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Abstract

Antimicrobial peptides (AMPs) are part of the inherent immune system. In fact, they
occur in almost all organisms including, e.g., plants, animals, and humans.
Remarkably, they show effectivity also against multi-resistant pathogens with a high
selectivity. This is especially crucial in times, where society is faced with the major
threat of an ever-increasing amount of antibiotic resistant microbes. In addition,
AMPs can also exhibit antitumor and antiviral effects, thus a variety of scientific
studies dealt with the prediction of active peptides in recent years. Due to their
potential, even the pharmaceutical industry is keen on discovering and developing
novel AMPs. However, AMPs are difficult to verify in vitro, hence researchers conduct
sequence similarity experiments against known, active peptides. Unfortunately, this
approach is very time-consuming and limits potential candidates to sequences with
a high similarity to known AMPs. Machine learning methods offer the opportunity to
explore the huge space of sequence variations in a timely manner. These algorithms
have, in principal, paved the way for an automated discovery of AMPs. However,
machine learning models require a numerical input, thus an informative encoding is
very important. Unfortunately, developing an appropriate encoding is a major
challenge, which has not been entirely solved so far. For this reason, the development
of novel amino acid encodings is established as a stand-alone research branch. The
present review introduces state-of-the-art encodings of amino acids as well as their
properties in sequence and structure based aggregation. Moreover, albeit a well-
chosen encoding is essential, performant classifiers are required, which is reflected by a
tendency towards specifically designed models in the literature. Furthermore, we
introduce these models with a particular focus on encodings derived from support
vector machines and deep learning approaches. Albeit a strong focus has been set on
AMP predictions, not all of the mentioned encodings have been elaborated as part of
antimicrobial research studies, but rather as general protein or peptide representations.
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Introduction
Antimicrobial peptides are part of the inherent immune system of almost all organ-

isms, such as plants, animals, and humans [1]. Owing to increasing rates of

multi-resistant pathogens, the scientific community has reached out for novel strat-

egies to tackle this threat [2, 3]. One of these approaches leverages the endogenous

defense system mode of action, particularly on exposed surfaces, such as the skin,
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commonly referred to as antimicrobial peptides (AMPs) [1]. To this end, researchers

have shown that AMPs also have an effect even against multi-resistant pathogens and

thus, can effectively employed as antibiotic agents. AMPs can also interfere intracellular

mechanisms, which makes these potential candidates for cancer treatment or inflam-

matory diseases [4]. Owing to their broad fields of application and the demonstrated

potential, the pharmaceutical industry pushes research ahead in order to discover and

develop novel and highly effective AMPs, such as the approved polymyxins, which

serve as last resort therapy, if the usual treatment fails [4]. In order to enable AMP de-

tection with low costs and in high throughput, computational approaches offer the op-

portunity to explore the huge space of sequence variations in a timely manner. In

particular, artificial intelligence, hence machine learning algorithms perform well in

prediction and classification tasks, including computer vision [5], autonomous driving

[6], or life science [7]. It is thus not surprising, that machine learning has been applied

for fast and automated discovery of AMPs [8] and protein classification in general [9].

Two major issues arise here: firstly, biological information of the amino acid sequence

has to be translated into a numerical representation and secondly, the input must not

be of varying length, therefore sequence lengths have to be aligned. This is due to the

intrinsic nature of machine learning models, i.e., the requirement of a numerical input

with a fixed dimension. To this end, a variety of encodings has been developed over

time. Each of these encodings are created to reflect biological relationships as well as

intrinsic information of the primary sequence and higher order confirmations as accur-

ate as possible. Since an informative encoding is very important and crucial for predic-

tion accuracy, not only numerous encodings have been proposed, but also various

strategies to combine existing ones. In order to shed light in this complex topic, litera-

ture has been mined for sequence and structure based encodings and elaborated as part

of this review. The goal of the present study is the easing of the application of existing

encodings for own projects and to encourage further research in the automated classifi-

cation of antimicrobial peptides. The paper is structured as follows: in order to under-

stand the rationale behind different encodings, we introduce the general effect of

AMPs in the first section. Afterwards, prepared with the biological background, we

summarize sequence- and subsequently structure-based encodings in the second sec-

tion. Since the prediction task requires not only an expressive encoding, but also a per-

formant classifier, we further highlight the employed machine learning algorithms in

another section. Moreover, special encodings have been derived from support vector

machines and deep learning. For this reason, we elaborate on these more detailed in

another section. For the sake of completeness, tools for AMP prediction are uncovered,

which includes different databases as sources for AMP sequences and packages, which

provide implementations for many of the presented encodings.

Antimicrobial peptides
AMPs are part of the inherent immune system and can be especially found in exposed

surfaces, such as mucosa and the skin [1]. At these sites, AMPs serve as a defence sys-

tem and are expressed to protect the organism against microbial intruders. The defense

measures encompasses different types of bacterial interaction, mostly due to the AMPs

physicochemical properties and the resulting three-dimensional structure. That is,

mostly positive charged and hydrophobic residues are constituted to 10 to 50 residues

Spänig and Heider BioData Mining            (2019) 12:7 Page 2 of 29



long peptides, forming either α-helices, β-sheets or random coils [1]. Due to the “mul-

ti-hit mechanism”, adaption against AMPs is difficult and thus, AMPs are effective even

against highly resistant pathogens. To this end, active peptides are interacting with

pathogens in two ways: on the one hand, they disrupt the bacterial membrane and on

the other hand, they advance further into the cell, generally known as translocation

[10]. Because of different characteristics of eukaryotic and prokaryotic membranes, the

interaction of AMPs with their corresponding target is highly selective [11]. The mem-

brane disruption leads to the loss of important ions and metabolites, which finally leads

to cell lysis and subsequently to cell death [1]. Essentially, three membrane disruption

models are known: the barrel-stave model for pore building, the carpet model for disin-

tegration of the membrane, as well as the toroidal-pore model for arranging the mem-

brane to build continuous pores [1, 11]. The further advancement to intracellular

location, i.e., translocation, takes place without permeabilizing the pathogens mem-

brane. Within the cell, AMPs aggregate in the cytoplasm and inhibit nucleic acid as

well as protein synthesis [12]. Besides antimicrobial effects, antiparasitic, antivirus, and

anticancer effects have been reported. In the case of the latter, AMPs can trigger apop-

tosis and prevent angiogenesis [4].

While most AMPs have the ability to kill microbial pathogens directly, other

peptides, e.g., anticancer AMPs, have immunomodulatory capabilities to stimulate

cells and tissues of the host defense system. More general, these class of peptides

are known as host defense peptides (HDP). For instance, the well-studied HDP

LL-37 [13] reveals its complex mode of action, due to direct and indirect interac-

tions with a vast amount of genes and proteins of the host. Hence, HDPs are im-

portant signaling molecules, capable, for instance, to regulate autoimmune

response in the case of inflammatory diseases or, as mentioned above, support

tumor suppression [14].

Encodings
This section describes the different approaches and mechanisms to encode an amino

acid sequence as a numerical vector and is divided in two main parts: the first deals

with sequence-based encodings and the second part describes structure-based encod-

ings. The former, summarized in Table 1, encompass sparse or binary encoding,

followed by the general and the pseudo-amino acid composition. Afterwards, the re-

duced amino acid alphabet will be introduced as well as descriptors, which incorporate

physicochemical as well as statistical properties of the respective amino acid and substi-

tution matrices (which incorporate the substitution frequency of amino acids). Never-

theless, the function of a peptide is defined by its three-dimensional shape, hence

structure-based encodings (Table 2) have been proposed in order to improve prediction

performances. Thus the second part of this section introduces structure-based encod-

ings. Besides the classical state-of-the-art approaches for encoding of peptides, novel,

promising encodings have been developed, such as the Chaos Game Representation,

which are described in the third section and summarized in Table 3. Hereinafter, each

of these encodings are compared in detail and applications and method specific custo-

mizations are provided as well as, if possible, the relation between the biology behind

the encodings and the antimicrobial effect.
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Table 1 Summary of sequence based encodings

Encoding Description Summary Used in Used along with Main
Category

Sparse each amino acid is
represented as an
one-hot vector of
length 20, where
each position,
except one, is
set to 0

Density: -
Information: +

[15, 19–21] Substitution
Matrix, Amino
Acid Composition

Sparse encoding

Amino Acid
Composition

feature vector
contains at each
position the
proportion of an
amino acid in
relation with the
sequence length

Density: +
Information: -

[22–24] Distance Frequency,
Quantitative Matrix,
Dipeptide Composition,
PseAAC

Amino acid
composition

Distance
Frequency

calculates the
distance between
amino acids of
similar properties
and bins the
occurrence
according to the
gap length

Density: +
Information: +

[22] Amino acid
composition

Quantitative
Matrix

encodes the
propensity of each
amino acid at a
position

Density: +
Information: +

[23] Amino acid
composition

CTD describes the
composition (C),
transition (T) and
distribution (D) of
similar amino acids
along the peptide
sequence

Density: +
Information: +

[25] Amino acid
composition

Pseudo-amino
Acid
Composition
(PseAAC)

computes the
correlation between
different ranges
among a pair of
amino acids

Density: +
Information: +

[27–30] Dipeptide
Composition

Pseudo amino
acid composition

Reduced Amino
Acid Alphabet

similar amino
acids are
grouped
together

Density: +
Information: o

[9, 32–34, 36, 37] N-gram Model,
AAIndexLoc

Reduced amino
acid alphabet

N-gram Model
occurrences of
n-mers for an
alphabet of size m,
leading to a mn

dimensional, sparse
representation of
the initial sequence

Density: -
Information: o

[9] Reduced amino
acid alphabet

AAIndexLoc k-nearest neighbor
clustering to
aggregate amino
acids into 5 classes
using their amino
acid index, i.e.,
amino acids with
the respective
highest(T), high (H),
medium (M), low
(L), and lowest (B)
values of a particular
physicochemical
property are
clustered together

Density: o
Information: +

[37] Dipeptide
Composition

Reduced amino
acid alphabet

Physicochemical
Properties

translation of an
amino acid to a

Density: o
Information: +

[40, 42, 47–53] z-descriptor,
d-descriptor

Physicochemical
properties
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Table 1 Summary of sequence based encodings (Continued)

Encoding Description Summary Used in Used along with Main
Category

particular
physicochemical
property

and many more

z-descriptor derived from
the principal
components of
physicochemical
properties by means
of partial least
squares (PLS)
projections, PLS
leads to a subset of
five final features,
capable to
describe the 20
proteinogenic as
well as 67 additional
amino acids

Density: +
Information: +

[42, 44] Physicochemical
properties

d-descriptor amino acid
sequence is
squeezed between
the y- (N-terminus)
and the x-axis
(C-terminus) with
gradually bending
of the single amino
acids and
subsequent
vector summation

Density: +
Information: +

[54] Physicochemical
properties

Autocorrelation interdependence
between two
distant amino
acids in a peptide
sequence

Density: +
Information: +

[57–61] Autocorrelation

Substitution/
Scoring Matrix

provide accepted
mutations between
amino acid pairs,
i.e., sequence
alterations with
either no or positive
impact in terms of
the protein function

Density: +
Information: +

[65–71] BLOMAP, Sparse,
Amino Acid
Composition,
Dipeptide
Composition,
PseAAC,
AAIndexLoc

Substitution and
scoring matrix

BLOMAP incorporates the
BLOSUM62 to
calculate distances
in a high
dimensional input
space, i.e., the
substitution matrix,
to a lower
dimension, using
the Shannon-
projection

Density: +
Information: +

[65] Substitution and
scoring matrix

Fourier
Transformation

to detect underlying
patterns in time
series, by
transforming the
time signal to a
frequency domain

Density: o
Information: +

[73, 74] Fourier
Transformation

+ (good), o (neutral/no declaration), − (bad). For instance, “Density: -” means the encoding results in a high
dimensional feature space and “Information: +” reflects a representative mapping from the residue sequence to the
numerical vector. “o” denotes encodings, which are difficult to classify, due to missing details in the respective
publication or can be considered as neutral. In general, the classification rests upon the authors experience and shall
support researchers to quickly grasp suitable encodings. Nevertheless, an encoding which has been rated “-” still might
work well for a particular application and should by no means regarded as the final evaluation
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Sequence based encodings

Sparse encoding

The first approach that has been used to describe a peptide sequence is sparse encoding

(also named binary encoding). In sparse encoding, each amino acid is represented as an

one-hot vector of length 20, where each position, except one, is set to 0. Thus, in a vector-

ized format, the amino acids alanine and valine are encoded as 10000000000000000000 and

00000000000000000001, respectively [15]. For instance, the amino acid sequence

GHKARVLAEAMSQVTGSAAVM, the p2 peptide ([16, 17]), is encoded into the

matrix A as:

A ¼

G
H
⋮
V
M

A R N D C E Q G H I L K M F P S T W Y V
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0
BBBB@

1
CCCCA

Since machine learning models require a fixed input dimension, the respective se-

quence lengths have to be adjusted before encoding. In the present case, this happens

either by a multiple sequence alignment or with a pairwise alignment against a refer-

ence sequence. The alignments will introduce gaps, hence a further dummy amino acid

Table 3 Summary of alternative encodings (see Table 1 for further details)

Encoding Description Summary Used in Used along with

Chaos Game
Representation
(CGR)

a visual encoding of a
sequence, generating
a fractal

Density: -
Information: o

[98–102] Physicochemical
Properties

Linguistic Model description of AMPs
by a grammar

Density: o
Information: o

[103]

Table 2 Summary of structure derived encodings

Encoding Description Summary Used in Used along with

Quantitative structure-
activity relationship
(QSAR)

describes amino acids sequences
by their chemical properties,
molecular characteristics and
structure

Density: o
Information: +

[78–85] z-Descriptors

General Structure protein structure is described by
means of their total 3D shape,
secondary structure, solvent
accessibility, aggregation
tendency, contact number,
residue depth

Density: +
Information: +

[86–88, 97]

Electrostatic Hull wraps superimposed shapes
of the proteins sub-structure

Density: o
Information: +

[17, 89, 90] Physicochemical
Properties

Spheres incorporates structural variations
as consequence of sequential
rearrangements

Density: o
Information: +

[91] Physicochemical
Properties

Distance Distribution distribution of euclidean
distances between each atom
type

Density: o:
Information: +

[92]

Delaunay Triangulation encodes the complete protein
shape by finding the optimal
edges between representative
atoms

Density: o
Information: +

[93, 94]

+ (good), o (neutral/no declaration), − (bad) (see Table 1 for further details)
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has to be added to the matrix. On the one hand, sparse encoding offers the advantage

of providing an easy representation of the 20 proteinogenic amino acids (plus one

dummy residue for gaps). On the other hand, the resulting input space for subsequent

machine learning is inflated and could impose problems, such as the curse of dimen-

sionality [18]. The feature vector dimension will be inflated to 21*max(l), whereby l de-

notes the length of a given peptide sequence. Nevertheless, sparse encoding is

frequently used. For instance, Hirst et al. (1992) used this encoding to train a neural

network and to predict secondary structure as well as the function [15]. However, the

authors used sliding windows to separate the original sequence into segments such that

the impact of spatially close residues is considered. Thus, the dimension of the input

vector is 20 (each amino acid) times the window size [15]. Another study combined

sparse encoding and a substitution-matrix-based encoding to predict peptide binding

affinity to T-cell epitopes using neural networks [19]. The latter encoding increases the

generalization ability of the classifier, whereas the sparse encoding does not provide

additional information, except simply the amino acid itself [19]. This drawback of

sparse encodings has been recognized by others. For instance, as part of a study to pre-

dict peptide induced modulation of antigen presenting cells, Nagpal et al. (2018)

encoded the N-terminus and the C-terminus as binary vectors and used this encoding

along with the overall amino acid composition as features for a support vector machine

(SVM) [20]. Usmani et al. (2018) used a similar combination of sparse encoding of both

termini and amino acid composition in order to predict antitubercular peptides by

means of an ensemble classifier [21]. In addition, they state that sparse encoding has

the advantage to keep the sequence order information [21].

Amino acid composition

An approach to overcome the limitations of sparse encoding and hence making the

resulting feature space more dense, is the representation of the amino acid sequence as

its respective composition. Here, the final feature vector contains at each position the

proportion of an amino acid in relation with the sequence length (Fig. 1). For instance,

one can divide a peptide into chunks including both termini and calculate the local

amino acid composition [22]. The amino acid composition differs from one class to the

another and, for instance, cell penetrating peptides require hydrophobic residues at the

N-terminus, which could be approximated well by the features gained from the local

Fig. 1 The single letter amino acid composition counts the occurrence of the respective amino acids
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composition [1]. Additional performance has been achieved by introducing a technique

called distance frequency, which calculates the distance between amino acids of similar

properties and bins the occurrence according to the gap length. Matsudo et al. (2005)

used both encodings to predict the subcellular location by means of SVMs [22]. Com-

monly, amino acid composition is applied to distinguish between different classes of

peptides, i.e., antimicrobial and non-antimicrobial peptides [23] or to classify antiviral,

antitumor, antibacterial, and antifungal peptides [24]. The former introduces quantita-

tive matrices as a novel descriptor, which encodes the propensity of each amino acid at

a certain position. This encoding has been employed in addition to local sparse encod-

ing for analysing as well as predicting antimicrobial peptides in general. In contrast, the

latter study applied increment of diversity (ID) to classify unknown peptides to the re-

spective classes. To ensure a well-performing classifier, the ID is not only based on the

amino acid composition, but is rather used along with the dipeptide and the

pseudo-amino acid composition, which will be introduced hereinafter. Dubchak et al.

(1995) proposed an encoding, which describes the composition (C), transition (T) and

distribution (D) of similar, hence in terms of physicochemical properties, amino acids

along the peptide sequence [25]. C refers to the composition of the respective residues,

T denotes the frequency of the transition from one group to another and finally, D re-

flects the distribution of properties within 0, 25, 50, 75 and 100% of the sequence. The

CTD-descriptor has been employed to predict protein folding classes [25].

Pseudo-amino acid composition

Sparse encoding and the amino acid composition do not take into account the se-

quence order effect. This effect considers the vast amount of possible amino acid com-

binations as the sequence length increases. That is, for a peptide of length 6, there are

already 206 = 64,000,000 different sequence arrangements. In terms of antimicrobial ac-

tivity, Cherkasov et al. (2009) pointed out that, albeit having very similar amino acid

compositions, some peptides were virtually inactive [26]. Thus, the pseudo-amino acid

composition (PseAAC) has been introduced to consider the effect of the sequence

order [27]. The PseAAC computes the correlation between different ranges among a

pair of amino acids, which leads to a 20 + λ dimensional vector (Fig. 2a). The first 20

Fig. 2 Sketch of sequence-based encodings derived from autocorrelation and reduced amino acid
alphabet. a Autocorrelation and pseudo-amino acid composition from adjacent residues, considering a gap
size of one. b Reduced amino acid alphabet. Clustering corresponds to similar physicochemical properties,
according to Veltri et al. (2017)
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components are the composition of the 20 natural occurring amino acids, whereas the

20 + 1 to 20 + λ components describe the correlation according to the respective se-

quence order level. For the most contiguous (λ = 1) and the second-most contiguous

(λ = 2) amino acids, the PseAAC results in a 22-D (dimensional) vector. Thus, for λ = 1

the sequence order for adjacent amino acids are taken into account. The correlation

function incorporates several physicochemical properties, such as the hydrophobicity

and amino acid side chain mass. To verify that this method leads to a lower loss of in-

formation compared to the usual amino acid composition, several similarity measures

have been employed. These include the prediction of subcellular locations of proteins,

membrane protein types, as well as their particular locations [27]. To improve predic-

tion accuracy, the PseAAC has been used by several studies, e.g., [28, 29], and [30], in

combination with other types of encodings. For instance, in order to predict AMPs and

additional efficiencies towards, e.g., cancer cells and HIV, PseAAC was applied in a

two-level approach: first, it was used to encode peptide sequences to distinguish be-

tween AMPs and non-AMPs and second, to determine additional effects. Both classifi-

cations have been conducted by means of fuzzy k-nearest neighbors [28]. Moreover,

additional physicochemical properties have been used to enhance the discriminative

power of PseAAC [28]. Chen et al. (2016) tried to unveil novel anticancer peptides by

enhancing the default dipeptide composition with PseAAC [29]. This approach con-

siders long range interactions between amino acid pairs along with the dipeptide com-

position. The latter might reflect structural interactions, such as hydrogen bridge

bonds between spatial close amino acids to form alpha helices [31]. An extension to

the interaction of multiple encodings, including PseAAC, has been conducted by

Meher et al. [30]. They used PseAAC in addition to structural and physicochemical

encodings in order to distinguish between AMPs and non-AMPs. Again, an SVM was

used to conduct the classification [30].

Reduced amino acid alphabet

Sparse encoding, amino acid composition, and PseAAC consider, more or less, the ac-

tual amino acid sequence to encode a peptide. Therefore, the encoding might not re-

flect sequence variations well and this might negatively contribute to the classifier

performance. In order to improve generalization, also considering mutations, one could

make use of the reduced amino acid alphabet. Here, similar amino acids are grouped

together, based on physicochemical, such as hydrophobicity and hydrophilicity [9] or

structural properties, e.g., the backbone structure (Fig. 2b) [32]. The reduced amino

acid alphabet has been employed in combination with the n-gram model to ease the

classification of protein sequences. The n-gram model counts the occurrences of

n-mers for an alphabet of size m, leading to a mn dimensional, sparse representation of

the initial sequence (Fig. 3). Nevertheless, despite the preceding alphabet reduction, the

increased dimensionality is again a major drawback of the n-gram model. Thus, single

value decomposition [33] has been applied to reduce the number of features to effi-

ciently train an artificial neural network (ANN). Finally, the ANN is used to assign the

query proteins to the respective protein families [9]. Comparable to the n-gram model,

the n-peptide composition leads, in particular for an increasing n, to an inflation of the

feature space. Yu et al. (2004) used the n-peptide model to predict the subcellular
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location of proteins in Gram-negative bacteria [34]. For this purpose, the dipeptide,

amino acid, as well as the partitioned amino acid composition have been leveraged. For

the latter, the sequence is split into equal-length segments and these segments are used

to train several SVMs. The assignment of the respective subcellular location is then

based on a majority vote of all classifiers [34]. Furthermore, the reduction of the amino

acid alphabet, based on structural properties, has been used as the initial step to con-

struct more complex features. These complex features consist of compositional, pos-

itional, position-shifted, and correlated features, which are combined through several

boolean functions, such as matches and/or matchesAtPosition. The ultimate goal of the

study was the prediction of AMPs and their selectivity for different kinds of bacteria

and to this end, the complex features are further reduced by means of a filter-based

feature selection [35, 36]. Another study uses the k-nearest neighbor clustering to ag-

gregate amino acids into five classes using their amino acid index, i.e., amino acids with

the respective highest (T), high (H), medium (M), low (L), and lowest (B) values of a

particular physicochemical property are clustered together. This encoding (AAIndex-

Loc) is extended by the five-level dipeptide composition, which extends the aforemen-

tioned clustering by aggregating pairs of amino acids, such as TT, TH, and so forth.

Along with these descriptors, Tantoso et al. (2008) employed the amino acid compos-

ition, for both termini and the middle part of the peptide, which leads to a dataset of

70 features for an SVM to predict subcellular location [37].

Physicochemical properties

One of the important encodings in AMP prediction, if not the most important one, is

the translation of an amino acid to a particular physicochemical property, which have

been determined in various wet lab experiments (Fig. 4a). The amino acid index data-

base (AAindex) has been established as a unified source for these descriptors [38]. The

AAindex is grouped into three parts, whereby the AAindex1 contains the just men-

tioned biochemical properties (one for each amino acid) and the AAindex2 aggregates

different substitution matrices, such as the PAM250 or the BLOSUM62. The AAindex3

provides protein contact potentials, hence empiric values for spatial close amino acids,

such as the Gibbs free energy change, to indicate preferred interactions between resi-

due pairs [39]. The AAindex database, as a consistent source for numerical amino acids

Fig. 3 Similarly to the amino acid composition, the k-mer composition counts the presence of k-mers. In
this example k is set to three
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indices, has proven its usefulness in several studies. An example is the prediction of

transmembrane protein segments [40]. Deber et al. (2001) used, among others, the

hydrophobicity scale introduced by Kyte and Doolittle [41], as a reference to their ex-

perimental derived values of hydrophobicity [40]. The program annotates α-helical re-

gions in the query sequence, based on the respective hydrophobicity and helix

tendency thresholds [40]. So called z-descriptors have been employed as part of the

prediction of cell-penetrating peptides [42]. These type of peptides reveal an important

property, as they are capable to introduce macromolecules into the cell, which is espe-

cially interesting for the pharmaceutical industry [43]. The z-descriptors are derived

from the principal components of physicochemical properties by means of partial least

squares (PLS) projections [44]. PLS leads to a subset of five final features, capable to

describe the 20 proteinogenic as well as 67 additional amino acids. The first three com-

ponents can be considered as lipophilicity, volume (steric bulk), and polarity, respect-

ively, whereas the fourth and the fifth component are not clearly derivable [44]. These

properties are appropriate for the cell-penetrating peptide prediction, due to the intrin-

sic properties, which are the polarity (positively charged residues are advantageous) as

well as the the amphi- and hydrophobicity [42]. However, Hansen et al. (2008) pointed

out, that the method benefits from averaging z-descriptors, because that allows to com-

pare sequences with varying length [42]. Nevertheless, to deal with varying protein or

peptide sequence lengths, interpolation techniques have been introduced [45]. Se-

quence interpolation refers to a method, which connects multiple points, that is amino

acid indices, via different linear and nonlinear functions. In order to obtain a continu-

ous feature vector, the amino acid sequence is first mapped to the respective physico-

chemical property, followed by the actual smoothing, employing one of the

interpolation functions [45, 46]. Physicochemical representations of peptides have been

utilized to classify AMPs and non-AMPs [47]. To this end, Torrent et al. (2011) investi-

gated the different characteristics of antimicrobial peptides, such as the isoelectric

point, in-vivo aggregation, and hydrophobicity with respect to their discriminative

power [47]. A peptide is described by its different characteristics and the particular av-

erages were fed into an ANN to obtain the class to which the query peptide belongs

[47]. In addition, the physicochemical property encoding is employed by various web

servers for peptide retrieval, i.e., database queries, as well as for classification. Two ex-

amples are AVPpred [48] for antiviral peptide prediction and DBAASP for structure

and activity of AMPs [49]. Moreover, this encoding has been used as part of several

Fig. 4 Sketch of sequence-based encodings derived from physicochemical properties and Fourier
transformation. a The numerical representations are based on the physicochemical properties of Serine (S),
Glutamine (Q), Valine (V), Threonine (T), Asparagine (N) and Alanine (A). b Fourier transformation derived
from the encoded peptide sequence
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other studies to predict antimicrobial effects of synthetic peptides [50] or to find sub-

structures with antimicrobial potency in larger proteins [51]. In order to take into ac-

count that some traits of AMPs are dependent on particular parts within the sequence,

such as a positively charged N-terminus, further studies elucidated the physicochemical

property dependence with respect to different sequence sections. One of these studies

divided AMPs into datasets for both termini, calculated the physicochemical represen-

tation, and finally uses an SVM for classification on the best performing feature subset

[52]. Another study leverages pattern changes of amino acid characteristics along a

peptide sequence for the prediction of antimicrobial peptides by means of random for-

ests (RF) [53]. An alternative approach, which leverages hydrophobicity values, is desig-

nated as the d-descriptor [54]. This encoding is founded on sequence moments, a two

dimensional extension of sequence profiles. The amino acid sequence is squeezed be-

tween the y- (N-terminus) and the x-axis (C-terminus) with gradually bending of the

single amino acids and subsequent vector summation. The length of the vectors arise

from the respective property and the angle results from the amino acids orientation in

the 2D space. Finally, the sequence moments are mapped to scalar values, which is

named the d-descriptor. Juretić et al. (2009) used the latter in order to estimate the

therapeutic index, the ratio of hemolytic and antimicrobial activity [54]. Finally, owing

to the high dimensional feature vectors, if one uses all possible amino acid indices, sev-

eral studies, such as [52], performed statistical analysis in order to reduce the features

before the accomplishment of the actual experiments. Other studies used techniques

such as PCA to obtain the aforementioned z-descriptors as well as factor analysis in

order to describe all amino acids with only five factors [55]. Recently, Boone et al.

(2018) proposed a classification method by means of the rough set theory [56]. To this

end, physicochemical properties have been used to encode the samples and afterwards

the algorithm finds suitable boundaries to differentiate between antimicrobial and

non-active peptides [56].

Autocorrelation

An approach to consider physicochemical properties not only for a specific position, but

also for amino acids which might be related in higher dimensional protein structure as-

semblies, can be described by an encoding, which is known as autocorrelation. In general,

autocorrelation describes the interdependence between two distant signals in a time

series, whereby the distance or the lag, respectively, is predetermined and fixed for a par-

ticular computation (Fig. 2a). For amino acid sequences, repeating patterns, i.e., a certain

periodicity, might be unveiled [57]. In peptide, or generally in protein science, two algo-

rithms to detect spatial autocorrelation have been employed: the Moron autocorrelation,

which considers the local dependence of amino acids [58] as well as the Broto-Moreau

autocorrelation, which describes the global relationship of the residues [59]. These formu-

las yield either positive values, meaning that amino acids with similar physicochemical

properties follow each other (positive autocorrelation) or negative values, i.e., amino acids

with different physicochemical properties are interconnected (negative autocorrelation).

Values near zero point to no or less autocorrelation [60]. One of the earliest applications

of autocorrelation was the statistical analysis of protein content [60] and the prediction of

α-helices [57]. A noteworthy relationship exists between autocorrelation and PseAAC,
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since both take the sequence order effect into account, by measuring the correlation

among amino acid pairs. Further advantages of this encoding are the reduction of the fea-

ture space as well as the normalization of the sequence length [61]. To this end, this de-

scriptor has been utilized in several studies and facilitated, for instance, the prediction of

mutation induced stability alterations of the gene V protein by bayesian-regularized gen-

etic neural networks [61]. Another study dealt with protein-protein interactions and used

the autocorrelation descriptor to train the rotation forest algorithm [58]. Furthermore,

Kleandrova et al. (2016) used this encoding for the prediction of antimicrobial activity in

known peptides as well as for screening of novel, artificial AMPs [59].

Substitution and scoring matrix

Substitution matrices, such as BLOSUM62 or PAM250, represent accepted mutations

between amino acid pairs, i.e., sequence alterations with either no or positive impact in

terms of the protein function. More specifically, it is the likelihood for a specific muta-

tion within a certain time frame [62]. In contrast, the position-specific scoring matrix

(PSSM) describes, based on a initial BLAST alignment, and iterative refinement, how

amino acids are evolutionary conserved at a specific position. This results in positive

values for a highly conserved residue and negative values for the others. Values near

zero indicate weakly conserved residues [63]. Alignments with PSSMs can be regarded

as an extension of substitution matrices, since instead of using, e.g., the PAM250, the

PSSM is used for the alignment score, which leads to improved substitution probabil-

ities and hence more sensitive alignments [64]. With regard to antimicrobial peptides,

this encoding weights functional important residues stronger, such that conclusions for

antimicrobial effects can be drawn and hereof facilitates querying peptides with un-

known activity. For instance, the BLOMAP-encoding incorporates the BLOSUM62 to

calculate distances in a high dimensional input space, i.e., the substitution matrix, to a

lower dimension, using the Shannon-projection [65]. Maetschke et al. (2005) demon-

strated how this descriptor improves signal peptide cleavage site prediction using,

among others, Naïve Bayes (NB) and ANNs [65]. Due to the ambiguity of some BLO-

SUM50 entries, i.e., same values for amino acids, which in fact differ towards their

physicochemical properties, Huang et al. (2005) utilized this substitution matrix in

order to extend the sparse encoding [66]. They replaced each non-zero value with the

respective BLOSUM50 score, such that the information of a particular amino acid is

kept and additional information, derived from the substitution probabilities, is taken

into account. The adjusted encoding has been used to predict T-cell epitopes by means

of an SVM [66]. Karypis et al. (2006) applied substitution matrices to train SVMs for

protein secondary structure prediction [67]. Therefore, k-mers are generated and

mapped by means of the PSSM and BLOSUM62 matrices, respectively, to their numer-

ical encoding. A binary SVM has been trained on this input and the results of this clas-

sification are used along with the aforementioned encoding for a second classification,

which incorporates both [67]. Kumar et al. (2008) employed PSSMs as the encoding for

a SVM to predict RNA binding sites in proteins [68]. Another study builds several

SVMs using different encoding schemes, such as split-, dipeptide-, and regular amino

acid composition together with PSSMs to enable the prediction of malaria parasite

mitochondrial proteins [69]. Furthermore, the classification of bacterial virulent
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proteins has been facilitated through the usage of sequence order effect conserving de-

scriptors like PseAAC, the PSSM, and the above mentioned AAIndexLoc encoding.

Nanni et al. (2012) used SVMs as well as an ensemble classifier approach for the final

protein identification [70]. The latter employs a two-stage feature transformation

method, which couples PCA and neighborhood preserving embedding, followed by de-

cision trees [70]. In order to reveal DNA-binding proteins, Xu et al. (2015) extended

PSSMs to incorporate dipeptide composition, which allows the computation of the

probability of simultaneously appearing pairs of same and different amino acids within

a certain distance along the peptide sequence [71].

Fourier transformation

Fourier Transformation (FT) can be used to detect underlying patterns in time series

by transforming the time signal to a frequency domain (Fig. 4b) [72]. Examples for the

application in biomedicine are the detection of the repeated occurring of coding and

non-coding regions in DNA sequences and the prediction of cellular locations of pro-

teins [73]. FT has been applied as part of a study to discover peptides with antimicro-

bial activity [73]. To this end, the residues have been first mapped to physicochemical

properties, followed by the actual FT. Afterwards, the similarity between a reference

peptide and potential hits has been measured by means of the Euclidean distance be-

tween the respective power spectra [73]. Moreover, Yin et al. (2017) proposed an ap-

proach to predict protein-protein interactions by means of discrete Fourier

transformation (DFT) [74]. They showed, that the detection of coevolution patterns

can be carried out without using multiple sequence alignments. Again, hydrophobicity

values have been used to encode the amino acid sequences. Afterwards, subsequences

have been extracted with a sliding window approach and transformed via DFT. Based

on the DFT results, the evolutionary distances between proteins were calculated using

the Euclidean metric. Finally, a protein-protein interaction is indicated by means of the

Pearson correlation coefficient [74].

Structure based encodings

The secondary structure of a protein or peptide, respectively, is mainly determined by

its primary structure, i.e., the order of the amino acids [75]. Moreover, the peptide

structure has a strong correlation with antimicrobial activity [76]. Thus, for the predic-

tion of antimicrobial activity, it is reasonable to use sequence-based encodings, but,

since the secondary structure cannot be completely derived from the primary structure,

it is also conclusive to develop structure-based encodings. In addition, the employing of

both descriptors simultaneously, allows the classifier a better generalization and thus

improves the overall accuracy [77]. The following section introduces several applica-

tions of structure-based encodings.

Quantitative structure-activity relationship

An alternative approach to describe amino acids sequences by their chemical properties

has been developed as part of quantitative structure-activity relationship (QSAR) stud-

ies. In essence, QSAR refers to the prediction of a particular property or activity by

means of its molecular characteristics and structure [78]. This is also the crucial
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difference between the description of amino acids by their physicochemical properties

and QSAR. The latter focuses solely on molecules, whereas the former encodes the

whole residue. In addition, QSAR is mainly applied in chemoinformatics for

high-throughput screening, i.e., to find novel active substances in databases using two-

and three-dimensional representations of compounds [79]. However, several studies

propose QSAR modeling based approaches to predict antimicrobial activity. For in-

stance, one study uses this encoding1 to imitate the artificial AMP Novispirin G10 by

similar peptides in order to enhance its potency. Here, molecular modeling was used to

calculate 3D structure conformations. The structure was then used to obtain a set of

descriptors, such as hydrophobicity, amphipathicity, and electrostatic charges. Finally, a

subset of meaningful features have been determined and the activity measurement of

the analogs was determined by predicting the amount of inhibited bacterial growth

[80]. Moreover, Bhonsle et al. (2007) aimed to find informative 3D physicochemical de-

scriptors in order to predict bioactivity of AMPs [81]. Solvent-accessible surface de-

scribing (e.g., fractional charged partial surface area), structural (H-bond acceptor) and

spatial (density) descriptors, among others, turned out to be good indicators for anti-

microbial activity [81]. Jenssen et al. (2007) investigated, whether there is a set of mo-

lecular descriptors, which can be used to optimize antimicrobial activity against P.

aeruginosa [82]. This set encompasses the aforementioned z-descriptors as well as the

contact energy between amino acids, inductive and conventional QSAR descriptors

[82]. Similar descriptors have been evaluated in order to design AMPs in silico [83].

Shu et al. (2013) uses PCA to extract the first six principal components from topo-

logical and structural characteristics to predict antimicrobial activity of synthetic cat-

ionic polypeptides [84]. In contrast, Schneider et al. (2017) utilized molecular

descriptors to train self-organizing maps (SOM) [85]. Afterwards, the continuous SOM

responses are adjusted by means of lateral inhibition and utilized as input for a deep

learning model in order to predict helical AMPs [85].

General structural encodings

Unlike QSAR-based methods, general structural encodings map structure information

derived from the whole peptide, to a numerical representation. The peptide structure is

described by means of their total 3D shape. This is contrary to QSAR, because instead

encoding an amino acid sequence from a molecular viewpoint, the whole peptide struc-

ture is considered (Fig. 5a). For instance, Cui et al. (2008) predicted the secretion of

proteins into the bloodstream [86]. They used features including physicochemical prop-

erties as well as structural information, such as secondary structure, and solvent acces-

sibility. The final prediction has been facilitated by an SVM [86]. Chang et al. (2015)

employed conditional random fields (CRF) for probability prediction of critical regions

along an AMP sequence [87]. CRFs are an algorithm similar to hidden Markov models,

but more variables, such as the surrounding context, can be incorporated. In the

present case, several structural descriptors along with physicochemical properties have

been used for the prediction. The structure-based encodings encompasses the assign-

ment of predicted secondary structure, conserved protein domains, predicted anti-

microbial regions [88] as well as the aggregation tendency [87]. Dybowski et al. (2010)

proposed a stacked classifier model to predict the HIV-1 tropism [89]. To this end, the
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authors trained two independent RFs, whereby the first used hydrophobicity values and

the second used the hulls of the electrostatic potentials of the V3 loop, a short peptidic

sequence of the viral gp120 protein, as descriptors. The electrostatic hull has been de-

termined in order to acknowledge even subtle differences between different co-receptor

tropisms as well as to wrap superimposed shapes of the peptides sub-structure. A third

RF combined the output of the other models for the final class assignment [89]. Due to

high computational effort during the calculation of the electrostatic potential, Heider et

al. (2014) presented an extension of this method [90]. The authors leveraged, that the

current model achieves good performance with a constant dielectric value and ionic

strength, thus simplifying the calculation of the potential to Coulomb’s law. Finally, the

electrostatic potential has been calculated based on the cluster centers. The centroids

are determined by all points within a certain distance to the Cα-atoms of the V3 loop

[90]. As part of another study, the authors increased the prediction power by means of

multiple RFs, combined to an ensemble classifier. The respective classifiers used physi-

cochemical as well as structural properties to predict resistance against a novel HIV-1

maturation inhibitor.

The structural encoding is based on the aforementioned electrostatic potential. In

addition, a genetic algorithm has been implemented to find an optimal subset of the

physicochemical properties [17]. However, Bozek et al. (2013) pointed out, that the

structural encoding of the V3 loop exhibits limitations, since only two physicochemical

properties has been used for description [91]. To this end, they proposed a novel en-

coding, which incorporates structural variations as consequence of sequential rear-

rangements. Thus, based on the template structure, spheres, whose centers are

depicted by reference atoms, are used to enclose spatial related residues of different

loop variants. Afterwards, the averaged physicochemical properties of all residues

within these regions are used to determine HIV-1 co-receptor usage [91]. In contrast,

Sander et al. (2007) introduced an distance distribution approach in order to improve

co-receptor tropism based on V3 loops [92]. This method calculates the euclidean

Fig. 5 Exemplary structure-based encodings for antimicrobial peptide Human Defensin 5 (PDB:2LXZ). a
Solvent accessible surface. Color coding according to hydrophobicity scale (Eisenberg et al., 1984) b
Delaunay triangulation of the same peptide calculated from Cα-atoms. Bose et al. (2011) used the summed
distances between amino acid pairs to encode protein structure
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distances between each atom type. Afterwards, the respective distances are used to ob-

tain the underlying distribution. Finally, the feature vector is obtained by sampling from

this distribution, leading to a final size of each possible combination times samples

[92]. Nevertheless, HIV-1 is a very complex organism and hence, several strategies have

been tackled in order to combat the virus, such as the aforementioned relation between

the V3 loop and tropism as well as between mutations, structure and drug resistance

[93]. To this end, another encoding has been developed to describe protein structure

based on Delaunay triangulation (Fig. 5b). In essence, the Delaunay triangulation states

that, if three points or vertices, respectively, are connected via edges, no further vertex

must be located within the circumcircle of these three vertices. This encoding facilitates

to encode the complete protein shape by finding the optimal edges between representa-

tive points, such as Cα-atoms. Thus, it is able to incorporate information about spatial

close residues, which might be lost by a descriptor based on the primary structure only.

Finally, the feature vector consists of 210 entries, derived from the adjacency matrix of

all amino acid pairs. The respective values are resulting from the averaged distance

among these pairs [94]. Albeit this encoding has been mainly employed in the context

of computational HIV research, it might work as well for antimicrobial peptides, owing

to very good classification results of several studies [95]. To sum up, structural encod-

ings are an appropriate extension to sequence-based encodings since antimicrobial ac-

tivity is determined by the three-dimensional composition of the residues [96] and in

addition, the combination of sequence- and structure-based encodings increases dis-

criminating power [97].

Alternative encodings

There are further encodings, which do not really fit into the proposed categories, i.e.,

sequence or structural encodings. One of these encodings, which are summarized in

Table 3, is the Chaos Game Representation (CGR). In general, the CGR is a visual en-

coding of a sequence, generating a fractal. The sequence can be obtained, e.g., from

random numbers or from biological sequences, such as bases (DNA) and amino acids

(proteins). In the case of the former, numbers from 1 to 3 denoting a vertex of a tri-

angle. The algorithm works as follows: firstly, a starting point s is determined and after-

wards, one of the numbers is randomly selected as the target vertex t. The next point is

located on the half way between s and t. By repeating this procedure, the so called Sier-

pinski triangle will be generated. The Sierpinski triangle is special about its recursively

defined sub-structures, which are also triangles [98]. In the case of the DNA, t is not

selected by chance, but rather by the successive base. Here, adenine (A), thymine (T),

guanine (G) and cytosine (C) are the labels of a square. After conducting the algorithm,

the resulting fractal shows lower order, but still exhibits notably patterns, originated

from the underlying sequence. Moreover, points which are close in the CGR do not

have to be necessarily adjacent in the sequence, which means that the CGR might

introduce novel distance metrics of subsequences [98]. However, with respect to AMPs,

CGR has been applied as part of a variety of studies in order to deal with amino acid

sequences. As such, Basu et al. (1997) classified similar amino acids to 12 different

groups, each representing a target vertex for the CGR algorithm [99]. In addition, the

resulting dodecagon has been divided in 24 grids and the amount of points per grid has
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been used to predict the affiliation to protein families [99]. A further study reduced the

amount of vertices to 8, whereby the grouping happened according to the respective

physicochemical properties [100]. Moreover, He et al. (2016) extended the illustration

to three dimensions, which results in a cube, rather than a planar octagon [100]. The

study investigated how this encoding could be employed for multiple sequence align-

ments. To this end, the authors introduced a method, which computes the euclidean

distance between amino acid pairs of two encoded proteins. Finally, the similarity of

two proteins is denoted by the sum of the distances [100]. Recently, one study used

CGR in a 10D space, using a hypercube for the prediction of anticancer peptides [101]

as well as for protein-protein interactions [102].

Another method, which does not fit into the proposed sections has been introduced by

Loose et al. (2006) in order to design novel AMPs [103]. In this study, the authors consid-

ered AMPs as a corpus of sentences and the goal was to examine, whether antimicrobial

activity is described by a certain grammar. To this end, a linguistic model has been de-

rived from active peptides and successfully employed for the design of AMPs [103].

Models
So far, state of the art encodings have been discussed extensively. The next section will

summarize the utilized learning algorithms. Popular models in antimicrobial peptide

prediction include decision trees [21, 50, 71] and random forests [17, 53, 104, 105], but

also neural networks have been employed in several studies [9, 26, 106]. Moreover,

deep learning, as an extension to ordinary neural networks, has been applied frequently

and thus a more detailed description, along with a summary in Table 4, is provided in

the next section. Support vector machines are a further outstanding model in AMP

prediction and were part of several studies [29, 30, 91]. In fact, there are specific ker-

nels designed for amino acid based proteins/peptides sequences, known as string ker-

nels. To shed some light into this topic, the upcoming section will highlight these

kernels in more detail. In addition, Table 5 summarizes the presented kernels. However,

besides the popular algorithms mentioned above, further methods leveraged partial

least squares [82, 83, 107], hidden Markov models [108], logistic regression [109] and

Bayesian networks [110]. Furthermore, ensembles of several classifiers have been also

successfully implemented, such as in [17] or [21], whereby often one classifier is trained

with a particular sequence or structural encoding. As part of an optimized feature set

construction, genetic algorithms have been employed, by, e.g., Kernytsky et al. (2009)

[111] as well as Veltri et al. (2017) [36]. Moreover, Krause et al. (2018) made use of gen-

etic algorithms to optimize cell-penetrating peptides [43].

Table 4 Different encodings from deep learning models (see Table 1 for details)

Encoding Description Summary Used in Used along with

ProtVec amino acid sequences are encoded as
a distributed representation of k-mers

Density: +
Information: +

[124]

Voxel structures of proteins are encoded as voxels Density: o
Information: +

[125, 126]

Matrix mimicks images by regarding the respective
entries of PSSMs as pixel densities

Density: o
Information: +

[127, 129, 130] PSSM

Autoencoder extracts representative characteristics in order
to reproduce the input as good as possible

Density: +
Information: o

[131]
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String kernel

Support vector machines (SVM) are capable to efficiently distinguish between binary

input data by projecting the data to a higher input space, using kernel techniques

[112]. Moreover, these kernel techniques allow a linear separation of a nonlinear classi-

fication problem, which is also known as the kernel trick [113]. One type of these ker-

nels are string kernels, which are employed to measure sequence similarity [112]. In

essence, the idea of string kernels implies that strings are mapped to a numerical repre-

sentation in order to be used as input for an SVM. Thus, it is basically another encod-

ing of an amino acid sequence, i.e., a method to map the string representation of

peptide sequences to high dimensional feature vectors. Hence, several studies proposed

corresponding methods, such as Leslie et al. (2002), who extended the spectrum kernel,

in order to incorporate sequence variations, to the mismatch kernel [112]. The former

generates all possible subsequences of length k and counts the occurrences of these

k-mers within the query sequences, leading to a similarity metric based on shared

k-mers [112]. This encoding is similar to the k-peptide composition, for instance the di-

peptide composition (k = 2), which has been introduced earlier. The mismatch kernel

on the other hand, considers a certain distance, hence mismatches, between two

k-mers and takes into account, that similar sequences might have similar properties.

Owing to the nature of spectrum kernels, further investigations revealed important and

meaningful motifs. As a case study, the authors predicted homolog proteins [114]. Fur-

thermore, string kernels have been applied to predict tumor suppressors, among others.

Here, small molecules are encoded in their 1D, 2D, and 3D representations. In 1D, mis-

match kernels have been employed to measure the similarity between the atomic se-

quences [115]. Another study investigated the performance of combined as well as

weighted mismatch and structure derived similarity score kernels [116]. For these

Table 5 Different types of string kernels (see Table 1 for further details)

Encoding Description Summary Used in Used along with

Spectrum Kernel generates all possible
subsequences of length
k and counts the occurrences
of these k-mers

Density: -
Information: -

[112]

Mismatch Kernel considers a certain distance,
hence mismatches, between
two k-mers

Density: -
Information: o

[114–116] General Structure

Distant Segment Kernel allows a gap between two
k-mers

Density: -
Information: o

[118]

Local Alignment Kernel obtained from local alignment
scores

Density: +
Information: o

[119] Spectrum Kernel,
Mismatch
Subsequence Kernel

Subsequence Kernel measures sequence similarity,
gaps within k-mers are taken
into account

Density: +
Information: o

[119] Frequency of Amino
Acid Pairs

Frequency of Amino
Acid Pairs

similar to dipeptide
composition

Density: -
Information: o

[119]

String Kernels +
Physicochemical
Properties

optimization of existing
string kernels such that these
involve physicochemical
properties

Density: +
Information: +

[120] Physicochemical
Properties

Generic String Kernel string kernel with physicochemical
properties and penalization of
non adjacent segments

Density: +
Information: +

[121, 122]
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kernels, each entry in the feature vector is obtained from structure alignments between

the input peptide and a peptide database [117]. The encoding incorporates the similar-

ity to further peptides, whereby conserved peptides are depicted with higher scores.

Boisvert et al. (2008) proposed an extension of the string kernel, which allows a gap be-

tween two k-mers [118]. Thus, the distant segment kernel takes into account the

co-occurrence of remote sequence segments. The authors used this kernel in order to

predict HIV-1 co-receptor tropism and achieved higher levels of accuracy compared to

other methods [118]. Moreover, several string kernels have been employed and com-

pared to predict linear B-cell epitopes [119]. These include the already introduced

spectrum and mismatch kernel as well as the local alignment kernel, obtained from

local alignment scores, and the subsequence kernel, which measures sequence similar-

ity, similar to the mismatch kernel, albeit gaps within k-mers are taken into account. A

third kernel measures the frequency of amino acid pairs (see dipeptide composition),

which is due to a bias towards certain dipeptides in B-cell epitopes [119]. Toussaint et

al. (2010) recognized that dealing with the sequence only might result in a loss of infor-

mation [120]. For this reason, the aim of their study was the optimization of existing

string kernels such that these involve physicochemical properties [120]. This kernel has

been used by another study in conjunction with the penalization of non-adjacent seg-

ments, which finally has led to the generic string kernel for small molecules [121]. The

authors applied this kernel in a subsequent study in order to detect antimicrobial pep-

tides. All possible peptides with a specific length have been generated by means of

source-to-sink graphs. In these graphs, all vertices are k-mers and all edges are

weighted according to the antimicrobial activity, computed by means of the generic

spectrum kernel. Finally, the detection of the most active peptide corresponds to the

detection of the longest path within the graph [122].

Deep learning

Machine learning algorithms based on artificial neural networks, especially deep learn-

ing models, have the advantage of incorporating automated encoding, i.e., feature gen-

eration. In general, the encoding results from several, successive connected layers,

which work as filters for particular parts of the input [5]. However, these models re-

quire a large number of training examples in order to generalize well. Fortunately,

owing to advances in next-generation sequencing technologies, biological sequences,

such as peptides and proteins, are publicly available in vast amounts [123]. Several

studies made use of that and showed how deep neural networks perform well on bio-

logical problems. For instance, Asgari et al. (2015) proposed a method called

protein-vectors, which splits a sequence into k-mers to learn the context of these word

representations [124]. Here, amino acid sequences are encoded as a distributed repre-

sentation of k-mers, which were employed for protein family classification or the pre-

diction of disordered proteins. This approach is derived from natural language

processing and uses the context, hence the adjacent residues, for the central k-mers

(“words”) syntactic and semantic description. The realization is carried out through

building a sufficient large training corpus of protein sequences (“sentences”) by break-

ing all available sequences into overlapping k-mers. Afterwards, neural networks are

used to find optimal, numerical representations, i.e., feature vectors, of the input
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sequences by means of the skip-gram model. By using these vectors, the authors

showed that this framework encodes physicochemical properties well and high

levels of accuracy have been achieved in the family classification task [124].

Jiménez et al. (2017) utilized deep learning to predict protein-binding sites [125].

To this end, the structures of proteins are encoded as three-dimensional objects,

whereby a cubic segmentation in so-called voxels, which are 3D pixels, takes place

beforehand. The encoding of each of these cubes is based on the contained atoms.

In order to incorporate physicochemical properties, the input is further upscaled to

8 property channels [125]. A similar approach has been elaborated by Amidi et al.

(2018) to predict enzyme classes [126]. Again, protein structures are encoded as

voxels and are used as input for a convolutional neural network (CNN), but in

contrast to Jiménez et al., the orientation of the protein has been considered. The

authors point out, that the structure orientation in the Protein Data Bank (PDB)

does not capture the dynamic of the protein and consequently used the proteins

barycenter as origin and the first principal components for the orientation of the

coordinate system. Overall, the model achieves good accuracy [126]. Another study

uses position-specific scoring matrices (PSSM) as 2D input for CNNs, hence

mimicking images by regarding the respective substitution probabilities as pixel

densities. The studies goal is the automated partitioning of efflux proteins families

[127]. This class of proteins provide an important tool for multi-resistant patho-

gens, because they allow them to convey molecules out of the cell, thus lowering

the overall concentration of antibiotics [128]. Two further publications deal with

alignment-free comparison of sequences, using CNNs. Both methods encode the

input sequences as two-dimensional one-hot matrices, leveraging the convolutional

layers for unveiling of latent features. Seo et al. (2018) employed this approach in

order to predict protein families [129]. However, Zheng et al. (2018) extended this

approach by training of two identical neural networks (siamese neural networks),

which allows to compare sequences with respect to their dissimilarity [130]. These

two methods, as well as the earlier introduced ProtVec [124], have in common that

they aggregate amino acid sequences of varying lengths to a fixed-length numeric

vector of lower dimension. Since this feature reduction keeps intrinsic properties of

the proteins, these algorithms might serve as potential encodings for AMPs.

Similar to this CNN based dimension reduction are autoencoders. Autoencoders

are applied to learn a dense representation of the input, i.e., to extract representa-

tive characteristics in order to reproduce the input as good as possible. For in-

stance, Wang et al. (2017) employed stacked autoencoders to predict protein-protein

interactions [131].

Databases and packages
Having access to existing data sets is crucial to push computational, antimicrobial pep-

tide prediction further. Thus, several projects aim to enable researchers a public data-

base to active peptides. Consequently, this part introduces established databases and

highlights some characteristics of these web services. Although data access is granted,

there are still a plenty of possible encodings for testing. Fortunately, there are

ready-to-use implementations of many encodings and the subsequent section lists a

choice of these handy packages.

Spänig and Heider BioData Mining            (2019) 12:7 Page 21 of 29



Databases

Piotto et al. (2012) presented YADAMP (yet another database of antimicrobial pep-

tides) [132]. The authors collected the data sets, i.e., AMPs, from various, published

studies. Potential hits can be limited, e.g., by specifying certain physicochemical proper-

ties and/or target organisms. Respective results provide more details with respect to ac-

tivity and structural properties [132]. CAMP (collection of antimicrobial peptides)

obtains AMP sequences and structures from well-known protein databases, such as

UniProtKB [133]. Active peptides have been filtered out via keyword search. By provid-

ing several links to further web services, CAMP is a comprehensive resource for AMPs

as well as active peptides in general [133, 134]. Wang et al. (2016) published the third

update for the antimicrobial peptide database (APD3) [135]. Besides its focus on nat-

ural occurring AMPs, this database stores various active peptides, e.g., anti-HIV,

spermicidal, and for wound healing. A web form lets the user specify custom query pa-

rameters, such as physicochemical properties [135]. Pirtskhalava et al. (2016) extended

the database of antimicrobial activity and structure of peptides to the second version

(DBAASPv.2) [49]. The service provides, among further details, potency values against

several pathogens, described by inhibition coefficients. Moreover, the authors con-

ducted molecular modeling for unveiling unknown structures of AMPs [49]. Finally, a

comprehensive data repository of antimicrobial peptides (DRAMP) has been set up by

Fan et al. (2016) [136]. They included additional features, hence similarity search, se-

quence alignment, and conserved domain search, besides established tools, which

already have been introduced by other [136]. More information about web services for

AMP retrieval can be found in two recent studies, published by Porto et al. [137] and

Gabere et al. [138].

Packages

As mentioned before, many of the sequence-based encodings have been implemented in

user-friendly packages, using, e.g., R2 or Python.3 Interpol is an R-package for normalizing

peptide sequences to a uniform length, using different interpolation methods and descrip-

tors of the AAindex database [45]. Cao et al. (2013) developed propy, which provides Py-

thon access to methods for amino acid composition, autocorrelation and pseudo-amino

acid composition (PseAAC), among others [139]. In contrast, protr, implemented by Xiao

et al. (2015), provides similar methods for the R programming language [140]. In addition,

all methods can be accessed through a public web server. However, the web interface

lacks the possibility of passing custom method parameters and is hence only recom-

mended for ad-hoc calculations [140]. Ofer et al. (2015) released ProFET, i.e., protein fea-

ture engineering toolkit, a Python-based distribution with a variety of ready-to-use amino

acid encodings [141]. Among default encodings, which have been implemented by others,

this package offers also reduced amino acid alphabet, autocorrelation, amino acid propen-

sities, as well as transformed CTD features [141]. modlAMP is a Python library specific-

ally developed for antimicrobial peptides. Besides a selective choice of encodings, Müller

et al. (2017) added methods for the whole prediction pipeline, i.e., sequence retrieval,

visualization, and machine learning algorithms [142]. Moreover, performant model pa-

rameters can be obtained automatically via a grid search [142]. In contrast, POSSUM

(position-specific scoring matrix-based feature generator for machine learning) is a
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toolkit, which facilitates the representation of amino acids with PSSM derived encodings

[143]. Wang et al. (2017) published POSSUM as a public web server as well as a Perl/

Python-based tool, executable via the command line [143]. PyBioMed is another Python

library foremost aiming cheminformaticians, owing to the fact, that many molecular

encodings are implemented, e.g., topological descriptors, applicable in QSAR studies

[144]. Nevertheless, Dong et al. (2018) rounded out this package with a variety of amino

acid encodings and additional tools, such as sequence and structure retrieval [144]. Re-

cently, Chen et al. (2018) published iFeature, which is accessible as a Python package and

web server [145]. This tool adds functionality in order to encode amino acids based on

AAindex entries as well as structure-based encodings, such as accessible surface area and

main-chain-torsional angles. Moreover, algorithms for clustering, feature selection, and di-

mensionality reduction are available [145].

Encoding selection
It is quite challenging to find a suitable encoding within the variety of possibilities,

thus, this section provides recommendations for the selection process. This might be

helpful for computational biologists, due to the fact, that, as far as we know, no guid-

ance of an appropriate encoding selection has been published until now. Unfortunately,

it is not easy to provide generally applicable processes, which encoding will work for a

particular application, thus we follow the approach from Heider et al. (2014) [90] and

propose the measurement of diversity as a rule of thumb [146], until more sophisti-

cated techniques have been unveiled. In order to calculate the diversity, it is necessary

to train various classifiers on different encoded peptide data sets and combine the out-

puts. In particular, the diversity is based on the decision of single classifiers with their

respective strengths and weaknesses. Thus, we suggest to conduct the encoding selec-

tion in such a way, that the ensemble maximizes the disagreement measure D, which is

the probability of the disagreement between the classifier i and j, which minimizes the

correlation of two classifiers i and j, as well as maintains the overall prediction accuracy

[90]. The disagreement measure D is defined as:

Di; j ¼ 1
n
�
Xk¼1

n

j oik−o j
k j

Here, oi and oj refer to the outputs of classifier i and j. Furthermore, we recommend to

combine sequence and structure based encodings. For more details we refer to [90]. A com-

prehensive introduction into the diversity of classifier ensembles can be found in [146].

Conclusions
The amount of effort that has been expended in the last decades, demonstrates how

important and essential efficient encodings are for detection of peptides with anti-

microbial activity. This is reflected by diverse approaches and methods, which have

been proposed in numerous publications. In the current study, we tried to aggregate

existing, useful encodings and models, specifically for antimicrobial peptide (AMP)

classification for multi-resistant pathogens. But also as part of other protein or peptide

studies, respectively, promising encodings have been developed. In particular, sequence-

and structure-based encodings have been discussed along with their applications. As
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part of sequence representations, major encoding schemes as well as different customi-

zations are introduced. Moreover, structural encodings encompassed molecular as well

as general representations and a particular focus was set again on application

dependent customizations. Finally, a selection of alternative encodings, beyond se-

quence- and structure-based encodings, are presented. The second part highlighted

employed models as well as string kernels as encodings for support vector machines.

Deep learning is a popular machine learning method and requires little or no encoding

for the classification process. Nevertheless, exciting applications in protein research can

be found in literature and thus, have been covered as well. As mentioned at the begin-

ning, this review summarized encodings specifically for AMPs, however, every machine

learning based protein/peptide classification task can be tackled by means of the pro-

posed techniques. Moreover, to enhance research capabilities, several studies already

implemented many of the reviewed encodings and published ready-to-use packages in

commonly used programming languages. Again, this review collected most popular

ones and provides an unified source of these. In order to lower obstacles further, we

added a separate section about existing antimicrobial sequence databases. In conclu-

sion, this review provides a common basis of methodologies in theory as well as prac-

tical tools to promote AMP research. Due to the fact, that we emphasized on

encodings derived from AMP classification tasks, it is not surprising, that a large num-

ber of further techniques for amino acid representation exist, which, for obvious rea-

sons, could not covered in this review. Moreover, additional research is required in

order to incorporate the structure of AMPs and to examine whether the simultaneous

encoding of sequence and structure can increase the prediction performance further.

Nevertheless, many studies showed already at this point very good results. The engin-

eering of amino acid encodings supports not only the detection of novel AMPs and

consequently the battle against multi-resistant pathogens, but could also impact other

major diseases, such as HIV and cancer. Research must be continued in each dir-

ection, in order to leverage the full potential of AMPs. To this end, besides the

aforementioned simultaneous deployment of sequence- and structure based encod-

ings, we propose further approaches. Delaunay triangulation is a promising encod-

ing for peptide structure. By integrating additional information, e.g.,

physicochemical properties, to the graph, one could leverage advantages of both. In

order to ease the access, this, as well as structure encodings in general, might be

provided in a separate library. Moreover, since implementations exist for R and Py-

thon and each language provides a unique set of encodings, it is beneficial to de-

velop a package, which provides those, that are not covered by an existing one.

Finally, a comparative study is necessary to examine the potential of single encod-

ings on a range of independent, biomedical data sets. Thus, encodings could be re-

vealed, which are preferable for a designated application.

Endnotes
1Since QSAR actually refers to the general model, the abbreviation will be used from

now on interchangeable with the molecule property encodings.
2https://www.r-project.org/
3https://www.python.org/
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