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Abstract: The use of mesenchymal stem cells (MSC) for the treatment of cutaneous wounds is
currently of enormous interest. However, the broad translation of cell therapies into clinical use is
hampered by their efficacy, safety, manufacturing and cost. MSCs release a broad repertoire of trophic
factors and immunomodulatory cytokines, referred to as the MSC secretome, that has considerable
potential for the treatment of cutaneous wounds as a cell-free therapy. In this review, we outline the
current status of MSCs as a treatment for cutaneous wounds and introduce the potential of the MSC
secretome as a cell-free alternative for wound repair. We discuss the challenges and provide insights
and perspectives for the future development of the MSC secretome as well as identify its potential
clinical translation into a therapeutic treatment.
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1. Introduction

Despite advances in our understanding of the mechanisms involved in acute and chronic wound
repair, non-healing wounds remain a cause of morbidity and mortality worldwide and are a huge
economic burden to our society [1]. Generally, cutaneous wounds heal through an intricate cascade of
phases in which the interactions of different cell types alongside local and systemic factors replace
injured tissues and re-establish supportive structures [2]. However, when these processes fail to
progress normally and in conjunction with an underlying disease state, chronic non-healing wounds
may eventuate [3]. The best practice in wound management is aimed at promoting healing and
preventing complications, such as scarring. However, despite the plethora of wound products available
on the market, there remains a significant number of wounds that either fail to heal or heal with
scarring. There is, therefore, a clear need for the development of alternative wound therapies that
promote healing and reduce scar formation.

It has been suggested that cell-based therapies have great potential for the treatment of wounds.
Stem cells have been shown to accelerate the healing process, and it has been proposed that these cells
can induce regenerative healing rather than the repair mechanisms that result in scar formation [4].
Direct incorporation into regenerating tissues and differentiation to parenchymal cells has been
hypothesised to be the main mechanism by which mesenchymal stem cells (MSC) exert their beneficial
effects [5,6]. However, it has been shown more recently that the rate of MSC survival, engraftment and
the number of newly generated cells, by cell fusion or differentiation, seems to be too low to explain the
significant effects achieved by MSCs [7,8]. Proteomic analysis of MSC conditioned media (MSC-CM),
containing MSC secretome (MSC-S), shows that stem cells secrete a broad range of biologically active
molecules, including cytokines, mRNAs, growth factors and active lipids with vital roles in skin tissue
regeneration [9]. Hence, paracrine signalling of MSCs has been suggested as the main mechanism
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of action [10]. This breakthrough in the field of MSCs has motivated researchers to investigate the
application of the MSC-S on wound healing to overcome the challenges of using live cells. This review
describes the potential effects of MSC-S on cutaneous wound healing and additionally discusses the
challenges in translating its use into a therapeutic treatment.

2. MSCs as A Cell Therapy for Cutaneous Wound Healing

MSCs are non-hematopoietic and plastic-adherent cells that exhibit a fibroblast-like phenotype [11].
They are a heterogeneous population that was first discovered in the bone marrow (BM-MSCs) [12],
but later, they were obtained from various adult tissues, such as adipose tissues (ADSCs) [13], placenta
(p-SCs) [14], dental pulp (DPSCs) [15] and umbilical cord (UC-MSCs) [16]. MSCs are able to renew
themselves and differentiate into various tissue-forming cell lineages, such as chondrocytes, adipocytes,
osteocytes, liver epithelium, endothelial cells, smooth muscle cells and keratinocytes [17–19]. MSCs
stain positive for cluster of differentiation 44 (CD44), CD90, CD105 and CD73, and negative for CD11b or
CD14, CD19 or CD79α, CD34, CD45 and HLA-DR [20,21]. MSCs are considered as immune-privileged
cells since they do not express the major histocompatibility complex (MHC) II and costimulatory
molecules, such as CD86, CD40 or CD80 and express a low level of MHC I [22]. MSCs also possess
immunomodulatory properties that can alter the function of T cells, B cells, natural killer (NK) cells
and monocytes/macrophages [23]. Overall, these properties suggest that MSCs could potentially
revolutionise cell therapies for the regeneration of damaged tissue in many different systems, such as
cardiac, bone, kidney and lung [24,25].

Treatment of wounds with MSCs has been shown to have beneficial effects, including the
acceleration of wound closure [26]. MSCs differentiate into various tissue-specific cell types, which
can promote angiogenesis, suppress the immune system, and secrete and remodel the extracellular
matrix (ECM) [8,25]. MSCs exhibit reparative, regenerative and immunomodulatory effects through
paracrine signalling, pointing towards the promising therapeutic potential of these cells [27]. Indeed,
numerous studies have shown that the administration of MSCs to cutaneous wounds enhances
the healing of skin injuries, including acute and diabetic wounds and burns in mice, rats and pigs.
MSCs that are derived from different tissues possess differences, which are mainly reflected in the
expression of marker genes, proliferation rate, differentiation capacity, secreted cytokine profile and
immunomodulatory capacity [28,29]. Treatment with MSCs supports wound healing by accelerating
re-epithelialisation, improving granulation tissue formation, stimulating angiogenesis and diminishing
inflammation [30]. These consistent and promising results have led to the use of MSCs in clinical trials
as human wound therapies. In these trials, autologous BM-MSCs have been administered to chronic
cutaneous ulcerations [31], diabetic foot ulcers [32], presser ulcers [33], radiation burns [34], resulting
in accelerated wound closure and improved healing properties. All these findings from preclinical and
clinical studies demonstrate that MSCs could be a promising resource for regenerative therapy [35].

3. Development of MSC Secretome as An Alternative Cell-Free Therapy for Cutaneous Wounds

Recent studies have suggested that the main therapeutic benefits of MSCs are not limited solely to
their cell-to-cell interactions [36–39]. MSCs secrete a broad range of bioactive molecules, including
proteins, nucleic acids, proteasomes, exosomes, microRNA and membrane vesicles, collectively known
as the secretome, in response to the surrounding environment [40,41]. The MSC secretome (MSC-S)
then influences neighbouring cells and regulates multiple biological processes [42]. Currently, paracrine
or trophic properties are considered as the primary means of the therapeutic effect of MSCs [26,40,43].
Although MSCs derived from different organs share phenotypic and regenerative characteristics, their
secretome is different and depends on their origin, which consequently can lead to different therapeutic
potentials [44]. MSC-S from various origins has been used to assess its effect on skin cell functionality
as well as its effects on wound healing using in vitro and in vivo models (summarised in Table 1).
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Table 1. Therapeutic potential of the MSC secretome (MSC-S) in cutaneous wound healing.

MSC-S Origin Target Cell/
Wound Type Outcome Effective MSC-S Component Reference

Human iliac crest MSC Fibroblasts and
keratinocytes Accelerated migration of skin cells.

Transforming growth factor β1 (TGF-β1),
Monocyte Chemoattractant Protein-1 (MCP-1),
Interleukin-6 (IL-6), IL-8, collagen I, fibronectin

and insulin-like growth factor-binding
protein (IGFBP)

[45]

Human UC-MSC Fibroblasts

Increased proliferation and migration. Increased
expression of genes involved in scar-less healing.

Secrete less TGF-β and more matrix
metalloproteinase (MMP)/ Tissue inhibitor of

metalloproteinase TIMP.

Not identified [46]

Human ADSC Fibroblasts Stimulated collagen secretion and ECM
production. Upregulated migration. Not identified [47]

Human hip joints MSC Humanised 3D skin
model Increased migration of the epidermal layer.

Keratinocyte growth factor (KGF), hepatocyte
growth factor (HGF), platelet derived growth
factor (PDGF), stromal cell-derived factor-1

(SDF-1)

[48]

Mouse BM-MSC Fibroblasts

Increased proliferation and accelerated migration.
Downregulated Intercellular adhesion molecule 1
(ICAM1), Vascular cell adhesion protein (VCAM1)

and MMP11.

Not identified [49]

Human embryonic stem
cells derived MSC Endothelial cells Increased angiogenesis. Induced morphogenesis

of endothelial cells. Cysteine-rich angiogenic inducer 61(Cyr61) [50]

Mouse BM-MSC CD+ T cells Decreased T cell proliferation. Not identified [51]

Human ADSC Fibroblasts Antiapoptotic effect and antioxidant effect.
Superoxide dismutase (SOD), Insulin-like growth
factor (IGF), TGF, Fibroblast growth factor (FGF),

PDGF, HGF and ILs
[52]

Horse Peripheral
blood MSC

Equine dermal
fibroblasts

Increased migration. Promoted in vitro wound
healing. Not identified [53]
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Table 1. Cont.

MSC-S Origin Target Cell/
Wound Type Outcome Effective MSC-S Component Reference

Human BM-MSC Peripheral blood
mononuclear cells

Immunosuppressive. Decreased secretion of
pro-inflammatory cytokines and increased
secretion of anti-inflammatory cytokines.

Increased ratio of Th2/Th1.

Not identified [54]

Mouse BM-MSC Excisional wounds
(mice)

Increased macrophage polymerisation and
re-epithelialisation. Improved wound healing.

Vascular endothelial growth factor (VEGF), IGF-1,
Epidermal growth factor (EGF), KGF, Ang-1,

SDF-1, Macrophage Inflammatory Protein
(MIP-1α), erythropoietin

[36]

Human BM-MSC Partial-thickness burn
injury (rats)

Increased collagen deposition, cell proliferation
and angiogenesis. Not identified [37]

Human BM-MSC Full-thickness burn
injury (rats)

Increased number of fibroblasts. Accelerated
wound closure. Promoted angiogenesis and

collagen deposition.
bFGF [38]

Rat BM-MSC Chronic wounds (rats) Increased re-epithelialisation. Improved collagen
deposition. Promoted wound closure. Not identified [39]

ADPSC Full-thickness wounds
(rats)

Accelerated wound closure along with faster
re-epithelialisation. VEGF, EGF [55]

Human DPSC Excisional wound splint
model (mice)

Promoted proliferation and migration of
fibroblasts. Accelerated collagen synthesis.

Promoted healing.
Not identified [56]

Human UC-MSC Diabetic wounds (mice)
High blood vessel density. Improved healing.

Higher levels of PDGF, VEGF and KGF expression
in treated wounds.

Not identified [57]

Human WJ-MSC Excisional wounds
(mice)

Increased cell proliferation and migration.
Promoted wound healing. Not identified [58]

Human WJ-MSC Radiation-induced
cutaneous wounds (rats) Accelerated healing. Not identified [59]

Human ADSC
Fractional carbon

dioxide laser resurfacing
(Human)

Reduced trans-epidermal water loss and
accelerated healing. TGFβ-1, VEGF, FGF, HGF, PDGF [60]
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4. Potential Mechanism of Action of MSC-S

The mechanism of action of the MSC-S must be elucidated before it can be widely introduced as a
potential new therapy in the clinic. Recent advances in cell and molecular biology have offered insights
into multiple mechanisms, and it has been proposed that MSC-S can contribute to wound healing
(Figure 1). Dissection of the MSC-S shows a large repertoire of proteins known to be involved in skin
inflammation, haemostasis and wound repair (Table 2). The biochemical pathways and mechanism of
action of these proteins have been shown previously [36,40,61,62].

The MSC-S is, therefore, a complex mixture of bioactive factors and has been shown to have
significant positive effects in the treatment of inflammatory disorders of nervous, cardiovascular,
respiratory and skeletal systems [63–65]. Although it is believed that the anti-inflammatory effects
of cells rely on direct cell–cell interactions, several studies have demonstrated that the interaction
between MSCs and immune cells can be attributed to MSC-secreted cytokines [66]. For example,
MSC-secreted interleukin-1 receptor antagonist (IL1-RA) inhibits B cell differentiation [67]. Human
MSC-derived galectin-1 also has inhibitory impacts on the proliferation of alloreactive CD4+ and
CD8+ T cells [68]. MSCs also secrete programmed death-ligand 1 (PD-L1), which suppresses T cell
activation and increases T cell apoptosis [69,70]. Furthermore, MSC-secreted Prostaglandin E2 (PGE2),
TGF-β1, IL-6 and nitric oxide, all provide inhibitory effects on T cells, macrophages, neutrophils and
NK cells [71,72]. MSC-S as a whole has been shown to exert immunosuppressive effects through
modulating proliferation and activation of immune cells in vitro [51]. Treatment of peripheral blood
mononuclear cells with MSC-S led to a reduction in pro-inflammatory cytokine production and
an increase in anti-inflammatory cytokines [54]. BM-MSC-S injected into the margins of excisional
wounds in mice promotes wound healing through diminished inflammation mediated by macrophage
polymerisation [36]. This beneficial effect of MSC-S is significantly higher than the equivalent treatment
with fibroblast secretome [36].

Increased angiogenesis has been proposed as another of the main mechanisms of action for
MSC-S in different types of wounds supported by in vitro treatment of endothelial cells with MSC-S
enhancing their proliferation and migration. [37,38]. This impact of MSC-S on angiogenesis is
suggested to be mediated by the secretion of Cyr61 from MSCs [50]. Pro-angiogenic proteins secreted
by MSCs, such as Ang-1, Ang-2, VEGF, angiostatin, CXCL16, EGF, FGF, PDGF, granulocyte-macrophage
colony-stimulating factor (GM-CSF), HGF, MCP-1, MMP-8 and MMP-9, also contribute to vascular
formation and stability [73]. In preclinical studies, BM-MSC-S treatment improved partial-thickness
burn injury repair in rats, which was mediated by increased blood vessel formation [37]. In another study,
topical administration of BM-MSC-S cream to full-thickness burns of rats resulted in increased numbers
of fibroblasts and improved angiogenesis as well as accelerated wound closure [38]. Subcutaneous
injection of umbilical cord-derived MSC secretome (UC-MSC-S) to wounds of diabetic mice led to
accelerated wound closure and high capillarity density in wound areas [57].

MSC-S from different origins (such as iliac crest, bone marrow, adipose, Wharton’s jelly, umbilical
cords) have been shown to enhance the migratory and proliferative abilities of dermal fibroblasts
and epidermal keratinocytes in vitro [45–47,74]; MSC-S alters the expression of genes involved in
re-epithelialisation and angiogenesis and increases re-epithelialisation in human 3D skin models [48,49].
The secretome from adipose tissue-derived MSCs (ADSC-S) has been shown to protect dermal fibroblasts
from oxidative stress-mediated apoptosis and accelerate wound closure with stimulatory effects on
fibroblast migration in in vitro models [52,53]. The beneficial effect of MSC-S on skin cells is believed
to be mediated by growth factors (such as IGF-1, EGF, FGF-2, KGF, TGF-β, HGF, PDGF, VEGF, SDF-1,
erythropoietin) and chemokines (such as IL-6, IL-8, MCP-1 and RANTES) (Table 1) [36,40,61,62,74–76].
Treatment of wounds with MSC-S significantly accelerates new tissue formation, collagen deposition and
re-epithelialisation in treated wounds [36,49,55,56]. Application to chronic rat wounds of BM-MSC-S
delivered in a fibrin vehicle also increases re-epithelialisation and collagen deposition [39]. In another
study, excisional wounds of rats topically treated with ADSC secretome displayed accelerated wound
closure along with faster re-epithelialisation [55]. It has further been demonstrated that dental pulp stem
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cell (DPSC) secretome enhances wound healing through increased collagen synthesis and improved
proliferative and migratory ability of dermal fibroblasts [56]. MSC-S derived from Wharton’s jelly
(WJ-MSC-S) promotes excisional wound healing in mice through increased cell proliferation [58].
Recently, WJ-MSC-S has also been shown to promote wound healing in radiation-induced cutaneous
wounds of rats [59].
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5. Advantages of MSC-S over Other Cell-Based Products

The use of cell-based therapies and products is not new. Indeed, skin substitutes, platelet-rich
plasmas, recombinant growth factors and cytokines have been around for decades [1]. However,
despite promising preclinical datasets and successful clinical trials, there remains the need for
improved cell-based solutions, as evidenced by the spiraling increase in chronic wounds worldwide.
Currently, skin substitutes containing living fibroblasts, keratinocytes or both, include TransCyte, [77],
Dermagraft [78], Apligraf, [79] and OrCel [80]. These cell-based skin graft substitutes have shown
promising results in promoting faster wound closure (Transcyte), improved rate of re-epithelialisation
(Dermagraft), and superior vascularity, pigmentation, wound height and scar scores (Apligraf) [81].
However, they are expensive, require specific storage conditions, have the potential risks of
tumorigenicity, infection and rejection, and are difficult to use within the community [82]. Recombinant
growth factors were postulated to be the solution to impaired healing as it was hypothesised that
chronic non-healing wounds lacked specific growth factors and cytokines [83]. Numerous clinical
trials were undertaken to investigate the growth factor therapies including EGF, PDGF, GM-CSF,
KGF therapies, but despite appearing to be efficacious in many animal models of wound repair,
translation into clinical products has been limited due to the significant amounts of growth factors
required for treatment, the expense of manufacture and the lack of clinically relevant improvements
in healing [84–87]. To date, only PDGF has received FDA approval for the treatment of diabetic foot
ulcers, and its use is limited due to the need for dressing replacement and the potential increased risk
of malignancy [88,89]. Administering single growth factors and/or cytokines has potential limitations
as wounds are complex environments, and multiple factors may be required to stimulate healing
responses. MSC-S contains a vast array of proteins at physiological and balanced levels, including
cytokines, growth factors and chemokines (Table 2), that potentially makes it a superior alternative to
expensive cytokine and growth factor therapies that are limited to delivering only one or two proteins
to the wounds.

The delivery of live cells to cutaneous wounds presents a unique and specific set of challenges [90].
The injection of cells through a syringe or needle has been shown to decrease cell viability to only
1–32% and can cause irreversible and sometimes fatal damage to the cell membrane [91,92]. Not only
does this negate the potential benefit of the cell therapy but the introduction of a large population
of apoptotic or necrotic cells may serve to elicit an immune response, which could be detrimental to
the healing process. MSC-S therapy avoids the difficulties associated with live-cell administration
in stem cells as well as advantages of ease of mass production, packaging and transportation [62].
These advantageous factors have led to the growing potential of MSC-S use as a treatment for tissue
regeneration and various disorders [40].

6. Challenges with the MSC-S as a Wound Therapy

6.1. Secretome Characterisation

Although MSC-S may be a promising medical product, it has been very challenging to define its
biochemical composition or measure the activity and half-life of all of its components [62]. In addition
to proteins, MSC-S also contains exosomes and extracellular vesicles [93]. Exosomes can contain
miRNA, lipids and long noncoding RNAs, which regulate multiple signalling pathways related to
inflammation [94]. The identification and characterisation of all the biomolecules that constitute the
secretome are difficult to achieve but will improve the understanding of the secreted factor profile and
provide information about its function, regulation and clinical use [95]. Further research on the MSC-S
using high throughput genetic and chemical screenings and next-generation metabolomics-driven
approaches is required to clarify all of the key metabolic and signalling pathways that are mediating
robust new tissue formation, dampened inflammation and enhanced wound closure.
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6.2. Inconsistency in Preparation of Secretome

It has been reported that the isolation and culture methods, as well as donor health condition
and age, can affect the quality of MSC products [96]. Inconsistency in secretome harvesting in terms
of MSC heterogenicity, inter-donor differences, cell number and time interval is another part of the
current challenge regarding the clinical use of secretome. Production of MSC-S under pharmaceutical
standards and according to good manufacturing practice (GMP) is a vital step to use MSC-S as a
therapeutic agent in the clinic. Compliance with well-defined good manufacturing protocols (GMP)
will improve batch-to-batch consistency and the reproducible efficacy of MSC-S [97].

6.3. Potential Side Effects of MSC-S

Although there are limited reports of the negative effects of secretome, there are always potential
risks using exogenous biological molecules, although these risks are reduced when compared to
cell-based therapies. A comprehensive analysis is needed before MSC-S transplantation to specific
niches in different tissues. For example, MSC-S contains MSC-derived exosomes and extracellular
vesicles that can be immunogenic; however, the immunogenicity of exosomes has been shown to be less
than their parent MSCs [98]. On the other hand, immunosuppressive properties of MSC-S have been
reported in several studies and have been hypothesised to be one of the main mechanisms of action of
MSC-S when treating autoimmune diseases [99]. However, the use of secretome may diminish the
immune system, which may increase the risk of infection, immunodeficiency and tumour growth in
treated patients [100]. Thus, an optimal amount of secretome should be clearly defined with an aim to
find the right balance between safety and effectiveness of any secretome based therapy.

6.4. Limitation of Secretome Resources and Instability of Secretome Components

The number of MSCs that are required to produce sufficient quantities of secretome for an
equivalent effect on acute wounds is about 10–25 times higher than directly administered live cells [43].
These elevated numbers of cells impact the costs of derivation and validation because the biological
properties and activity of these cells may change with repeated passages. However, with increased
production and improvement in cell factories and bioreactors, the impact of this drawback may be
minimised. Another major concern in secretome therapy is the instability and short half-life of proteins.
One of the successful strategies to address these drawbacks is preconditioning cells to stimulate the
paracrine production of the secretome. Preconditioning is also useful to control the composition of
the secretome to avoid the toxicity caused by upregulated cytokines [95]. Hence, it is important to
first elevate the production of desirable factors and downregulate the detrimental ones, and second
to achieve an appropriate balance between stimulatory and inhibitory factors produced by these
cells. There are different pre-treatment methods for MSCs, for example, subjecting cells to hypoxia
or anoxia has been reported to increase the secretion of cytokines and growth factors in transplanted
stem cells [101]. Genetic manipulation of cells using transgenes can also alter specific gene expression
with the aim of controlling the MSC-S post-transplantation [102]. Another promising approach for
pre-treating stem cells before transplantation involves small molecules, such as inflammatory cytokines
and growth factors [103]. For example, treating MSCs with inflammatory cytokines increases their
secretion of anti-inflammatory biomolecules and improves their immunosuppressive function [104].
Preconditioning through cell–cell interactions is another strategy to improve the secretion of favourable
biomolecules. For example, Potapova et al. (2007) reported that MSCs in 3D spheroids are able to
secrete higher levels of paracrine biomolecules, such as IL-11, VEGF, FGF-2 and angiogenin, compared
to MSCs in monolayers [105]. This tailoring of the MSC-S could potentially lead to numerous off the
shelf products specifically designed for the treatment of specific conditions or wound types.
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7. Conclusions

Even though advances in the field of stem cell therapy have grown significantly, there are still
practical and clinical hurdles to overcome before they can be routinely used for the treatment of
wounds. Poor engraftment and survival of cells in damaged areas, immunogenicity, tumorigenicity
and lack of efficiency are notable limitations for clinical stem cell therapies. The use of MSC-S as a
potential alternative to MSCs is of enormous interest and has significant clinical potential, given the
trophic properties of many of the secreted factors. MSC-S therapy avoids the use of live cells and
can limit biological variability, therefore, leading to the potential development of efficient and safe
therapeutic approaches. While the mechanism of action of the MSC-S is still to be fully determined,
the development of a cell-free therapy for the treatment of cutaneous wounds holds great promise.
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Abbreviations

ADSC Adipose-derived stem cells
Ang Angiopoietin
BM-MSC Bone marrow mesenchymal stem cell
CD Cluster of differentiation
DPSCs Dental pulp derived stem cells
ECM Extracellular matrix
EGF Epidermal growth factor
FGF-2 Fibroblast growth factor-2
G-CSF Granulocyte - colony stimulating factor
GM-CSF Granulocyte-macrophage colony-stimulating factor
HGF Hepatocyte growth factor
ICAM Intercellular adhesion molecule 1
IFN-γ Interferon-gamma
IGF Insulin-like growth factor
IL Interleukin
IL1-RA Interleukin-1 receptor antagonist
KGF Keratinocyte growth factor
LIF Leukemia inhibitory factor
MCP-1 Monocyte chemoattractant protein-1
MHC Major histocompatibility complex
MMP Matrix metalloproteinase
MSCs Mesenchymal stem cells
MSC-S Mesenchymal stem cells secretome
PDGF Platelet derived growth factor
PD-L1 Programmed death-ligand 1
SDF-1 Stromal cell-derived factor-1
TGF Transforming growth factor
Th1 Type 1 T helper cell
Th2 Type 2 T helper cell
TIMP-1 Tissue inhibitor of metalloproteinase
TNF Tumour necrosis factor alpha
UC-MSCs Umbilical cord-derived mesenchymal stem cells
VCAM Vascular cell adhesion protein
VEGF Vascular endothelial growth factor
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