AEEi algorithm makes
sense in generalized circumstances.

4.2. Linguistic Analysis of Chosen Trigger Features and Impor-
tance of Microlexical Feature. The effectiveness of the 4th
trigger feature motivated the feature class modification by
inserting “ft” features. One should also note that all these
features in the 4th feature class are related to the spelling
of word tokens, which is similar to stems but contains
more abundant information than stems. Besides, we can also
analyze and ascertain the importance of other features, like
POS information, through feature combinations. Here, the
edge features are fixed, and only a smaller section of the
trigger features is tested through combination experiments.

The full combinations are listed in Supplementary Mate-
rial Appendix E and Table 8 lists the top 5 important features.
Here, “stem” and “nonstem” are the stem part or left part of
stem after using Porter Stemmer [28]. It is also generated in
microlexical level, similar to “dt” and “tt.” The results in this
table show that the lexical feature generation rule affects the
token information extraction in a decisive way.

4.3. Strategy Discussion in Feature Selection under Machine
Learning Strategy. As a matter of fact, trigger features could
be analyzed according to their generation rule, namely,
sentence feature, main feature, linear order feature, content
feature, attached edge feature, and chain feature. This is a
state-of-the-art strategy in feature selection. TEES is a nice
system based on machine learning, which, however, does not
perform intensive feature selection. The absence of a feature
selection strategy in previous researchmainly stems from two
reasons. The first is that the natural core idea of machine
learning is just to put enough features into the classifier as
a black box; the second is that the performance of a classifier
with huge sizes of features is always better in accuracy and
𝐹-score. Previously, the features used in TEES have been
mostly chosen by trial and error. By adding some codes to
produce additional features and seeing how they impact the
performance of the system, TEES always achieves a higher
𝐹-score but with unsure directions. This strategy introduces
useful but uncertain features and produces a large number
of features. By introducing a feature selection and evaluation
method, the importance of different feature classes could be
ranked in a proper way, which helps to identify the impor-
tant features to be modified effectively. Therefore, in terms
of the current research regarding the development of the
Turku Event Extraction System, we believe that our research
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Table 6: Comparison of 𝐹-score performance in Task 1 with other systems (under primary criterion: approximate span and recursive).

Bjorne et al. 2009 [13] Bjorne et al. 2011 [15] Bjorne et al. 2012 [16] TEES1.01 Riedel et al. 2011 [14] Ours
𝐹-score (%) 51.95 52.86 53.15 55.65 56.00 57.24

Table 7: The best feature combination after choosing features dynamically in trigger and edge detection.

1 2 3 4 5 6
Feature in trigger #Sentence feature #Main feature #Linear order #Content feature #Attached edge #Chain feature

Feature Feature
Feature size 18998 24944 73744 8573 100561 178345
(Merely one feature analysis)
𝐹-score under one class 0 42.05 3.50 27.11 7.33 5.48
Average contribution 0 0.001 4𝑒 − 5 0.003 7𝑒 − 5 3𝑒 − 5

(Double feature combination analysis)
Best performance (+4) (+4) (+4) (+1) (+2) (+4)
Involving ith feature 45.39 36.65 22.29 45.39 28.27 23.48
Worst performance (+2) (+1) (+1) (+3) (+1) (+1)
Involving ith feature 0 0 0 22.29 0.91 3.10

(Three-feature combination analysis)
Best performance (+4, 5) (+1, 4) (+1, 4) (+1, 5) (+1, 4) (+1, 4)
Involving ith feature 49.44 47.82 45.13 49.44 49.44 45.51
Worst performance (+2, 3) (+1, 3) (+1, 2) (+3, 6) (+1, 3) (+1, 3)
Involving ith feature 0.11 0.11 0.11 20.76 1.98 2.40

(Four-feature combination analysis)
Best performance (+2, 4, 5) (+1, 4, 5) (+1, 4, 5) (+1, 2, 5) (+1, 2, 4) (+1, 2, 4)
Involving ith feature 50.71 50.71 49.74 50.71 50.71 48.82
Worst performance (+2, 3, 6) (+1, 3, 6) (+1, 2, 6) (+3, 5, 6) (+1, 2, 3) (+1, 2, 3)
Involving ith feature 5.77 5.77 5.77 21.13 7.02 5.77

(Five-feature combination analysis)
Performance
Without ith feature 34.22 47.1 49.90 16.37 50.19 51.34

Table 8: Analysis of average contribution of lexical features.

Feature Feature class 𝐹-score Feature size Average contribution
1 Nonstem Main feature 6.43 154 0.04175
2 POS Main feature 1.52 47 0.03234
3 dt Content feature 20.13 1172 0.01718
4 tt Content feature 27.63 7395 0.00374
5 Stem Main feature 35.45 11016 0.00322

reported in this paper is helpful for further improving this
system. We also believe that our strategy will also serve as an
example for feature selection in order to achieve enhanced
performance for machine learning systems in general.
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