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Abstract: Harmful Algal Blooms (HAB) are complex to manage due to their intermittent 

nature and their severe impact on the economy and human health. The conditions which promote 

HAB have not yet been fully explained, though climate change and anthropogenic intervention 

are pointed as significant factors. The rise of water temperature, the opening of new sea 

canals and the introduction of ship ballast waters all contribute to the dispersion and 

establishment of toxin-producing invasive species that promote the settling of emergent 

toxins in the food-chain. Tetrodotoxin, ciguatoxin, palytoxin and cyclic imines are commonly 

reported in warm waters but have also caused poisoning incidents in temperate zones.  

There is evidence that monitoring for these toxins exclusively in bivalves is simplistic and 

underestimates the risk to public health, since new vectors have been reported for these 

toxins and as well for regulated toxins such as PSTs and DSTs. In order to avoid public 

health impacts, there is a need for adequate monitoring programs, a need for establishing 

appropriate legislation, and a need for optimizing effective methods of analysis. In this 

review, we will compile evidence concerning emergent marine toxins and provide data that 

may indicate the need to restructure the current monitoring programs of HAB. 
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1. Introduction 

1.1. Harmful Algal Blooms: General Description 

Phytoplankton may develop blooms in marine coastal waters with seasonal, regional and species-specific 

features [1]. Several factors, which are not yet entirely understood, promote these blooms, but in recent 

decades these occurrences have tended to be more frequent, persistent and intense [2–6]. Climate change, 

eutrophication and cysts, together with alien species transported in ballast waters, are noted as important 

contributors [7]. Blooms can be classified as benign or harmful according to their impact on the ecosystem, 

on public health and on the economy. Benign algal blooms lead to an increase of primary producers boosting 

the richness of the ecosystem, whereas Harmful Algal Blooms (HAB) have adverse consequences [8,9]. 

So far, about 5000 species of phytoplankton have been distinguished, 300 of which form blooms,  

and are reported as toxic, noxious or as being a nuisance [1,10–12]. 

A phytoplankton bloom is a complex community that can be monospecific or composed of several 

different species [13]. In both cases, harmful species may or may not be present. Toxic blooms produce 

secondary metabolites that may help them outcompete similar species or have deleterious effects on 

predators [14–17]. These toxins can accumulate in the food-chain and cause poisoning incidents to 

humans through harvested shellfish or other seafood present in the bloom area [18,19]. HABs affect the 

fishing and aquaculture industries by causing high mortalities in fish and invertebrates through 

mechanical damage due to their spiny conformation or mucilage production, and by causing lesions or 

obstruction of the gills [20,21]. As an example, the diatoms Chaetoceros concavicornis and C. convolutus, 

can cause fish mortalities at the very low concentration of 5 cells/mL [22].  

A bloom can also create anoxic zones when it is very extensive and enters into senescence, thereby 

causing mortalities or deviation of fish migration routes [23,24]. An example of this is in the Gulf of 

Mexico, where the Mississippi River delivers heavy loads of urban and agricultural runoff leading to an 

increase in nitrogen and phosphorus levels and fueling phytoplankton growth. This influx causes 

extensive blooms whose decomposition eliminates oxygen faster than it can be replaced thereby forming 

dead zones [24].  

HABs may cause huge economic losses in the tourism sector even when blooms are not a risk for humans 

or other organisms by producing foams, mucilage, repellent odors or altering the water color [25–30]. 

They can also affect an entire ecosystem by creating regions of anoxia, causing death by mechanical 

block preventing micro invertebrates to feed, affecting the reproduction of predators, benthic anoxia,  

sea grass die-off, and the alteration of food web function [23,31–34]. 

Regarding public health, a need for guidelines led to the establishment of international regulations 

resulting in mandatory and frequent monitoring of the most common syndromes: Paralytic Shellfish 

Poisoning (PSP), Amnesic Shellfish Poisoning (ASP) and Diarrheic Shellfish Poisoning (DSP) [35–37]. 

Nowadays, owing to these regulations, the cases of human intoxications are sporadic and are mostly due 

to illegal harvest and/or confusion of toxic species with non-toxic ones, i.e., failure of harvest and 

consumption prohibitions implemented by national health authorities [38,39].  
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The establishment of guideline values for marine toxins follows some procedures that take into account 

the toxicity values produced through laboratory assays, data on incidence, prevalence, seasonal variation 

and vectors of the toxin obtained through field work. The monitoring of biotoxins is usually evaluated 

through phytoplankton counting and the testing of bioaccumulation of toxins in bivalves. However, there 

can be a lack of important data since some toxins are produced by bacteria (Tetrodotoxin (TTX)) and 

others are produced by benthic dinoflagellates (Ciguatoxin (CTX), Palitoxin (PTX)). Moreover, vector 

species that are not normally monitored, such as gastropods, crustaceans and fish, should be included in 

risk assessments since other toxin uptake routes, apart from filter feeding, are present in marine 

ecosystems [40,41]. This risk analysis is the key for the proposal of new guideline values and this 

procedure has to be done in accordance with international guidelines and institutions, such as the 

European Union Reference Laboratory for Marine Biotoxins (EURLMB) and the European Food Safety 

Authority (EFSA), coordinated by United Nations Organizations, such as the Food and Agricultural 

Organization of the United Nations (FAO), Intergovernmental Oceanographic Commission of UNESCO 

(IOC) and the World Health Organization (WHO). The EURLMB coordinates the activities of a network 

of the National Reference Laboratories (NRL) which is established in each EU Member State, regarding 

the methodologies applied to control marine biotoxins in shellfish in order to protect public health and 

guarantee a maximum level of food safety. The EFSA is the keystone of European Union (EU) risk 

assessment regarding food and feed safety. In close collaboration with national authorities and in open 

consultation with its stakeholders, EFSA provides independent scientific advice and clear communication 

on existing and emerging risks.  

In this review we explore the challenges of HABs, more specifically the problem of the emergent 

toxins, as evidence for their presence in temperate waters has become more substantive resulting in the 

need for new monitoring programs and the development of more sensitive and rapid analysis methods 

associated with a revised legislation in order to avoid social and economic consequences. 

1.2. Emergent Toxins 

There is urgency in the study of emergent toxins as the rise of water temperature, together with 

anthropogenic impacts, may allow for the dispersion and the establishment of new populations of highly 

toxic organisms [3,6,42–44]. These phycotoxins have many routes of uptake in humans, the most 

common one being via ingestion. The majority of these toxins are heat-stable, whereby cooking processes 

do not affect their structure or function. Dermal and respiratory exposure also has to be considered as 

some biotoxins can form aerosols. This is the case with PTX, which causes the development and aggravation 

of lung diseases affecting mainly coastal and fishermen populations [45–48]. In the following paragraphs, 

we will describe the chemical structure of TTX, PTX, CTX and Ciclic Imines (CI), action modes and 

symptoms in humans.  

1.2.1. Tetrodotoxin 

TTX is a non-proteinaceous neurotoxin with a molecular weight of 319.3 Da. TTX was first isolated 

in 1950 by Yokoo as a crystalline prism, from the toxic puffer fish and named after the puffer fish family 

Tetraodontidae [49,50]. The structure of TTX (Figure 1), was identified after the independent findings 

by several researchers, namely Goto et al. (1965), Tsuda et al. (1964) and Woodward (1964) [51–53]. 
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TTX is a colorless, crystalline-weak basic substance with a molecular formula of C11H17O8N3 and has 

30 analogues or derivatives which have been separated from puffer fish, newts, frogs and other TTX 

bearing organisms [54]. It is found in phylogenetically different marine and terrestrial organisms from 

six different phyla [55]. The widespread occurrence indicates that the origin of TTX may be  

exogenous [56–58]. The structure of TTX is characterized by a positively charged guanidinium group 

and a pyrimidine ring that may help TTX to work as a specific blocker of voltage gated sodium channels. 

Intoxication of TTX occurs within hours and may progress from localized numbness at the mouth shortly 

after ingestion to vomiting, strong headache, muscle weakness, respiratory failure, hypotension and even 

death [59]. As there is no antidote available, the main objective is to keep the patient alive in the first  

24 h after intoxication of TTX occurs, with ventilator and hemodynamic support, as well as the 

correction of any possible cardiac arrhythmias, resulting in the mandatory stay in an intensive care  

unit [59–61]. 

 

Figure 1. Tetrodotoxin (TTX) structure modified from Noguchi 2008 [55]. 

1.2.2. Palytoxin 

PTX is a non-proteinaceous marine toxin which is mainly produced by marine zoanthids (soft corals) 

of the genus Palythoa [62]. Initially they were found only in Hawaii and Japan but the occurrence of 

PTX and its analogues is reported worldwide [63–65]. PTX is also produced by dinoflagellates 

(Ostreopsis spp.) and found in other organisms, such as fish [66,67]. Its structure was first described in 

1981 [63,68]. PTX has a polyketide structure (Figure 2) with both lipophilic and hydrophilic moieties. 

The general chemical formula of PTX is C129H233N3O54 consisting in a long, partially unsaturated aliphatic 

backbone, containing cyclic ethers, 64 chiral centers, 40-42 hydroxyl and 2 amide groups. Many different 

analogues of PTX, such as isobaric PTX, ostreocin-D, ovatoxin (a to f), mascarenotoxins, ostreotoxin-1 

and 2, homopalytoxin, bishomopalytoxin, neopalytoxin, deopalytoxin and 42-hydroxypalytoxin are 

known and the molecular weights vary depending on the species from which they are produced, ranging 

from 2659 to 2680 Da [69–72]. PTX has ultraviolet absorption at a wavelength of 233 and 263 nm and 

is heat-stable [69,73]. Palytoxin causes intoxication called clupeotoxism due to the consumption of 

clupeoid fish, such as sardines, herrings and anchovies [74]. Symptoms of PTX-group toxins include 

vasoconstriction, hemorrhage, myalgia, ataxia, muscle weakness, ventricular fibrillation, ischemia and 

death [75,76]. Moreover, Rhabdomyolysis syndrome is pointed out as being the most commonly 

reported complication after a poisoning incident with PTX [77]. This life threatening condition consists 

of a loss of intracellular contents into the blood plasma, causing injury to the skeletal muscle, with the 
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worst cases resulting in renal failure and disseminated cardiovascular coagulation. Staying well-hydrated 

is strongly advised for the prevention of this condition [78]. 

 

 

Figure 2. Palytoxin structure modified from Ramos and Vasconcelos 2010 [66]. 

1.2.3. Ciguatoxin 

CTXs are reef toxins produced by the dinoflagellate Gambierdiscus spp. in warm, tropical or subtropical 

waters [79]. A three letter code with prefix is used to distinguish structurally different Caribbean (C-CTX), 

Indian (I-CTX) and Pacific Ocean (P-CTX) congeners. Even though they differ structurally, the common 

features that integrate these group of toxins is the long semi-rigid architecture that comprises  

trans/syn-fused ether ring with a molecular weight of 1023-1157 Da (Figure 3). Chemical structures of 

P-CTX [80–86] and C-CTX [87,88] are well-studied. They are heat-stable, highly oxygenated,  
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lipid soluble cyclic polyethers. More than 20 analogues of P-CTX have been reported, with the main toxin 

groups being P-CTX-1, P-CTX-2 and P-CTX-3. Among these, P-CTX-1 is the most potent and thought 

to be responsible for the majority of neurological symptoms associated with ciguatera in the Pacific [81]. 

Ten analogues of C-CTX were identified by Pottier et al. [87]. C-CTX is the major analog group among 

the CTX toxin group. Four I-CTX toxin groups have been identified. I-CTX-1 & I-CTX-2 are the most 

common ones in comparison to I-CTX-3&I-CTX-4. The I-CTX-1 & I-CTX-2 have the same molecular 

weight (1140 Da) as C-CTX-1, with a closely related structure [89]. CTX poisoning occurs due to  

the ingestion of tropical reef fishes, which bioaccumulate the toxin from the dinoflagellate  

Gambierdiscus [90]. The CTX group causes cellular toxicities by elevating intracellular calcium 

concentration and by the binding and opening of non-selective, non-voltage activated ion channels, 

resulting in neurologic symptoms, such as hyperesthesia, paresthesia and dysesthesia which may appear 

from a few hours to two weeks after ingestion of a toxic specimen. Acute symptoms result in gastrointestinal 

and cardiovascular distress [91,92]. 

 

Figure 3. Structures Caribbean (C) and Pacific (P) CTX-group toxin. The energetically  

less favored epimers, P-CTX-2 (52-epi P-CTX-3), P-CTX-4A (52-epi P-CTX-4B) and  

C-CTX-2 (56-epi C-CTX-1) are indicated in parenthesis. Modified image from Lewis,  

2001 [81]. Copyright 2001, Elsevier. 
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1.2.4. Cyclic Imines 

Cyclic imines (CI) are a group of toxins which include spirolides (SPXs), gymnodimines (GYMs), 

pinnatoxins (PnTXs) and pteriatoxins (PtTXs) produced by dinoflagellates. These toxins are macrocyclic 

compounds which share an imine functional group within their chemical structure (Figure 4) [93,94]. 

These cyclic imines are known as “fast-acting” toxins because they induce rapid death in the intraperitoneal 

mouse bioassay [95,96]. SPXs and GYMs are the largest group of CIs that are well-characterized.  

At present, 14 SPXs analogues have been isolated, whereby 13-desmethyl SPX-C is the most commonly 

one found in shellfish. In 1995, SPX was discovered in the Atlantic coast of Nova Scotia, Canada from 

mussels (Mytilus edulis) and scallops (Placopecten magellanicus) during the routine monitoring of 

lipophilic toxic compounds [97]. The spirolides toxin producing dinoflagellates, Alexandrium ostenfeldii 

and A. peruvianum were later described. Spirolides A–D are fast-acting toxins in mouse bioassay [98,99]. 

Spirolide E and F are biologically inactive with a keto-amine structure, which are the hydrolysis products 

of the Spirolides A–D [100–102]. This shows that imine group is important for the biological  

activity [100]. GYMs are produced by the dinoflagellate, Karenia selliformis. The structure of GYMs 

was first reported in 1995 by Seki and later confirmed by Stewart in 1997 by X-ray crystallographic 

analysis [103,104]. GYMs were first isolated from oysters (Tiostrea chilensis) coming from the  

South Island of New Zealand. The molecular mass of GYMs is 504.704 g/mol with a molecular weight 

of C32H45NO4. GYM-A has also been reported in Tunisia [105]. GYM-B and GYM-C were isolated 

from the coast of New Zealand as well. The structure of GYM-B is similar to GYM-A, but contains an 

exocyclic methylene at the C-17 position and an allylic hydroxyl group at the C-18 position, while  

GYM-C is an oxidized analog of GYM-A and was found to be isomeric with GYM-B at the C-18 

position [106,107]. PnTX and ptTXs are closely related to the chemical structure of SPXs. The 

pinnatoxin also contains a number of analogues (PnTXs A-G). The first of these to be discovered was 

pinnatoxin A from the digestive gland extract of Pinna attenuata in China and Japan. Pinnatoxins B, C 

and D were isolated from viscera of the Pinna muricata [108–110]. Pinnatoxins E and F were found in 

the Pacific oysters (Crassostrea gigas) from Ranganau Harbour, Northland, New Zealand [111]. 

Pinnatoxin G was also isolated from the Norwegian blue mussel (M. edulis) [112]. Pinnatoxins E, F and G 

have also been isolated from Pacific oysters and razorfish (Pinna bicolor) from South Australia [113,114]. 

The organism responsible for pinnatoxins (the dinoflagellate, Vulcanodinium rugosum), was discovered 

only after the analysis of sediment samples from Rangaunu Harbour and the French Mediterranean coast. 

The species was also found in South Australia, China, Spain, Hawaii and Japan [115–120]. Pteriatoxins 

(A, B and C) were isolated in 2001 by Uemura and co-workers from Pteria penguin. Pteriatoxins A, B 

and C have the same polyether macrocycles as in pinnatoxin A. These CIs are fast-acting neurotoxins in 

laboratory animals which inhibit the nicotinic and muscarinic acetylcholine receptors (mAChR and 

nAChR, respectively) in the central and peripheral nervous system and at the neuromuscular junction 

causing death [121]. The lack of reports of acute intoxications caused by the consumption of contaminated 

sea products may be due to poor recognition of the adverse symptoms of a mild intoxication, such as 

tachycardia or gastric distress [122]. Moreover, the chronic effects are not yet fully understood, therefore 

this matter should be treated with caution and efforts should be made to disclose CIs’ acute and long 

term effects. 
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Figure 4. Gymnodimines (GYM) structure modified form Cembella and Krock 2008 [123]. 

Copyright 2008, Taylor & Francis. Spirolide (SPX) structure modified from Otero et al. 

2010 [124]. Copyright 2010, Wiley. Pinnatoxin (PnTX) structure modified from  

Selwood et al. 2010, Copyright 2010, ACS Publications [114] and Rundberget et al. [112], 

2011. Copyright 2011, Elsevier. 

The presence of emerging toxins in temperate coastal waters has recently been reported and episodes 

of human poisoning usually follow [19,39,125,126]. Due to the lack of systematic data detecting these 

new toxins, a more comprehensive research strategy which better assesses the risk of public health is 

required. Some recent human intoxication episodes have alerted our attention. In October 2007, a Spanish 

man who consumed a trumpet shell (Charonia lampas) collected in the south of Portugal (Algarve)  

was severely intoxicated requiring hospital care. Analysis revealed the occurrence of TTX and  

5,6,11-trideoxyTTX analogue in sublethal concentrations [19]. Ciguatoxin is a common toxin from  

Indo-Pacific and Caribbean waters that was first reported in Europe in 2003 in Greece. This toxin is 

produced by a dinoflagellate from the genus Gambierdiscus [127]. In July 2008, the intoxication of 11 crew 

members who ate carnivorous fish caught off the Madeira archipelago revealed the presence of CTX [39]. 

CIs are neurotoxic phycotoxins which were first reported in shellfish aquaculture in Nova Scotia, Canada 

in 1992 [97,100,102]. Their origin has been tracked to the dinoflagellates Alexandrium ostenfeldii and 

A. peruvianum [128]. Though they have acute neurotoxicity in mice, no human poisoning incidents have 

been reported to date [117,129]. CIs were reported along the North Atlantic and some groups of these 

biotoxins are confined to the Pacific Ocean [40,103,129–133]. PTX was first reported in Hawaii and 

Japan and their origin has been tracked to marine zoanthids, belonging to the genus Palythoa, and in 

dinoflagellates of the genus Ostreopsis [63,64]. Currently, blooms of Ostreopsis spp. have been reported 

in southern Europe indicating that the number of producers of this group of biotoxins is probably 
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increasing from the Mediterranean Sea to the North Atlantic Ocean [134]. Also, since PTXs can form 

aerosols, several poisoning incidents have been reported among Mediterranean coastal populations as 

mild skin and respiratory disorders after exposure to high concentrations of Ostreopsis sp., luckily with 

no fatal outcomes [29].  

These episodes suggest that there is an emergent phenomenon, indicating that marine toxins from 

tropical and subtropical ecosystems are most likely increasing their prevalence in temperate waters 

(Table 1). Multiple causes contribute to this phenomenon, such as the warming of coastal waters 

attributable to climate change and the increasing use of artificial waterways (i.e., the Suez Canal) that 

allow for colonization and the establishment of exotic species in the Mediterranean Sea and the Atlantic 

Ocean [42,135–137]. Eutrophic areas of the Mediterranean Sea contribute to the formation of seed banks 

that provide favorable conditions for the establishment and migration of tropical organisms in more 

temperate areas of the North Atlantic.  

Table 1. Detection of emergent poisoning incidents in the Mediterranean Sea and North  

Atlantic Ocean. 

Toxin Report location Year Vector/uptake route No poisoning cases Ref 

TTX 

Egypt/Israel 2005/2007/2008 
Lagocephalus sceleratus 

(ingestion) 
13 [136] 

Spain 2007 
Charonia lampas 

(ingestion) 
1 [19] 

PTX 

Italy 2005/2006 Ostreopsis ovate (aerosol) 228 [138] 

Spain 2010 Ostreopsis sp. (aerosol) 2 [139] 

France 2006–2009 
Ostreopsis sp. 

(aerosol/Dermic) 
47 [29] 

CTX 
Canary Islands 2004 

Seriola rivoliana 
(ingestion) 

5 [140] 

Madeira Island 2008 Seriola sp. (ingestion) 11 [39] 

CI - - - - - 

2. Analytical Methods 

Detection and quantification of the emergent toxins such as TTX, CTXs, CI and PTX have been based 

on different approaches (Table 2). Mouse bioassay (MBA) is the simplest method used for screening the 

total toxicity of the sample. In order to assess the toxicity, purified toxin samples or biological extracts 

are injected intraperitoneally and then animals are monitored for 24–48 h. The results are based on the 

biological response of mice and the toxicity of the sample is calculated in mouse units (MU). The 

relationship between time and lethal dose is used for estimation of the toxicity of the sample. This assay 

gives the total toxicity of a sample [141–144]. For screening and monitoring the toxins, many rapid, 

sensitive and specific assays (i.e., cytotoxicity assay, immunological and receptor binding assays) have 

been developed. Cytotoxicity assay is used as the alternative method replacing the whole animal assays. 

This assay is based on the changes in the morphology of cells by the toxin. Cytotoxicity can be measured 

either through the lactate dehydrogenase (LDH) release assay or the MTT [3-(4,5-dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium] assay in the living cells at pg concentrations [143,145,146]. Immunoassays are 
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antibody based assays used for the detection of toxins. These methods are very sensitive and allow for 

the detection of toxins in pg concentrations [147–150]. Receptor binding assays (RBA) are based on the 

principle of the affinity of the toxin to a specific binding site. The toxin can be measured by the binding 

reaction between a radiolabelled toxin and a non-radiolabelled toxin that binds specifically to the 

receptor. Mouse bioassay, receptor binding assay and immunological methods have been used for  

the analysis of these emergent toxins. It has been found that these methods are successfully used for  

the identification of toxins, but they fail to analyze the analogues or derivatives of these toxins. The 

immunological assay addressed for the analysis of the toxins involves the use of expensive antibodies 

and there are some ethical issues regarding the use of live animal for bioassays [54,151–153]. Analytical 

methods such as HPLC/MS, LC/MS/MS, GC-MS, LC-FLD and NMR have been developed, which are 

helpful for the identification of the structure and analogues of the toxin. The LC-FLD and GC-MS are 

not a good choice because those methods have difficulties in the quantification of toxins and its 

analogues, due to a large variation in the absorbance intensities. The non-volatile nature of some toxins 

should also be derived in the case of GC-MS analysis. LC-UV method does not provide proper selectivity 

for the toxins which lack chromophore structure. Therefore, LC-LC/MS is regarded as the best choice 

for the determination of emergent toxin and its analogues. Improvement in these methods and sample 

preparation decrease the limit of detection and quantification of the toxin [54,144,151–153]. 

3. Monitoring and Legislation Challenges 

Safety management practices are required for shellfish due to the unpredictable nature of  

blooms [5,122]. Monitoring became the official strategy to control harvesting of shellfish areas throughout 

the world to prevent health and economical losses [122].  

Monitoring is an essential, labour-intensive and costly activity. As a result of the Joint of FAO/IOC/WHO 

ad hoc Expert Consultation on biotoxins in bivalve mollusks held in 2004, guidelines for the organization 

of the marine biotoxin management plan (MBMP) were proposed. MBMP is based on several action 

plans that encompass an efficient sample strategy comprising periodicity and frequency, sample size and 

composition, and also, which analysis methods and managing action plans based on expert judgment of 

the results are the best and most effective [122]. 

Toxic phytoplankton species monitoring by itself is insufficient and strongly discouraged since it 

faces various inherent difficulties. It does not reflect the toxin content in shellfish species due to their 

intra and inter-specific differences nor their irregular distribution in the water column. Toxins can 

accumulate in bivalve species after the bloom has entered into a senescence state. Moreover, some toxin 

producing species may not be in the water suspension [154]. A good example is bacterial origin toxin 

TTX [154]. 
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Table 2. Limit of detection/quantification of Emergent toxins (CTX, PTX, CI and TTX) by using different methods. (LOD—Limit of Detection, 

LOQ—Limit of Quantification, LD50—Lethal Dose 50%, SM—Shellfish Meat, mL—Milli liter, kg—Kilogram, µg—Microgram,  

ng—Nanogram, pg—Picogram, fg—Femtogram). 

Assay CTX PTX CI TTX Refs 

MBA 
LODP-CTX-1 = 0.2 μg/kg SM  

LODC-CTX-1 = 3.0 μg/kg 
LD50 = 150–720 ng/µL 

LOD13–desMeC = 5.6 μg/kg SM  

LODGYM A = 77 μg/kg SM.  

i.p. LD50PnTx E, F and G = 12.7–57 μg/kg SM 

LODTTX = 0.2 µg 
[114,129,142–144, 

155–158] 

Citotoxicity assay 

Haemolysis assays LOD = 50 µg/mL 
LOD = 1.6 ng/kg SM 

0.005 pg/µL–1 pg/mL 
- LOD = 5.0 µg/mL [73,74,146,159,160] 

Fluorimetric method LOQC-CTX-1 = 0.039 ng/g - - - - 

Receptor-binding assays 
LOQP-CTX-3Ceq = 15.5 fg/cul for algal 

samples 0.155 ng/g in fish samples 
- - - [161] 

RBA with Neuroblastoma LOQC-CTX-1 = 0.039 ng/g - - - [162] 

Fluorescence polarization 

Microsphere flow cytometry - - 

LOQGYMA = 50–80 μg/kg  

LOQ13–desMeC = 50–85 μg/kg SM  

LOQ13,19–didesMeC = 40 μg/kg SM  

LOD13–desMeC = 10 μg/kg SM 

- [163–168] 

Chemiluminescence method - - LODSpirolides = 50 μg/kg SM - - 

Assays with MCF-7 cells - LOD = 0.5 ng/mL - - [169] 

Assays with neuroblastoma cells - LOD = 5 ng/mL - LOD = 3.2–160 ng/mL [145,170,171] 

Immunoassays 

Immunobead assay (MIA) LODP-CTX-1 = 32 ng/kg fish flesh - - - [147,172,173] 

CIEIA - - - LOD = 10 ng/mL [149] 

ELISA LOD = 0.28 ng/mL LOD = 0.5 pg/mL - LOD = 5–50 ng/mL [148,150,160,174,175] 

Surface plasmon resonance (SPR) - - - 100 µg/kg [176] 

Chemical methods 

HPLC-FLD/LC-FLD LOD = 0.5–1.0 ng LOD = 0.75 ng - LOD = 0.07 pmol–0.4 pmol [73,177–182] 

HPLC/MS LODP-CTX-1 = 4 ng/g - - LOD = 2 ng/mL [183,184] 

HPLC-UV/LC-UV - LOD = 0.1–2 μg LODGYM = 5 ng/mL LOD = 10 ng/mL [185,186] 
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MBMP on harvesting shellfish areas should be based on a combination of phytoplankton and shellfish 

to best assess the risk. It should be done periodically in order to timely detect the increase in toxin content 

in shellfish caused by the seasonal and spatial shifting in phytoplankton community. Samples should be 

representative of the area with adequate location and number of sampling sites that are reachable in all 

weather conditions. A good alternative to obtaining information about dissolved toxin content in water 

is through passive sampling techniques. Different resins can cover different toxins, reducing the cost and 

human effort and simplifying the analytical analysis [187]. This is due to the fact that the matrix effects 

are diminished, i.e., phytoplankton matrices are less complex than shellfish meat [188]. However, there 

are some downsides to this methodology, as it does not cover all biotoxins. Firstly, it is not effective in 

the screening of toxins with bacterial origin and of benthic dinoflagellates. Moreover, toxins  

can be metabolized in shellfish and therefore the real risk for human consumers is not accurately  

measured [114,189,190]. In order to ensure representativeness, sampling must comply with important 

factors: samples should be gathered throughout the cultivation area, samples should represent all depths 

when a toxic event is in progress, shellfish must be gathered in all marketed sizes to address variability 

in toxin uptake, and samples should be in sufficient number in order to perform all the analyses needed. 

MBMPs ought to also gather atmospheric and hydrographic parametric information of the area along 

with an in-depth understanding of impending factors and their interactions. In order to see what the 

favorable conditions for the formation of a toxic phenomenon are, predictive modeling should be in 

place as well [122]. Finally, HABs can be also region specific, one good example of that is CTX [156]. 

Local and historical knowledge should be taken in consideration since it is often useful for targeting 

baseline studies prior to setting up a monitoring program, not only for CTX but for other potential 

emerging toxins. 

Good practices are required for standardizing procedures. Emergent toxins pose a great challenge and 

answers are needed to address the issue of spreading to new temperate environments and trophic chains 

with unknown consequences. Standardization of the analytical procedures is urgently needed because 

contrary to other toxins like PSPs and DSPs, there is limited knowledge for emergent toxin routes, 

biochemical paths and standard reference materials. All of these contribute to the difficulties of monitoring 

and planning strategies for risk assessment. 

The MBA is the most common method to assess phycotoxins in shellfish, although there are inherent 

difficulties with this method such as the ethics of using test animals and supply. The MBA also lacks 

specificity; identification of a toxin and its analogues or a mixture of toxins is not possible. Moreover, 

performing the test relies on toxin routes that are not extrapolated to humans. The purified extract of 

toxins is administrated via intraperitoneal injection, a different route from the common ones (oral, dermal 

or inhalation). Furthermore, extrapolating these results to humans relies on inter-specific errors. Given 

this, EFSA recommended the use of analytical methods such as the LC-MS. These procedures avoid the 

ethical issues. They are able to identify a toxin, in addition to its derivatives, in a mixture with a high 

degree of sensitivity, but as a downside analytical methods depend on reference standards for calibration. 

In terms of new emergent toxins, the need for standards is urgent. Currently only a few standards are 

available, meaning that the detection and quantification of these “new” toxins lack accuracy and are 

estimated according to their response factor. Data regarding acute reference dosage, median lethal 

dosage, legal limits in the European Union and standard availability on legislated toxins and on each 

group of emergent toxins will be described in more detail in Table 3. 
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Table 3. Summary of information of current and emergent toxins regarding: acute reference 

dosage (ARfD), median lethal dosage (LD50), legal limits in the European Union (EU) and 

standard availability, and comparison with regulated toxins PSP’s and OA group (DSP’s). 

(µg—microgram, eq—equivalents, g—gram, kg—kilogram, SM = Shellfish Meat,  

N.A.—not available). 

Toxin 

group 
Reference material 

ARfD  

μg/kg bw 

LD50 mice 

μg/kg bw 
Legal limits in EU Antidote Refs 

PSP Yes (NRCC/Cifga) 0.5 STX eq. 10 0.8 µg SXT eq/g SM N.A. [191] 

OA Yes (NRCC/Cifga) 0.3 192 0.16 µg OA eq/g SM N.A. [192,193] 

TTX Lacking analogues (Cifga) 2 * 9 2 μg of TTX eq/g SM * N.A. [194,195] 

PTX No certified material available 0.2 0.15–0.72 30 µg PLT eq/kg SM ** N.A. [151,191] 

CTX No certified material available N.A. 0.25  0.01 μg P-CTX-1 eq/kg fish *** N.A. [80,129,156] 

CI Lacking analogues (NRCC/Cifga) N.A. 5–8 400 μg CI/kg SM **** N.A. [152,196] 

* Legislated limits for TTX are regarding the Japanese Government; ** EFSA recommends this value;  

*** EFSA recommends this value to cover all CTX-toxins; **** guidance value proposed by the EURLMB. 

Analytical methods should comprise the whole animal but due to their high sensitivity, complex matrix 

interference may mask the results [41,197]. In order to overcome this problem, only the most affected 

organs are screened in some cases. This difficulty depends on the analyzed species, leading to another 

controversial issue: finding a species that can be used as an indicator. The commonly analyzed shellfish 

species are filter-feeders (mussels, scallops, cockles, oysters), and choosing a specific species, although 

it is advantageous in terms of cost reduction, is not effective since each species has different filtering 

and depuration rates. In addition to that, some studies showed that marine toxins risk assessment based 

on bivalves alone is redundant and misleading since some emergent toxins are not produced by 

phytoplankton [40,41]. These studies proved the possibility of bioaccumulation phenomena along the 

food-chain and reported new vectors for TTX and CIs from gastropods (Monodonta lineata, Gibbula 

umbilicalis, Nucella lapillus, Aplysia depilans, Pattela intermedia), to echinoderms (Marthasterias glacialis 

and Paracentrotus lividus) [40,41]. Likewise, CTXs have been detected from mollusks (ex: Turbinidae 

family) to top predator fish (ex: barracuda—Sphyraenidae family) occurring in the latter in higher 

concentrations suggesting that biotransformation and biomagnification could occur along the  

food-chain [122]. PTX poisoning incidents vary since all three exposure routes can occur (ingestion, 

inhalation and dermal) though there is a lack of proper reporting due to the difficulties inherent to 

identification/quantification owing to the absence of reference material [125,152]. This data shows that 

we are not analyzing the whole food-chain effectively, underestimating the risk for consumers. 

As described in Table 3, certified material for emergent toxins is lacking. Regarding TTX, neither the 

toxin nor its analogs are regulated. There is only the Regulation (EC) No. 853/2004, which prevents the 

entry of products and derivatives belonging to the Tetraodontidae fish family in the EU [198]. Guidelines 

values and legislation only exist in Japan and Korea, where this family of fish is well appreciated.  

Chefs must be certified and the Japanese Ministry of Health and Welfare established the limit value of 

2 μg of TTX equivalents/g SM [195]. 

In terms of PLT, there are no regulations globally. In 2009, EFSA recommended that PLT plus 

derivatives should not exceed 30 µg/kg SM [191]. There are also no regulations for CTX, only recommended 

values [156], and in some countries, fish with toxic provenance are prohibited from entering the market. 
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That is true for the EU [198], Fiji, American Samoa, French Polynesia, Hawaii and Miami [199]. For CIs, 

though there is some toxicological information about SPX and GIM, there is still a lack of information 

on the other toxins of this group. Regarding certified material, there are only two groups that are 

characterized. Based on this, EFSA does not have enough information to establish the ARfD, since SPX 

is the only CI totally characterized so far [152]. Therefore, there is need to study the other groups in 

order to reach solid conclusions for creating safety measures.  

Not much is known about the chronic effects of emergent toxins. Their appearance in temperate 

systems is quite recent and physicians may not be prepared to deal with these new symptoms of poisoning 

incidents. When a poisoning case appears, it is advised to query the patient, if possible, whether or not 

sea products had been consumed. If so, the patient will need to be admitted into hospital for gastric 

cleaning, ventilator and fluid support as there is no antidote available yet. Gastric content should be 

analyzed for confirmation of the poisoning agent. 

Few epidemiologic reports exist which are crucial to understanding emergent toxin health risks.  

For that reason, it is also crucial to develop faster, more accurate and reliable methods of identification 

and qualification of these poisons to better help health professionals in their diagnosis and treatment. 

4. Conclusions 

The efficiency of risk assessment of marine toxins relies on the monitoring of HABs and risk 

evaluation of phycotoxins in fish and shellfish. Detailed epidemiological studies are needed to better 

evaluate safety levels and to promote regulations updates that will protect human health and reduce 

economic losses. An international effort must be made to share information, to optimize certified 

materials and to explore more expeditious and sensitive methods, such as chromatographic and molecular 

ones. All this becomes more relevant and urgent in the case of new emergent toxins like TTX, PTX, CI 

and CTX. In comparison to toxins, which are regulated (DSPs and PSPs), emergent toxins demonstrate 

higher lethality, with the exception of the CI, posing a potentially higher human health risk and thus 

requiring further research.  
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