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Abstract 
Mitochondria are adaptable organelles with diverse cellular functions critical to whole-body 
metabolic homeostasis. While chronic endurance exercise training is known to alter 
mitochondrial activity, these adaptations have not yet been systematically characterized. Here, 
the Molecular Transducers of Physical Activity Consortium (MoTrPAC) mapped the longitudinal, 
multi-omic changes in mitochondrial analytes across 19 tissues in male and female rats 
endurance trained for 1, 2, 4 or 8 weeks. Training elicited substantial changes in the adrenal 
gland, brown adipose, colon, heart and skeletal muscle, while we detected mild responses in 
the brain, lung, small intestine and testes. The colon response was characterized by non-linear 
dynamics that resulted in upregulation of mitochondrial function that was more prominent in 
females. Brown adipose and adrenal tissues were characterized by substantial downregulation 
of mitochondrial pathways. Training induced a previously unrecognized robust upregulation of 
mitochondrial protein abundance and acetylation in the liver, and a concomitant shift in lipid 
metabolism. The striated muscles demonstrated a highly coordinated response to increase 
oxidative capacity, with the majority of changes occurring in protein abundance and post-
translational modifications. We identified exercise upregulated networks that are downregulated 
in human type 2 diabetes and liver cirrhosis. In both cases HSD17B10, a central 
dehydrogenase in multiple metabolic pathways and mitochondrial tRNA maturation, was the 
main hub. In summary, we provide a multi-omic, cross-tissue atlas of the mitochondrial 
response to training and identify candidates for prevention of disease-associated mitochondrial 
dysfunction. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2023. ; https://doi.org/10.1101/2023.01.13.523698doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.13.523698
http://creativecommons.org/licenses/by-nd/4.0/


 

2 

Abbreviations 

Abbreviation Definition 

BAT Brown Adipose Tissue 

BCAA Branched Chain Amino Acid 

DREM Dynamic Regulatory Events Miner 

ETC Electron Transport Chain 

GSEA Gene Set Enrichment Analysis 

HCM Hypertrophic Cardiomyopathy 

IHW Independent Hypothesis Weighting 

mtDNA Mitochondrial DNA 

NAFLD Nonalcoholic Fatty Liver Disease 

NASH Nonalcoholic Steatohepatitis 

OXPHOS Oxidative Phosphorylation 

PCA Principal Component Analysis 

RRBS Reduced Representation Bisulfite Sequencing 

SED Sedentary control animals 

SKM-GN Gastrocnemius Skeletal Muscle 

SKM-VL Vastus Lateralis Skeletal Muscle 

T2D Type 2 Diabetes 

TCA Tricarboxylic Acid Cycle 

WAT-SC White Adipose Tissue - Subcutaneous  
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Introduction 
Mitochondria are the essential powerhouses of eukaryotic cells. They generate over 90% of the 
ATP required for mammalian cellular homeostasis via oxidative phosphorylation. Indeed, 
through ATP production, their sensitivity to the cellular redox state and other signaling actions, 
mitochondria support and regulate many cellular processes, including steroid biosynthesis, 
ketone body generation, gluconeogenesis, ion homeostasis, cellular calcium signaling and 
programmed cell death1. Novel functions of mitochondrial proteins were recently discovered2, 
affirming the mitochondria as central hubs of metabolism. The circular mitochondrial DNA 
(mtDNA) encodes only 13 proteins, thus the majority of mitochondrial proteins are nuclear-
encoded3.  

A critical characteristic of mitochondria is their ability to adapt to subcellular-, cellular- and 
tissue-specific metabolic demands4,5. For example, mitochondria of cardiac and skeletal muscle 
have high capacities for aerobic ATP production to support increased energy demands during 
contraction/exercise6. In the liver, mitochondria support gluconeogenesis, ketone production 
and fatty acid synthesis and oxidation, and key functions that allow the liver to contribute to 
systemic energy substrate supply at rest, fasting or during physiological stress7. In brown 
adipose tissue, uncoupling of the inner mitochondrial membrane by uncoupling protein results in 
futile cycling and thermogenesis which are a critical adaptation for maintaining temperature 
during cold stress8. Given their central role in cellular homeostasis, it is perhaps not surprising 
that mitochondrial diseases are the most common form of inherited metabolic disorders9, and 
mitochondrial function has been linked to human health and disease risk, including type 2 
diabetes, obesity, cancer, neurodegeneration, fatty liver and hepatosteatosis and cardiovascular 
diseases10–13. 

Endurance exercise training is a repetitive stressor that results in robust increases in 
mitochondrial volume and ATP-generating capacity in the skeletal muscle. Indeed, training-
induced increases in skeletal muscle mitochondrial size and numbers and improvements in 
substrate oxidation have been known for many decades14,15. Moreover, endurance exercise 
training imparts a myriad of health benefits through its multipotent effects across tissues and cell 
types, many of which are likely mediated by adaptations in mitochondrial function. Despite this, 
while endurance exercise training improves mitochondrial quantity and quality in skeletal 
muscle16 and liver17, the effects in other tissues remain largely unknown, and system-wide multi-
omic changes specific to the mitochondria have not been investigated. 

The overall goal of the Molecular Transducers of Physical Activity Consortium (MoTrPAC) is to 
map the multi-omic response to exercise and training across tissues18. We have recently 
characterized the multi-omic changes across tissues in 6-month old female and male rats that 
were endurance exercise trained on a treadmill for 1, 2, 4 or 8 weeks19. Here, we focus on 
characterizing the longitudinal training response of mitochondrial analytes. Importantly, we 
included many tissues that have not been studied in detail before. Moreover, the majority of 
efforts in this area have included one sex only, generally studied at a single timepoint. Here, we 
studied male and female rats across 4 timepoints, enabling insight into time-course and sexually 
dimorphic mitochondrial responses to endurance exercise training. We generate a molecular 
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map of the multi-omic mitochondrial response to endurance training across 19 different tissues 
and provide translational value of our maps by comparing our results to differential gene 
signatures of human disease, revealing gene networks that are induced by exercise but are 
downregulated in disease. 

Results 

Endurance training alters biomarkers of mitochondrial volume across 
tissues  
Male and female 6-month old F344 rats were subjected to progressive endurance training on a 
motorized treadmill for 1, 2, 4 or 8 weeks. Additional sex-matched sedentary animals were 
collected as controls. Comparing trained animals to controls revealed increased aerobic 
capacity (VO2max) after 8 weeks of training in both males and females. Decreased body fat 
percentage was observed in males, whereas trained females retained their body fat percentage, 
preventing the increase that occurred over 8 weeks in the sedentary control females. The 
detailed training protocol and accompanying phenotypic adaptations have been described 
elsewhere19. Blood, plasma and 18 solid tissues were collected 48 hours after the last exercise 
bout. Samples were profiled for epigenomics using transposase-accessible chromatin using 
sequencing (ATAC-seq) and reduced representation bisulfite sequencing (RRBS), 
transcriptomics using RNA sequencing (RNA-seq), proteomics and post-translational 
modifications (phosphoproteome, acetylome and ubiquitylome) using LC-MS/MS, and 
metabolomics/lipidomics using using up to seven targeted platforms and six untargeted 
platforms (Fig. 1A, Methods). Transcriptomics and metabolomics/lipidomics were conducted on 
all 19 tissues, while proteomics and epigenomics were performed on selected tissues only (Fig. 
S1A)19. Assay-specific details, including processing pipelines, quality control, normalization and 
differential analyses are summarized in Methods.  

To determine changes in mitochondrial volume with training, we quantified three standard 
biomarkers of mitochondrial quantity: (1) mtDNA copy number normalized to nuclear DNA20, (2) 
the percent of RNA-seq reads mapped to the mitochondrial genome, and (3) cardiolipin content. 
Cardiolipins are mitochondrial membrane-specific lipids that correlate well with mitochondrial 
volume21. Mitochondrial DNA quantification was limited to 15 tissues in animals trained for 0, 1, 
or 8 weeks. In contrast, the RNA-seq biomarker was available in all animals and assayed 
tissues; the cardiolipin data was available in six tissues in all animals: brown adipose tissue 
(BAT), kidney, liver, lung, gastrocnemius muscle (SKM-GN), and subcutaneous white adipose 
tissue (WAT-SC). 

Striated muscle, brain and BAT were rich in mitochondria, in concordance with previous 
studies22,23. In contrast, biomarker analysis at baseline indicates a lower relative mitochondrial 
abundance in spleen, WAT-SC and lung (Fig. S1B-C). The percentage of mitochondrial RNA-
seq reads is, by definition, a relative measurement of the abundance of the mitochondrial-
encoded genes compared to all other transcripts. Thus, alternation in this relative abundance 
may be explained either by changes in mitochondrial volume or by independent alterations of 
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transcriptional regulation. In our data, it was markedly correlated with mtDNA (rho >0.5) in four 
tissues: SKM-GN, vastus lateralis muscle (SKM-VL), adrenal and BAT (Fig. 1B). Therefore, for 
downstream analyses we used it as a proxy for mtDNA in these tissues. We observed that 
different cardiolipins tended to be highly correlated across the samples from the same tissue 
(Fig. S1D-F).  

We observed a significant response to training in at least one of the mitochondrial biomarkers in 
15 of the 19 tissues (Supplementary data S1). Focusing on week 8, the percent of mitochondrial 
reads responded in eight tissues, with a concordant direction of response with mtDNA (Fig. 1C-
D). Moreover, the top responding sex-tissue combinations manifested a concordant response of 
the mitochondrial-encoded transcripts (Fig S2), suggesting potential changes in both mtDNA 
quantity and transcriptional activity. Specifically, global upregulation of these mitochondrial-
encoded genes was consistent with upregulation in both males and females for all three 
biomarkers in skeletal muscle (Fig. 1E, S2L). In contrast, the liver manifested a mild response 
that was limited to upregulation in males (Fig. 1F, see Fig. S3 and Supplementary data S1 for all 
biomarker data). In summary, we describe substantial cross-tissue differential changes of 
mitochondrial biomarkers in response to training, providing estimation of change in 
mitochondrial volume that were used for additional analyses.  

The mitochondrial multi-omic response to exercise training is tissue-specific 
We utilized MitoCarta 3.03 to identify mitochondria-associated genes and proteins, and data 
from Heden et al.24 to select mitochondrial metabolites. Principal component analysis (PCA) of 
the baseline mitochondria-associated transcriptome showed a clear primary separation by 
tissue, with additional separation by sex for multiple tissues (Fig. S4A). The baseline 
mitochondrial proteome was more similar across analyzed tissues, with distinct sex differences 
observed in WAT-SC and SKM-GN (Fig. S4B).  

Training regulated mitochondria-associated analytes across all -omes and tissues. In total, 719 
genes, corresponding to 63% of all mitochondria-associated transcripts, and 513 proteins (38% 
of all mitochondria-associated proteins) significantly changed with training in at least one sex 
and tissue. The most responsive tissues (>10% differential transcripts and/or proteins) were the 
adrenal gland, BAT, blood, colon, heart, liver, SKM-GN, SKM-VL and WAT (Fig. 2A). SKM-GN, 
liver and heart showed the greatest proteomic response, while the metabolome/lipidome 
changed the most in blood (plasma), heart and liver. In contrast, there was mild mitochondrial 
response in the three investigated brain regions (cortex, hippocampus and hypothalamus), 
kidney, lung, testes and vena cava (Fig. 2A). Interestingly, the lung had widespread changes in 
non-mitochondrial analytes19. The lungs and vena cava are tissues that experience large 
increases in blood flow with exercise but little change in metabolic demand. While there were no 
significant pathways enriched in mitochondria-associated analytes in the lung, we observed a 
decreased expression of superoxide dismutase (Sod2), similar to a previous study in rats on 
isolated lung mitochondria25. Very few significant endurance training related changes in protein 
phosphorylation and ubiquitination of mitochondrial proteins were observed across tissues. 
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Comparing the differential transcripts of the top nine responsive tissues demonstrated a largely 
tissue-specific response, with moderate overlap that was nevertheless significant for multiple 
pathways (Fig. 2B). Similar moderate-low overlap was also observed at the protein level (Fig 
S4C). The greatest transcriptional response was observed in the adrenal gland, followed by 
BAT and colon, where the commonly regulated genes (m=28) encoded tricarboxylic acid cycle 
(TCA) enzymes and subunits of Complex I (Fig. 2B).  

The differential analysis above mainly focused on an overall training response across sex and 
time. Subsequently, we used the same models for contrasting each training time point with its 
sex-matched controls. This analysis produced time- and sex-specific summary statistics 
including fold changes and z/t-scores (see Methods). We also utilized a graphical approach for 
representing these differential abundance analysis results in all tissues. This analysis takes 
these timewise z-scores from males and females, and uses the repfdr empirical Bayes 
algorithm26 to identify the main trajectories in a selected set of tissues and omes. These are 
used for visualization, identifying sets of analytes that change in a specific time- and sex 
combination, and mitochondria-specific pathway enrichment of these sets19 (see Methods).  

Using the graphical analysis results, we first focused on the long-term adaptation in week 8. 
MitoCarta3 pathway enrichment analysis identified a consistent multi-omic upregulation of 
numerous mitochondrial pathways in the heart, skeletal muscles, WAT-SC and liver (Fig. 2C). In 
the striated muscle tissues, the majority of the mitochondrial adaptation was sex-consistent. The 
liver response was also similar between the sexes, specifically in the proteome and acetylome, 
with very few transcriptional changes. Many mitochondrial pathways also increased in trained 
WAT-SC, but showed mostly sex-specific regulation. Training specifically induced carbohydrate 
and sulfur metabolism pathways in female WAT-SC, whereas induction of oxidative 
phosphorylation (OXPHOS) and proteins associated with cristae formation and calcium 
homeostasis were specific to males.  

Epidemiological evidence of reduced risk for colon cancer in trained individuals27 supports an 
effect of training on the colon. Interestingly, we observed a dynamic mitochondrial response, 
with an overall downregulation of mitochondria-associated transcripts after the first two weeks of 
training, and a delayed upregulation after 8 weeks (Fig. S5A-B). Importantly, many exercise 
interventions in animal studies are terminated at 4 weeks, where virtually no transcriptional 
changes were observed in our data. The overall response was substantially greater in females 
compared to males. Pathway enrichment analysis of the female-specific transcript changes 
showed induction of oxidative phosphorylation (all electron transport chain/ETC complexes 
apart from Complex II) and TCA cycle genes in response to 8 weeks of training (Fig. S5C). 
However, despite observing a greater differential response in females, these transcripts 
converged to similar values as males by week 8 (i.e., these had lower expression at baseline, 
see Fig. S5D). The majority of the mitochondrial proteome is nuclear-encoded, and import of 
presequence proteins through the mitochondrial membranes is therefore a critical function 
regulating mitochondrial biogenesis and homeostasis28. Sex-consistent upregulation was 
observed for the presequence import TIM23, where Timm23 and Timm50 were significant at the 
gene level. TIM23 is stabilized by cardiolipins in the mitochondrial membrane, thus the 
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combined increase in TIM23 and cardiolipin synthesis genes (i.e. Agpat4, Prelid1 and Ptpmt1) 
after 8 weeks of training suggests an altered mitochondrial membrane dynamics in the colon. 

Thus, we observe sexual dimorphism in the mitochondrial endurance training responses in the 
adrenal, colon and white adipose tissues, and a largely tissue-specific mitochondrial training 
response overall. 

Changes in mitochondrial volume partially explain the training response in 
the adrenal gland and brown adipose tissue 
Differential abundance of mitochondrial analytes can be explained by a change in mitochondrial 
composition/function, volume or by a combination of both. To determine which of the differential 
analysis results can be explained by changes in mitochondrial volume we repeated the 
differential analysis in eight tissues with adjustment for: (1) cardiolipin measured in six tissues 
(heart, kidney, liver, lung, SKM-GN, and WAT-SC), and (2) percent of mitochondrial RNA-seq 
reads (an mtDNA proxy in adrenal, BAT, SKM-GN, and SKM-VL). Overall, adjustment primarily 
affected transcript changes, whereas proteomic results had substantially fewer modifications to 
the sets of selected analytes (Fig. S6A).  

We next compared the timewise-specific results. For each analyte we used the pre- and post-
adjustment models and extracted the timewise z-scores, comparing each time point to its sex-
matched controls. This resulted in 16 z-scores: four time points before and after adjustment for 
each sex. We observed that most differential analysis results did not change substantially after 
adjustment, with only 799 analytes out of the 2,167 analyzed analytes (37%) producing a 
difference of three or greater in at least one of the time points (Extended Data S2). Clustering 
analysis of these 799 z-score trajectories identified four clusters using the k-means algorithm 
(Supplementary data S2). Fig. 3A shows the cluster trajectories, and Fig. 3B shows the cluster 
composition by tissue and -ome. Cluster 1 represents a downregulation pattern that is specific 
to BAT, whereas clusters 2 and 4 represent two responses of the adrenal gland. Cluster 3 was 
dominated by SKM-VL, demonstrating male differential transcripts at 8 weeks that were largely 
driven by changes in mitochondrial volume. The few genes that were explained by changes in 
mitochondrial volume in SKM-GN were mitochondria-encoded (Supplementary data S2). 
Differential genes affected by adjustment in SKM-VL were mainly encoding ETC components 
and a few TCA components, while genes associated with mitochondrial dynamics and amino 
acid metabolism were robust to adjustment for mitochondrial volume.  

Cluster 1 almost exclusively comprises  brown adipose transcripts, illustrating a marked 
decrease in males after 8 weeks (Fig. 3A), which is largely attenuated after the adjustment. 
Nevertheless, a slight downregulation still remains, suggesting that while some of the 
substantial transcriptional downregulation is due to a decrease in mitochondrial volume, several 
pathways may exhibit an additional relative downregulation among the mitochondrial analytes. 
While several studies demonstrate improved mitochondrial function with endurance training in 
WAT-SC, there are conflicting results in BAT29, with the majority of prior studies showing either 
no effect or a decrease in BAT mass and activity with training30–33. BAT is unique in its response 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 13, 2023. ; https://doi.org/10.1101/2023.01.13.523698doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.13.523698
http://creativecommons.org/licenses/by-nd/4.0/


 

8 

among our investigated tissues in its overall training-induced downregulation of mitochondrial 
analytes (Fig. 3C). This late (week 8) downregulation is observed in major mitochondrial 
metabolic pathways: the TCA cycle and oxidative phosphorylation (Fig. 2C, S6B-C), suggesting 
a reduced metabolic capacity in BAT with endurance training. Ucp1, which is considered the key 
thermogenic uncoupler, is downregulated specifically in males and mostly in week 8, whereas 
the chromatin accessibility and associated gene expression of Ucp2 are inversely correlated 
with Ucp1 (Fig. 3D-E). Ucp2 does not have the uncoupling potential of Ucp1 but has been 
shown to limit glucose oxidation and instead enhance glutaminolysis34. Together, these results 
suggest a potential mechanism for energy preservation in response to training. 

We used DREM (Dynamic Regulatory Events Miner)35 to identify potential upstream regulators 
of the mitochondrial response in BAT. DREM was specifically developed for time course data by 
combining clustering analysis with transcription factor prediction that may explain the identified 
trajectories. Known regulators of mitochondrial metabolic genes, including PPARA, PPARD and 
their coregulator PPARGC1A, are associated with the late onset of downregulation of 
mitochondria-associated genes in male BAT (Fig. S6D). Several predicted upstream regulators 
(e.g. CNBP, SAP18, CHURC1 and PHF5A) were significant also in colon and the adrenal 
glands, which together with BAT show the largest transcriptional changes with training.  

The adrenal gland, a previously unexplored tissue for training adaptation, had the largest 
mitochondrial response to endurance training, with differential expression of almost 50% of all 
mitochondria-associated genes (Fig. 2A, S7A). In our clustering analysis, the adrenal responses 
were separated into two clusters that are both largely explained by changes in mitochondrial 
volume. In both cases, the pre-adjustment trajectories are similar, showing a consistent 
downregulation in females across the time points, with a marked upregulation in males in week 
1 (Fig. 3A, S7B). This female-specific response covers the majority of genes involved in beta-
oxidation, the TCA cycle and the ETC (Fig. S7C-D). Post-adjustment, cluster 2 manifests 
downregulated patterns, with more similar male and female trajectories, while cluster 4 shows a 
nullified effect, with most post-adjustment cluster members having z-scores close to zero (Fig. 
3A, Supplementary data S2, Extended Data S2). Interestingly, these two clusters differ in their 
enrichment results, where the changes that are driven by a reduction in mitochondrial volume in 
females (cluster 4) are mainly associated with amino acid metabolism (Fig. 3F). The female-
specific decreases in fatty acid metabolism, TCA cycle and ETC are largely robust to 
adjustment, indicating a reduced mitochondrial metabolic capacity of the female adrenal gland 
with training on top of a reduction in mitochondrial volume. In light of extensive mitochondrial 
remodeling of the adrenal gland, we interrogated the potential drivers underlying these 
responses. PGC1a is a key regulator of mitochondrial biogenesis, and because the main 
differential trajectory includes many of the known PGC1a coactivator response genes36,  this is 
a likely underpinning of the observed changes. PGC1a followed the same main trajectory, 
increasing in males at week 1 with a decrease in females at week 8. Interestingly, several of the 
known interactors of PGC1a showed the same pattern, including the PPARs19, Fosb, Foxo1 and 
Thrb (Fig. 3G). Glucocorticoids, produced by the adrenal cortex, are known activators of PGC1a 
expression37, as are changes in energy balance, temperature and calcium concentration36. 
DREM predicted several transcription factors, including CNBP, SAP18, PHF5A and CHURC1, 
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as upstream regulators in the adrenal in both sexes (Fig. 3H, S7F). In females, additional 
factors were predicted, including PPARA, PPARG and ESRRA (Fig. 3H), which are all 
interactors of PGC1a. Thus, the DREM results collectively suggest potential upstream 
regulators of PGC1a and mitochondrial biogenesis in the adrenal gland in response to 
endurance training.  

In summary, we show that the sex-specific mitochondrial responses in BAT and adrenal glands 
are largely driven by changes in mitochondrial volume. The training-induced responses in other 
tissues are largely independent of changes in mitochondrial volume, thus reflecting adaptation 
in functional efficiency of differential pathways. 

Training induces sex-consistent mitochondrial upregulation and increased 
fatty acid metabolism in female skeletal muscle  
The SKM-GN analytes showed sex-consistent trajectories, with an overall upregulation across 
the 8 weeks of training (Fig. 4A). Interestingly, most of the mitochondrial changes occured 
already after a single week and remain differential across the entire 8-week training period. The 
main trajectory was driven by alterations at the protein level, with changes in OXPHOS seen for 
both transcripts and proteins. In contrast, lipid metabolism and TCA cycle enzymes were almost 
exclusively regulated at the protein level. These findings were concordant with pathway 
enrichment analyses of the sex-consistent upregulated genes in both SKM-GN and SKM-VL 
(Fig. 4B, Fig. S8A-C). Moreover, these enrichment analyses revealed female-specific metabolic 
effects of training. Females specifically increased lipid metabolism transcripts in SKM-VL and 
fatty acid oxidation proteins in SKM-GN, e.g. ACSS1, ECHS1, ECI1 and HADHA (Fig. 4C). 
Similarly, the complex III pathway was only upregulated in females (Fig. S8D).  

Phosphoproteome changes have been described in skeletal muscle in response to acute 
exercise38 but are lacking for long-term training. A large percentage of Complex I proteins are 
regulated by phosphorylation39,40, and increased phosphorylation of Complex I has been 
associated with increased activity in cardiac muscle41, although site-specific effects on individual 
enzyme activities are unknown. We observed an induction of Complex I phosphorylation in 
skeletal muscle with training (retained 48 hours after the last bout of exercise) (Fig. 4D), 
suggesting phosphorylation as a regulatory mechanism for increased ETC activity in response 
to long-term training. The abundance of several of the Complex I proteins also changed with 
training, but to a lesser extent compared to phosphorylation. Thus, we observe several levels of 
regulation associated with increasing oxidative capacity in skeletal muscle, which is critical for 
preventing age-related decline in mitochondrial function42. 

Endurance training alters the cardiac mitochondrial acetylome 
Differential analysis of cardiac mitochondrial analytes revealed a sex-consistent upregulated 
trajectory of transcripts and proteins across 8 weeks of training (Fig. 5A). The second largest 
trajectory showed delayed downregulation at week 8 (Fig. 5A-B). Training increased transcript 
abundance of OXPHOS genes, similar to skeletal muscle, while TCA, BCAA (branched chain 
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amino acid) and fatty acid metabolism pathways were regulated across multiple -omes (Fig. 5C, 
and Fig. S9A-B). These findings were corroborated by significant enrichment of cardiac tissue 
TCA acids and amino acids. Sex-consistent downregulated proteins were associated with 
Coenzyme Q metabolism, whereas a reduction in acetylation occurred for BCAA and lipid 
metabolism proteins (Fig. 5D).  

Endurance training induced multiple acetylation changes of mitochondrial proteins (220 
significant sites after 8 weeks of training, Supplementary data S3); a known regulatory 
mechanism of cardiac bioenergetics that has been associated with cardiac disease 
pathogenicity43 and cardiac aging44. The majority of acetylation changes occurred independently 
of changes in protein abundance following training (Fig. 5E-F). Sex-consistent protein-specific 
acetylation changes in response to 8 weeks of training occurred in key bioenergetic pathways 
(Fig. 5G). Multiple β-oxidation, BCAA and TCA cycle enzymes were significantly regulated at 
multiple individual acetylation sites. Reduced acetylation was primarily observed in HADHA (Fig. 
S9C), NDUFA12 and ACAT1. Reduced acetylation of ACAT1, an enzyme involved in both β-
oxidation and BCAA catabolism, occurred at lysines 260 and 265 (Fig. 5H), two sites where 
deacetylation is known to increase protein activity due to increased affinity for Coenzyme A45. 
Conversely, training induced acetylation of multiple lysines in cardiac aconitase (ACO2, Fig. 5I), 
which increases the activity of the TCA cycle enzyme46. SIRT3, the main protein deacetylase in 
cardiac mitochondria, showed a small but significant increase in protein expression after 8 
weeks of training. Thus, our study demonstrates major acetylation changes at specific cardiac 
mitochondrial proteins in response to training, suggesting a novel molecular mechanism for the 
cardioprotective effects of exercise. 

Remodeling of the metabolic protein acetylome drives training-induced 
mitochondrial adaptation in the liver 
Endurance training leads to functional improvements in hepatic mitochondria47, but the 
molecular mechanisms driving these changes are unknown. Eight weeks of training altered 
mitochondrial analytes across all -omes, with the majority of changes occurring at the level of 
protein and protein modifications. Very few transcriptional changes occurred (Fig. 6A), an effect 
that we observed in our previous MoTrPAC analysis19, which could be tied to higher rates of 
mRNA turnover in the liver48. The main trajectory in the liver showed male-specific increases 
across the first 4 weeks of training and an increase in both sexes after 8 weeks (Fig. 6A). The 
pathway enrichment for this trajectory was dominated by changes in acetylation of Complex V 
proteins, mitochondrial biogenesis and BCAA catabolism, as well as lipid metabolism proteins 
(Fig. S10A). The second largest trajectory, consisting of >200 analytes, remained unchanged 
during the first 4 weeks of training but subsequently increased in both sexes by week 8 (Fig. 
6A). Here, pathway enrichment was dominated by changes in mitochondria-encoded transcripts 
of Complex I (Mt-Nd1-6) (Fig. S10B).  

Notably, in Gene Set Enrichment Analysis (GSEA) that was independent of our graphical results 
above, males showed transient transcriptional adaptations for multiple pathways that did not 
result in elevations by week 8 (Fig. S10C). In contrast, in females, the same pathways tended to 
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be upregulated exclusively in week 8. Unlike the transcriptomic data, training-induced changes 
in mitochondrial proteins were more uniform across males and females (Fig. S10D). A notable 
sex-consistent exception was observed for mitochondrial dynamics pathways at week 8: these 
were reduced at the transcription level but elevated at the protein level (Fig. S10D). Recent 
studies showed upregulation of mitophagy flux in the liver in response to acute exercise49 but 
lower mitophagy/mitochondrial dynamics following training50. Therefore, transient increases in 
mitophagic flux following acute exercise may enhance mitochondrial quality and function after 
chronic training. 

Mitochondrial protein acetylation accounted for over 60% of the significant changes observed in 
liver following training (Fig. 2A). It is estimated that 35% of mitochondrial proteins are regulated 
by acetylation and up to 60% of all mitochondrial proteins have acetylation sites43,51.  The 
majority of the differentially acetylated mitochondrial proteins remained unchanged for protein 
abundance (Fig. 6B-C), demonstrating a specific post-translational regulatory mechanism in 
response to training. We observed significant changes in acetylation of multiple sites across 
many mitochondrial proteins involved in all major bioenergetic processes (Fig. 6D). In particular, 
there was an increased acetylation of multiple enzymes involved in lipid transport, lipid 
catabolism, and oxidative phosphorylation. In addition, increased acetylation was observed for a 
majority of enzymes in the BCAA degradation pathway, with a concomitant increase in the 
SLC25A44 protein, a mitochondrial BCAA transporter that increases with training also in human 
skeletal muscle52. Increased acetylation was especially notable in Complex V proteins (Fig. 6D, 
S10E). Interestingly, increased acetylation of Complex V with exercise training has also been 
observed in human skeletal muscle53, supporting the relevance of our findings for human 
mitochondrial adaptation. Acetylation of mitochondrial proteins is an important mechanism for 
regulating fatty acid metabolism54, as well as Complex I activity55, although the effect of site-
specific changes on enzymatic activity remains largely unknown. Acetylation occurs primarily 
through non-enzymatic mechanisms, i.e. mass action51,56, while the deacetylation process 
occurs through protein deacetylating enzymes. There was a small but significant overall 
increase in SIRT3 protein across all training timepoints in males, and after 8 weeks also in 
females (Fig. 6E). These data suggest that greater acetylation of hepatic mitochondrial proteins 
occurred despite concomitant elevation in SIRT3 activity, similar to the effect observed following 
training in cardiac tissue. Another mitochondrial sirtuin, SIRT4, also increases in the liver with 
training.  

Next, we delineated training-induced, site-specific acetylation changes of critical hepatic 
metabolic enzymes. HMGSC2 is the rate-limiting enzyme in the synthesis of ketones. Exercise 
increases ketogenic flux particularly if performed in postabsorptive conditions57; however, the 
chronic effects of exercise on ketogenic capacity are less known. Liver ketone body production 
provides an important alternative fuel source during exercise to muscle, heart, and neuronal 
tissues when glucose levels are challenged, and has been shown to attenuate skeletal muscle 
proteolysis during high-intensity exercise58. We observed deacetylation of lysines 310, 447 and 
473 in HMGCS2 (Fig. 6F), which are known to enhance HMGCS2 enzyme activity59. 
Deacetylation of pyruvate dehydrogenase complex component PDHA1 was also observed (Fig. 
S10F), and this protein modification enhances enzyme activity60, thus promoting oxidative 
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phosphorylation. In addition, acetylation of NDUFS3 (NADH:ubiquinone oxidoreductase core 
subunit S3 or Complex I 30kDa subunit) and CYP27A1 (bile acid synthesis), increased at 
multiple sites in the liver after 8 weeks of training. Acetylation of both proteins increased to a 
greater extent in males (Fig. S10G and H). These findings demonstrate the plasticity of the 
hepatic mitochondrial proteome and acetylome in response to endurance exercise training and 
provide novel targets for further mechanistic studies.  

Training upregulates protein networks that are downregulated in type 2 
diabetes and cirrhosis in humans 
Mitochondrial dysfunction is a hallmark of chronic diseases, including obesity, type 2 diabetes 
(T2D), nonalcoholic fatty liver disease (NAFLD) and neurodegenerative diseases. We examined 
the translational relevance of our identified mitochondrial gene sets. First, we performed disease 
ontology enrichment analysis, identifying disease terms in our training response such that the 
overlapping disease genes were enriched for MitoCarta genes (see Methods). The heart 
analytes that were downregulated in response to endurance training (5% FDR) were 
significantly associated with hypertension, whereas the upregulated analytes were enriched for 
myopathy terms (Supplementary data S4). The latter was also observed in the skeletal muscle.  

Second, we compared our results to nine proteomics disease datasets, which covered skeletal 
muscle of T2D patients; liver of NAFLD, NASH (nonalcoholic steatohepatitis) and cirrhosis 
patients; cardiac muscle of hypertrophic cardiomyopathy (HCM) patients; and rodent models of 
myocardial infarction and heart failure. We focused on proteomics as the majority of the 
observed changes in these tissues in our study occurred at the protein and protein modification 
levels. For 8 studies we obtained both differential proteins and the background set of all 
quantified proteins. When comparing differential proteins in disease to those that were 
differential in response to exercise, we found significant overlap in T2D for skeletal muscle, 
obesity and cirrhosis for liver, and HCM and heart failure for cardiac muscle (Fig. 7A). In 
contrast, there was no significant overlap with protein changes in response to myocardial 
infarction or NASH.  

Next we interrogated the directionality of the proteomic signatures in response to training 
compared to disease. We found a robust, sex-consistent, opposite regulation in response to 
training in our rats compared to protein signatures of human patients with T2D in two separate 
datasets (Fig. 7B). Focusing on our sex-consistent differential proteins that were regulated in 
the opposite direction in both T2D studies, we identified a dense protein-interaction network of 
exercise-upregulated proteins (Fig 7C). This network includes proteins of the mitochondrial 
matrix and proteins that are involved in ATP production through the TCA cycle and electron 
transport chain (q-value <5.4x10-7). Moreover, this network contains HSD17B10 (17-beta-
hydroxysteroid dehydrogenase 10) as a main hub. This protein is a mitochondrial 
dehydrogenase involved in fatty acid, amino acid and steroid metabolism. Interestingly, 
mutations in HSD17B10 cause the mitochondrial disease HSD10, leading to neurodegeneration 
and cardiomyopathy61. 
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In the liver, there was a striking opposite regulation in cirrhosis patients, uniquely in comparison 
to the training response in females. The sexual dimorphism in the liver response in this context 
is relevant considering that men are twice as likely to die from liver cirrhosis compared to 
women62.  We overlaid the common differential proteins that had an opposite fold change in 
exercise compared to disease on known protein-interaction and pathway networks. Exercise-
upregulated proteins clustered mostly separately from the exercise-downregulated proteins (Fig 
7D). This dichotomy was also observed when performing enrichment analysis: mitochondrial 
matrix and metabolic pathways were upregulated in response to training (and downregulated in 
cirrhosis), and RNA processing pathways were instead downregulated in response to training 
(q-value <3.7x10-7). Strikingly, HSD17B10, which was also observed in the T2D network, is the 
main hub of the exercise-upregulated proteins. In summary, our translational approach reveals 
multiple candidate mitochondrial proteins and pathways, with HSD17B10 as the main hub gene, 
for prevention of mitochondrial dysfunction in tissues critical for maintenance of whole-body 
metabolic health. 

Discussion 
While endurance exercise has been known to robustly increase mitochondrial mass and 
function in skeletal muscle for over 50 years14, its impact across other tissues in the body, and 
the time course of those changes, remains inadequately understood. Here, we provide a 
landscape of the time-course of mitochondrial multi-omic responses to chronic endurance 
training across 19 tissues in males and females, reflecting an integrative effect on whole-body 
metabolism with translational implications for type 2 diabetes and liver cirrhosis. We show that 
mitochondrial adaptation is largely tissue-, sex- and time course-specific, and we identify major 
acetylation changes at specific mitochondrial proteins in response to training in the heart and 
liver, suggesting a novel molecular mechanism for the cardio- and hepato-protective effects of 
exercise.  

Exercise is a powerful modulator of mitochondrial function and health in muscle16 and liver17, an 
effect that is conserved across mouse, rat and human. Importantly, while concerted efforts have 
been made to understand the mitochondrial multi-omic response in one or two tissues63,64, this 
has not been undertaken at the scale or breadth of this work. We show that endurance exercise 
training activates a concerted mitochondrial response in multiple tissues, including the scarcely 
investigated colon and adrenal glands. We observe the greatest multi-omic mitochondrial 
response in skeletal muscle, heart, liver, colon, adrenal gland, BAT, WAT-SC and blood. 
Importantly, identifying induction of Complex I phosphorylation as a potential mechanism for 
training-induced increases in ETC activity in skeletal muscle demonstrates how the breadth and 
scale of our data allows inspection of where regulation checkpoints may occur. We detected 
minimal mitochondrial changes in several tissues, including the brain, small intestine and 
spleen. While brain activity increases during exercise65, the brain regions assayed here are 
already rich in mitochondria with a high rate of glucose consumption at rest66 and the increase 
in metabolic demand during exercise is comparatively low67. Exercise-induced vasoconstriction 
of the renal and splanchnic vasculature67 could explain the lack of training-related mitochondrial 
changes in tissues such as the kidneys, spleen and small intestine. 
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Despite many common metabolic functions of mitochondria across tissues, the majority of the 
responses were tissue-specific. While we made initial steps here, further work is required to 
delineate the specific mechanisms underlying this diversity in response. Potential contributing 
factors include blood flow, exposure to exerkines, and energy demand and utilization.  
Specifically, blood flow to adipose tissue, the contracting muscle and the heart increases during 
exercise68, while flow to the liver is decreased although oxygen uptake increases69, with such 
repeated changes likely driving a mitochondrial response. 

We focused on potential mediation through changes in mitochondrial quantity to improve 
interpretability. Importantly, improvements in quantity (volume) and quality (structure and 
function) both contribute to overall mitochondrial health and function. We found that the majority 
of the multi-omic responses were robust to adjustment for markers of mitochondrial volume. 
Nevertheless, the transcriptomic changes in BAT and the adrenal gland were closely associated 
with changes in mitochondrial volume. Thermogenesis is the principal function of BAT, a tissue 
rich in mitochondria70. In contrast to females, males lost WAT-SC mass with endurance 
training19. In this context, our observed reduction in the metabolic/thermogenic activity of BAT 
could serve as an overall energy preservation effect in males. Decreased BAT mass and activity 
is also observed in chronically trained endurance athletes71, corroborating this hypothesis The 
physiological implications of reduced mitochondrial capacity in the adrenal gland in response to 
training remains elusive. However, the mitochondria are important stress response modulators 
known to affect sympathetic adrenal-medullary activation, catecholamine and 
cortisol/corticosterone levels72, and this mitochondrial adaptation is potentially reflective of 
reduced physiological stress after adapting to repeated bouts of exercise. 

Our study has some limitations that should be addressed by future studies. Our use of rat as a 
model was beneficial for exploring many tissues from the same animals, but required 
extrapolation to human for the translational analyses. Although we assess several biomarkers of 
mitochondrial volume, we lack direct functional measurements of mitochondrial respiration in 
this study. In addition, the acute, transient changes that govern mitochondrial dynamics are not 
captured using our experimental design, and therefore some of the acute signals that stimulate 
mitochondrial changes are not detected in this analysis. We are also studying whole organs with 
multiple cell types that may change in cellular composition following training and responses in 
specific cell types may be missed. In skeletal muscle, for example, there are increases in the 
endothelial cell population due to higher vascularization of trained muscle, and changes in fiber 
type distribution73. Finally, a general challenge of mitochondrial adaptation studies is that 
multiple proteins that localize to mitochondria (48%) can also be found in other cellular 
compartments74. While we addressed these issues indirectly by mechanistic interpretation of our 
results, deconvolving these two processes systematically poses an interesting computational 
challenge. 

Mitochondrial biogenesis and function are strongly impacted by sex75. For example, sexual 
dimorphism in the skeletal muscle transcriptome at baseline indicate higher lipid oxidation in 
female skeletal muscle76, but sex-specific responses to training are less clear, although the 
inclusion of more females in exercise studies indicate sex-specific responses77. This work 
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provides a foundational resource to understand the importance of sex on temporal mitochondrial 
adaptations to exercise across 19 different tissues. To this point, we find large sex differences in 
the temporal dynamics of mitochondrial analytes in response to training in the adrenal gland and 
BAT. We observed sex-consistent mitochondrial responses in skeletal muscle, as well as sex-
specific metabolic responses, including greater induction of lipid oxidation enzymes in females.  

Liver mitochondria play a critical role in oxidizing fat (abundant substrate), which provides ATP 
and substrates to fuel TCA cycle flux and gluconeogenesis78 which in turn maintain circulating 
glucose levels (limited substrate) during fasting and exercise79. Thus, hepatic mitochondria 
serve as a critical energy converter to maintain systemic energy metabolism. Endurance 
exercise training leads to functional improvements in hepatic mitochondria independent of 
increases in mitochondrial volume47,80, but the molecular mechanisms behind these changes 
are incompletely understood. Moreover, females show increased hepatic mitochondrial capacity 
both at baseline and following exercise50,81, changes likely due to metabolic demands of 
gestation and lactation. While it is well-established that chronic exercise training increases 
protein acetylation in skeletal muscle82, much less is known in the heart and liver. We find a 
dramatic remodeling of the liver mitochondrial acetylome with training, likely due to increased 
substrate flux through the liver and associated turnover of acetyl CoA in the mitochondria. 
Current dogma suggests that nutrient excess causes increased acetylation of mitochondrial 
proteins that lead to downregulated oxidation metabolism83. However, exercise is known to 
protect hepatic metabolic health and improve oxidative capacity and our results also show 
dramatic increases in acetylation in response to training. Moreover, exercise training also 
increases protein acetylation in skeletal muscle53,82, which is attributed to improvements in 
mitochondrial function following training. We observed increased acetylation of mitochondrial 
proteins in both liver and heart despite a concomitant increase in SIRT3, a mitochondria-specific 
deacetylase. This finding suggests that SIRT3 is not the cause of the changes in acetylation but 
may be increasing to control and break a post-translational modification mechanism, such as 
the shift of the ratio between NAD+ and NADH linked to cellular oxidative stress84. Whether 
acetylation of metabolic proteins plays a functional role in the training-induced improvement in 
metabolic health is unknown and warrants further study. 

Maintaining mitochondrial function is critical for prolonged healthspan, as mitochondrial 
dysfunction is a hallmark of aging and is associated with cardiovascular, metabolic and 
neurodegenerative diseases85. In contrast, endurance exercise training is a promising 
intervention for prevention or attenuation of mitochondrial decline. The mitochondrial proteome 
robustly responded to training in cardiac, skeletal muscle, and liver tissues, which motivated our 
comparison of the effects in these tissues with proteomic datasets from disease cohorts. We 
found opposite proteomic skeletal muscle response to training compared to changes observed 
in human skeletal muscle in T2D patients. There was also opposite regulation of the liver 
proteome in response to exercise in females compared to changes induced by liver cirrhosis in 
human patients. Interestingly, the same protein, HSD17B10, was identified as the central hub 
from protein interaction network analysis of the oppositely regulated proteins in both T2D and 
liver cirrhosis, though its first degree (exercise) upregulated neighbors were different. 
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HSD17B10 provides a promising target for future therapeutic and mechanistic studies of the 
health benefits of exercise in skeletal muscle and liver. 

Collectively, our work expands upon previous findings by providing an unprecedented multi-
omic resource of the mitochondrial adaptation to endurance exercise training. We have 
concurrently mapped mitochondrial changes to endurance exercise in 19 different tissues. 
Importantly, this MoTrPAC resource provides much-needed insight into sex-specific 
mitochondrial adaptations and how these changes occur over time. Altogether, considering the 
critical role that mitochondria play in maintaining tissue-specific and whole body metabolic 
health, this work provides an unparalleled resource to stimulate hypothesis-driven, mechanistic 
studies, as well as work aimed at identifying targets that can be leveraged therapeutically to 
combat mitochondrial dysfunction and metabolic diseases. 

Methods 

Experimental design 

Exercise training protocol 
Inbred male and female Fischer 344 rats were obtained from the National Institute of Aging 
(NIA) rodent colony. Rats were housed in pairs at a reverse dark-light cycle, kept at a 
temperature of 20-25°C and fed normal chow (Lab Diet 5L79). After familiarization (>10 days for 
reverse light cycle, 12 days for treadmill), rats were randomized to training or control. The rats 
were partitioned into three groups; 8-week rats that were randomized to training or control, 4-
week rats that were all assigned to training, and 1- and 2- week rats that were randomly 
assigned to 1- or 2-weeks of training. A total of 50 rats (5 males and 5 females per time point) 
were used for molecular analyses, with the exception of proteomics that was performed on 60 
animals (6 males and 6 females per time point). All training groups started training at 6 months 
of age and trained on a Panlab 5-lane rat treadmill (Harvard Instruments, Model LE8710RTS). 
Rats were exercised 5 days per week using a progressive protocol aimed to maintain an 
intensity corresponding to approximately 70% of VO2max (increasing grade and speed, see19 for 
details), with a maximal duration of 50min for the last two weeks of training. The starting 
treadmill speed was based on VO2max measurements obtained following familiarization. All 
animal procedures took place during the dark cycle and were approved by the Institutional 
Animal Care and Use Committee at the University of Iowa, where the training intervention took 
place. 

Phenotyping 
Body composition was measured using nuclear magnetic resonance (Minispec LF90II Body 
Composition Rat and Mice Analyzer) for all rats prior to training, and for the 4-week and 8-week 
animals five days prior to tissue harvest. Maximal oxygen consumption (VO2max) was similarly 
measured in all rats prior to training, and during the last week of training for the rats in the 4-
week and 8-week training groups and the sedentary group. The testing protocol consisted of a 
15-minute warm up at a treadmill speed of 9 m/min and 0° incline. The incline was subsequently 
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increased to 10° and the speed was increased by 1.8 m/min every 2 minutes86 until exhaustion, 
defined as when the rat sat on the shock area 3 consecutive times without responding to 
increased shock. Blood for lactate assessment was taken from the tail immediately after the 
test. The criteria for reaching VO2max was a leveling off of VO2 despite increased workload, a 
respiratory exchange ratio >1.05, and a blood lactate concentration ≥6 mM. 

Tissue collection 
All tissues were collected 48 hours after the last exercise bout. Food was removed three hours 
prior to the start of dissections, for which rats were sedated with inhaled isoflurane (1-2%) and 
kept under anesthesia until death. Blood was obtained through cardiac puncture, then the 
gastrocnemius muscle, subcutaneous white fat, right lobe of the liver, heart, and lungs were 
removed in that particular order. Removal of the heart resulted in death. A guillotine was 
subsequently used for decapitation, after which the brain was removed, and the hypothalamus, 
right and left hippocampus, right and left cerebral cortex were dissected out. After decapitation, 
the right kidney, right and left adrenal glands, spleen, brown adipose tissue, small intestine, 
colon, right testes or ovaries and right vastus lateralis were removed in that order. All tissues 
were flash-frozen in liquid nitrogen and stored at -80°C. 

Data generation and processing 

Aliquots of assay- and tissue-specific reference standards were included in all molecular assays 
to evaluate technical differences across batches. All assays, omic quantification pipelines, and 
quality assurance processes are described in19 and an overview is provided in the 
supplementary text. 

Reannotation of cardiolipin data 
In comparison to the initial dataset19, cardiolipin data was re-annotated after improvements to 
the spectral libraries were introduced.  We revisited the annotations to capture more compounds 
in the class across tissues compared to the initial dataset. 

mtDNA quantification 
The protein/DNA precipitate resulting from the organic extraction for metabolomics was dried 
under vacuum for one hour in a GeneVac EZ-2 evaporator. Dried samples were stored at -20°C 
until DNA extraction. DNA was extracted from dried pellets using a Qiagen DNeasy Blood and 
Tissue kit (Qiagen, Germany, #69506).  The DNA concentration in the eluate was determined 
and 50 ng of sample DNA was used for multiplex qPCR  Mitochondrial levels were quantified 
following the protocol of Nicklas et al87 using a 5’VIC reporter and a 3’TAMRA quencher dye and 
D-loop expression with a 5 ‘6-FAM reporter  and  3’ TAMRA-labeled  quencher. Amplification 
was carried in a 25ul reaction consisting of 1x TaqMan Universal Master Mix II (ThermoFisher, 
MA), using 200 nM each β-actin forward (GGGATGTTTGCTCCAACCAA) and reverse primers 
(GCGCTTTTGACTCAAGGATTTAA) to estimate nuclear DNA and 50 nM each mitochondrial D-
loop forward (GGTTCTTACTTCAGGGCCATCA) and reverse 
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(GATTAGACCCGTTACCATCGAGAT) primer and 100 nM each B-actin probe (VIC-
CGGTCGCCTTCACCGTTCCAGTT-TAMRA) and D-loop probe (6FAM- 
TTGGTTCATCGTCCATACGTTCCCCTTA-TAMRA). Forty cycles of amplification were 
performed on duplicate samples and relative mitochondrial levels calculated as CT(mito) - 
CT(nuclear) using the 2−ΔΔCT method88. 

Statistical analyses 

Differential analysis and mitochondrial analyte selection 
Differential analysis was conducted in each tissue, -ome and sex separately. The full details on 
the processing has been described elsewhere19. Briefly, DESeq289 was used for RNA-Seq, 
edgeR90 for RRBS , and limma91 for proteomics, metabolomics, and ATAC-seq data. As input, 
normalized data were used for proteomics, and ATAC-seq, and filtered raw counts were used 
for RNA-seq, and RRBS. For targeted metabolomics, the KNN-imputed (if it included > 12 
analytes) log2-transformed data were used; otherwise, log2-transformed data were used. For 
untargeted metabolomics, log2 KNN-imputed data were used. F-tests (limma, 
edgeR::glmQLFTest) or likelihood ratio tests (DESeq2::nbinomLRT, lrtest) were used to identify 
analytes that changed over the 8-week training time course. Male- and female-specific p-values 
were combined using Fisher’s sum of logs meta-analysis into a single p-value (training p-value) 
and p-value adjustment was performed using Independent Hypothesis Weighting (IHW)92, with 
IHW FDR ≤ 5% for each ome across tissues. Time- and sex-specific effects were calculated by 
comparing each training time point with its sex-matched sedentary control animals (timewise 
summary statistics) using the following functions: limma::contrasts.fit with limma::eBayes, 
DESeq2::DESeq and edgeR::glmQLFTest. Assay-specific covariates were included based on 
technical metrics (RNA integrity number, median 5’-3’ bias, percent of reads mapping to globin, 
and percent of PCR duplicates as quantified with Unique Molecular Identifiers (UMIs) for RNA-
Seq; fraction of reads in peaks and library preparation batch for ATAC-seq). For metabolomics 
data, meta-regression of the 1116 metabolites was performed using R’s metafor package93.  

MitoCarta 3.03 was used to select mitochondria-associated genes (RNAseq, RRBS and ATAC-
seq) and proteins (global proteomics, phosphoproteomics, acetylome and ubiquitylome). The 
MitoCarta list included 1136 human and 1140 mouse genes identified through mass-
spectrometry on isolated mitochondria from 14 different tissues, in combination with GFP-
tagging for localization, integration with other datasets and literature curation. This resource also 
assigns genes to a mitochondria-specific ontology, the MitoCarta 3.0 mitochondrial pathways 
(149 in total)3. The rat ortholog mapping of MitoCarta that was used to select mitochondrial IDs 
is provided in Supplementary data S7. Metabolite selection was based on Heden et al.24, see 
Table S5 for the full list of metabolites used.  

Graphical clustering analysis 
Graphical clustering analysis of the timewise summary statistics was described in19. In this work 
the graphical representation results were filtered down to represent the MitoCarta analytes (e.g., 
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for Fig. 3C, Supplementary data S3). We now briefly describe this graphical method. Z-scores of 
the IHW-selected analytes were modeled using a mixture distribution to separate null from non-
null cases and identify clusters while accounting for correlation over time and between the 
sexes. Let 𝑍 ∈ 𝑅!	#	$	#	% represent the input, where zi,j,k represents the z-score of analyte i ∈ 
{1,...,n} at the training time point j ∈ {1,...,t} of sex k ∈ {m,f}, with m=males and f=females. Under 
the assumption that zi,j,k follows a mixture distribution of null and non-null z-scores, each zi,j,k has 
a latent configuration hi,j,k ∈ {-1,0,1}, where -1 denotes downregulation, 0 denotes null (no 
change), and 1 denotes upregulation. A full configuration matrix (e.g., specifying if a z-score is 
null, up, or down for each time point in each sex) is denoted h ∈ {−1,0,1}$	#	% , and zi ∈ 𝑅$	#	% is 
the matrix of all z-scores of analyte i. The expectation-maximization (EM) process of the repfdr 
algorithm26,94 was used to estimate for each possible h both its prior probability π(h) and its 
posterior Pr(h|zi), for every analyte i. The locfdr R package 95,  is used in this process to infer the 
marginal mixture distribution of each time point j and sex k. That is, all z-scores (i.e., not limited 
to mitochondrial analytes) z*jk are used to estimate the densities: 𝑓&,((𝑧|𝐻),&,( = −1) 	= 𝑓*+,&,((𝑧)	, 
𝑓&,((𝑧|𝐻),&,( = 0) 	= 𝑁(0,1), and 𝑓&,((𝑧|𝐻),&,( = −1) 	= 	𝑓+,&,((𝑧). We excluded configurations h with 
π(h) < 0.001 and normalized Pr(h|zi) to sum to 1. The new posteriors can be interpreted as a 
soft clustering solution, where the greater the value is, the more likely it is for analyte i to 
participate in cluster h.  

We use these posteriors to assign analytes to “states”, where a state is a tuple (sm,j, sf,j), where 
sm,j is the differential abundance state null, up, or down (0,1, and -1 in the notation above, 
respectively) in males at time point j (sf,j corresponds to females at time point j), resulting in nine 
possible states in each time point. For example, assume we inspect analyte i in time point j, 
asking if the abundance is upregulated in males while null in females, then we sum over all 
posteriors Pr(h|zi) such that hm,j=1 and hf,j=0. If the result is greater than 0.5, then we assign 
analyte i to the node set S(sm,j, sf,j). We use S(sm,j, sf,j) to denote all analytes that belong to a 
state (sm,j, sf,j) and for every pair of states from adjacent time points j and j+1 we define their 
edge set E(sm,j, sf,j, sm,j+1, sf,j+1) as the intersection of S(sm,j, sf,j) and S(sm,j+1, sf,j+1). Note that these 
can be defined using a similar marginalization as was done to define the node sets, but in 
practice we found that these two approaches resulted in almost identical results. The sets S and 
E together define a tree structure that represent the differential patterns over sex and time.  

Enrichment analyses and pathway annotation of selected sets 
Analytes were mapped to Ensembl gene IDs. For each identified analyte set (e.g., a node or an 
edge set from the graphical clustering above), we performed pathway enrichment analysis using 
the full MitoCarta 3.0 gene list as background. Enrichment analysis was also performed using 
the KEGG and REACTOME rat pathways (organism “rnorvegicus”) using the gprofiler2::gost 
function in R96. Nominal p-values were calculated using a one-tailed hypergeometric test, and 
were then adjusted across all results using IHW with tissue as a covariate. Pathways with a q-
value < 0.1 were considered significant. Fig. 2C displays significantly enriched pathways 
(TRNSCRPT, PROT, ACETYL) for the 8-week node for all tissues with at least one enriched 
pathway (<5% BH FDR), the top pathway from each MitoCarta subcategory with the greatest 
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number of enrichments in shown. All enrichment results are available in Supplementary data 
S6. 

To identify which mitochondrial pathways were most differentially regulated within each tissue 
across timepoints and within each sex, we used our identified repfdr sets (see previous section) 
together with the MitoCarta 3.0 human database. Here, each significant analyte was annotated 
to one of 8 major MitoCarta mitochondrial pathway groups including metabolism, mitochondrial 
central dogma, mitochondrial dynamics and surveillance, oxidative phosphorylation, protein 
import, sorting and homeostasis, signaling, small molecule transport and “other”. Analytes 
(proteins or genes) within each pathway were then separated by time point and differential 
regulation by sex according to state score. For example, for a given time point we can assign 
analytes to a pattern that represents upregulation in both males and females (denoted as 
F1_M1), or upregulation in females and downregulation in males (denoted as F1_M-1). This 
representation was used to display the number of time-dependent and sex-specific differentially 
regulated features in each pathway. 

PCA 
Principal Component analysis with scaling was performed on the sedentary 8-week control 
animals from the RNA-seq and proteomics data separately. The first two components 
contributed to the majority of the variance in both the datasets with the first component 
revealing clear tissue-specific differences.  

Biological network analyses 
Pathway and protein interaction networks of a selected set of genes were created using 
GeneMANIA97 and visualized using the Cytoscape software98.   

Disease ontology enrichment analysis 
We first filtered the disease ontology database before applying the enrichment analyses. Our 
rationale here was that many disease terms may be enriched with general biological processes 
that are relevant for many tissues both in health and disease states (e.g., cell proliferation in 
cancer disease terms), and are thus not likely to reflect a true association between our exercise-
specific results and diseases. We therefore generated tissue-specific disease ontology terms by 
utilizing gene expression data from GTEx v899. For each disease ontology term and a tissue 
(covered by GTEx) we computed the p-value for the overlap between the term’s gene set and 
the tissue’s gene set. If the p-value was greater than 0.01 then we omitted the term from the 
tissue’s analyses. Disease ontology enrichment analysis was then performed using the DOSE R 
package98 for each of our tissue- and ome-specific gene sets that had at least 10 genes. For our 
mitochondrial-focused analysis we then report results that are: (1) significant at 5% FDR, (2) 
had at least three genes in the intersection between our set and the disease term gene set, and 
(3) the overlapping gene set from (2) was significantly enriched for MitoCarta genes (p<0.05, 
hypergeometric test). The results are available in Supplementary data S4. 
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Gene and post-translational modification set enrichment analyses 
Gene set enrichment analysis (GSEA) and post-translational modification set enrichment 
analysis (PTM-SEA) was performed using ssGSEA2.0100. The input for GSEA was the t-scores 
from the timewise comparisons for all analytes (not just mitochondrial). Here, analytes were 
integrated into gene ids by taking the most significant t-score (i.e., the one with the maximum 
absolute value). Phosphosite-level t-scores and the human PTMSigDB100 were used as input for 
PTM-SEA. We used the MitoPathways database from MitoCarta 3.03 to identify enriched 
mitochondrial pathways. Human gene symbols were mapped to rat orthologs before running the 
analysis. We used the NCBI Reference Protein Sequence database (RefSeq) to annotate 
protein IDs, and mapped PTM sites from rats to humans using BLASTp to align rat sequences 
to the human UniProt fasta sequence database, and used alignments with >60% sequence 
identity for mapping. For both GSEA and PTM-SEA, we ran the ssGSEA2 function with 
parameters that avoid normalization, required at least 5 overlapping features with the gene set, 
and used the area under the curve as the enrichment metric (sample.norm.type = “none”, 
weight=0.75, correl.type = “rank”, statistic = “area.under.RES”, output.score.type = “NES”, 
min.overlap=5). 

DREM 
We used DREM35 for network inference of transcription factors driving the transcriptional 
changes in specific sex and tissue combinations across the 8-week training time course. 
Selecting for MitoCarta genes, we used the z-score per gene in each time point as input. For 
transcription factor-target data we used the network inferred by NicheNet101. To use the 
NicheNet network, we mapped the rat gene symbols to human symbols using data from RGD 
(v39). We used a low penalty for adding nodes (40) and a convergence likelihood of 0.01%. We 
also ran the models using all the transcriptome results to confirm that the predicted transcription 
factors were identified using the entire transcriptome as well, with the appropriate background. 

Comparison to disease datasets 
Our differential proteomic results from the endurance training intervention were compared to 
case-control proteomic results from disease cohorts. The skeletal muscle results were 
compared to two human skeletal muscle T2D cohorts102,103, the liver results were compared to 
human liver datasets for NASH, cirrhosis104 and NAFLD105, as well as a mouse dataset on 
obesity106. The cardiac results were compared to a human cardiac proteomic study on 
hypertrophic cardiomyopathy107, and the effects of myocardial infarction108 and heart failure109 in 
rat cardiac muscle. For each comparison of rat vs. human results we first subsetted the data to 
the protein ids shared by both platforms. That is, we set the background for the comparison to 
the set of proteins that were quantified (i.e., not necessarily significantly differential) in our 
platforms and that of the compared human study (when available). Then, we computed the 
significance of the overlap between the human study reported significant protein ids and our 
IHW-selected protein ids via Fisher’s exact test. Among the proteins that were in this overlap, 
we again tested for directionality of the effects using Fisher’s exact test, but with the alternative 
being of overlap lower than expected. For example, if 10 proteins were identified as significant 
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in both the human study and our rat study, then we annotated each one by their sign of 
differential abundance as up/down (week 8 results from the rat, performed for each sex 
separately). Then, we applied Fisher’s exact test for the null hypothesis that the sign 
concordance between the two resources is random, and the alternative that the discordance is 
greater than expected by chance. 
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Figures and legends 

 

Figure 1. Training-induced changes in biomarkers of mitochondrial volume. A) Overview 
of the experimental design. Fischer 344 rats were subjected to a progressive treadmill training 
protocol. 19 tissues were collected from male and female rats that remained sedentary (SED) or 
completed 1, 2, 4, or 8 weeks of exercise training (tissues were harvested 48 hours after the last 
exercise bout). The tissues were assayed for epigenomics (8 tissues), transcriptomics (19 
tissues), proteomics (7 tissues), post-translational modifications (phosphoproteome on 7 tissues 
and acetylome on 2 tissues), and metabolomics (19 tissues). Mitochondria-associated 
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transcripts and proteins were selected using MitoCarta 3.0 and mitochondrial metabolites from a 
previously published dataset (ref. 24). HIPPOC = Hippocampus, HYPOTH = Hypothalamus, 
SMLINT = Small Intestine, SKM-GN = Gastrocnemius Skeletal Muscle, SKM-VL = Vastus 
Lateralis Skeletal Muscle, WAT-SC = Subcutaneous White Adipose Tissue, BAT = Brown 
Adipose Tissue, VENACV = Vena Cava. Created using BioRender.com. B) Correlation between 
mtDNA quantification and the percentage of mitochondrial RNA-seq reads across tissues. 
Dashed line represents rho=0.5. C) Training response of biomarkers of mitochondrial volume 
after 8 weeks of training. Cells marked with X are not significant (p>0.05). Cells marked with a ? 
represent tissues in which the biomarker was not assessed. Color scale is proportional to the 
ANOVA-test z-score. D) Comparison of the number of significant training responses of the 
mitochondrial biomarkers (p<0.05). E-F) Visualization of biomarker data in SKM-GN (E), and 
liver (F). Each boxplot represents the abundance level in a specific sex and time group. ANOVA 
statistics are provided for each tissue and sex combination. The whiskers extend from the hinge 
to the largest and lowest values, but no further than 1.5 * (the interquartile range). 
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Figure 2. The multi-omic mitochondrial response to training across tissues. A) Heatmap 
of the number of mitochondria-associated analytes that significantly changed in abundance over 
the training time course in at least one sex (5% FDR). Each cell represents results for a single 
tissue and data type. Numbers indicate the number of training-differential mitochondrial analytes 
and colors indicate the proportion of measured analytes identified in MitoCarta that are 
differential. B) UpSet plot of the training-differential MitoCarta transcripts across tissues. 
Numbers above vertical bars indicate the number of transcripts differentially regulated by 
training in the tissues indicated by connected points below the bar. Horizontal bars indicate the 
total number of differential transcripts in each tissue. Pathway enrichment results using the 
MitoCarta pathways are shown for the colored bars; purple represents the 28 differential genes 
that were common in the adrenal glands, BAT and colon, whereas the blue bar represents 11 
differential genes that were common among six tissues. C) MitoCarta pathway enrichments for 
the 8-week training timepoint in the 9 tissues that showed the greatest mitochondrial training 
response. The 8-week male and female differential transcripts were identified using our 
graphical analysis (see Methods). The plot shows the top pathway from each MitoCarta 
subcategory with the greatest number of enrichments. This was determined by taking the sum-
of-log combined p-value per tissue and pathway. Each point represents a significant pathway 
enrichment in a given node, where the direction of the triangle indicates the direction of the 
training effect (up or down) and the color indicates the corresponding sex (blue = male, pink = 
female, black triangle indicates sex-consistent enrichment).  
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Figure 3. Changes in mitochondrial volume partially explain the training response in the 
adrenal gland and brown adipose tissue. A) Clustering analysis showing patterns affected by 
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adjustment for biomarkers of mitochondrial volume. B) Characteristics of the clusters in A. 
Number of total analytes, distribution across –omes and tissues is illustrated for each cluster. C) 
Graphical representation of the mitochondria-associated training-differential analytes in brown 
adipose tissue (BAT). Each node represents one of nine possible states (row labels, with F for 
females and M for males, seven states shown) at each of the four sampled training time points 
(column labels). Edges are drawn between nodes to represent the path of differential analytes 
over the training time course, with color representing the –ome. This graph includes the five 
largest paths for the BAT. Both node and edge size are proportional to the number of analytes 
represented by the node or edge. D) Gene expression changes (log2 fold-change) of Ucp1 and 
Ucp2 in females (left) and males (right). * indicates significant timewise change (FDR<0.05). E) 
Correlation between changes (log2 fold-change) in Ucp2 expression and chromatin accessibility 
(intronic region of UCP2, chr1:165508254-165509507). Each point represents the average for 
n=5 animals assayed for that timepoint and sex. F) Pathway enrichment analysis of the clusters 
affected by mitochondrial volume from A using the MitoCarta 3.0 Pathways. Color indicates 
significance of the enrichment (q-value) and size indicates fraction of analytes in the cluster that 
is part of the pathway. G) Gene expression changes (log2 fold-change) of examples of known 
PPARGC1A interactors. All are significantly upregulated in males after 1 week and 
downregulated in females after 8 weeks, with exception of Jund, which is significantly regulated 
in the opposite directions (FDR<0.05). H) Dynamic regulatory events miner (DREM) analysis 
results of the MitoCarta genes in female adrenal gland predict several transcription factors to be 
involved in the early (1w) responses. 
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Figure 4. Endurance training induces largely sex-consistent increases in metabolic 
protein abundance in skeletal muscle. A) The dynamics of the molecular training response 
visualized by constructing a summary graph in which rows represent nine combined states (row 
labels, with F for females and M for males, seven states shown) and columns represent the four 
training time points. Nodes correspond to a combination of time, sex, and state. An edge 
connects two nodes from adjacent time points, representing a local temporal pattern, with edge 
color representing the –ome. The differential abundance trajectory of any given training-
regulated analyte is represented by drawing a path through the nodes in this graph. This graph 
represents the mitochondria-associated training-differential analytes in the gastrocnemius 
(SKM-GN). This graph includes the five largest trajectories (by number of analytes). Both node 
and edge size are proportional to the number of analytes represented by the node or edge. B) 
Network view of pathway enrichment results corresponding to the analytes of the week 8, sex-
consistent upregulation nodes in SKM-GN (A) and SKM-VL. Nodes indicate significantly 
enriched pathways (10% FDR), and an edge represents a pair of nodes with a similarity score of 
at least 0.3 between the gene sets driving each pathway enrichment. Node fill color indicates for 
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which –ome or –omes a pathway is significant, while border color indicates if the pathway is 
significant in one or both skeletal muscle tissues. Node size is proportional to the number of 
differential analyte sets (e.g., vastus lateralis transcripts) for which the pathway is significantly 
enriched. Clusters of enriched pathways were defined using Louvain community detection, and 
are annotated with high-level biological themes. C) Fatty acid oxidation pathway enrichment for 
the gastrocnemius (SKM-GN) proteome. Only significant genes are shown. Rows are clustered 
using hierarchical clustering. D) Log2 fold changes of significant differential protein 
phosphorylation sites in Complex I proteins in males and females. All phosphorylation changes 
are significant in females, whereas all except Ndufs5_T93 are significant in males after 8 weeks 
of training. 
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Figure 5. Endurance training alters the cardiac mitochondrial acetylome. A) Graphical 
representation of the mitochondria-associated training-differential analytes in the cardiac 
muscle. Each node represents one of nine possible states (row labels, with F for females and M 
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for males, seven states shown) at each of the four sampled training time points (column labels). 
Edges are drawn between nodes to represent the path of differential analytes over the training 
time course, with color representing the –ome. This graph includes the five largest paths for 
cardiac muscle. Both node and edge size are proportional to the number of analytes 
represented by the node or edge. B) Number of significantly up- and downregulated 
mitochondria-associated cardiac transcripts and proteins at each training timepoint, with color 
representation based on the main MitoCarta pathway association of each analyte. C-D) Network 
view of pathway enrichment results corresponding to the analytes C) downregulated in both 
sexes after 8 weeks (the 8w_F-1_M-1 node in (A)) and D) upregulated in both sexes after 8 
weeks (the 8w_F1_M1 node in (A)). Nodes indicate significantly enriched pathways (10% FDR), 
and an edge represents a pair of nodes with a similarity score of at least 0.3 between the gene 
sets driving each pathway enrichment. Node fill color indicates for which –ome or –omes a 
pathway is significant, while a black border color indicates if the pathway is significant in both 
the down- and upregulated nodes. Node size is proportional to the number of differential analyte 
sets for which the pathway is significantly enriched. Clusters of enriched pathways were defined 
using Louvain community detection, and are annotated with high-level biological themes. E-F) 
Correlation between changes (log2 fold change) in protein levels and acetylation levels in males 
(E) and females (F). Orange color indicates MitoCarta proteins, while other proteins are shown 
in grey. G) Significant acetylation and phosphorylation changes (FDR<0.05) of mitochondrial 
metabolic proteins in male and female cardiac muscle after 8 weeks of endurance training (sites 
changing in only one sex are not illustrated). Each lollipop represents a specific acetylation 
(rounded top) or phosphorylation (diamond top) site, where red color indicates increases and 
blue decreases. Multiple lollipops on the same protein indicates several sites significantly 
changed with training. Hadha had 8 differentially acetylated sites in total, out of which only 6 are 
illustrated due to space constraints. Proteins displayed with a name different than the official 
gene name are Atp5b = Atp5f1b, Atp5c = Atp5f1c, Atp5a1 = Atp5f1a, Atp5j = Atp5pf, Atp5f1 = 
Atp5pb, Atp5o = Atp5po. H) Site-specific acetylation changes in ACAT1 in males (top panel) 
and females (bottom panel), and in I) ACO2 in males (left panel) and females (right panel). All 
displayed sites were differentially acetylated overall (taking all timepoints and sexes into 
account, FDR<0.05), and sites that reach timewise significance (FDR<0.05) are highlighted with 
black frames. 
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Figure 6. Training-induced mitochondrial adaptation in the liver through protein 
acetylation. A) Graphical representation of the mitochondria-associated training-differential 
analytes in the liver. Each node represents one of nine possible states (row labels, with F for 
females and M for males, seven states shown) at each of the four sampled training time points 
(column labels). Edges are drawn between nodes to represent the path of differential analytes 
over the training time course, with edge representing the –ome. This graph includes the five 
largest paths for liver. Both node and edge size are proportional to the number of analytes 
represented by the node or edge. B-C) Correlation between changes (log2 fold change) in 
protein level and acetylation level in B) male and C) female liver. Pink color indicates MitoCarta 
proteins, while other proteins are shown in grey. D) Significant acetylation and phosphorylation 
changes (FDR<0.05) of mitochondrial metabolic proteins in male and female liver after 8 weeks 
of endurance training (sites changing in only one sex are not illustrated). Each lollipop 
represents a specific acetylation (rounded top) or phosphorylation (diamond top) site, where red 
color indicates increases and blue decreases. Multiple lollipops on the same protein indicates 
several sites significantly changed with training. Proteins with more significant differential sites 
than could be fitted into the illustration due to space were; Atp5c 9 sites, Atp5a1 9 sites, Atp5h 
13 sites, and Idh2 15 sites in total. Proteins displayed with a name different than the official 
gene name are Atp5b = Atp5f1b, Atp5c = Atp5f1c, Atp5a1 = Atp5f1a, Atp5j = Atp5pf, Atp5h = 
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Atp5pd, Atp5f1 = Atp5pb. E) Protein expression changes (log2 fold change) in Sirt3 and Sirt4. 
Females are represented by circles and males by triangles. * indicates significant change with 
training (FDR<0.05). F) Site-specific acetylation changes in HMGCS2 in males (left panel) and 
females (right panel). All displayed sites were differentially acetylated overall (taking all 
timepoints and sexes into account, FDR<0.05), and sites that reach timewise significance 
(FDR<0.05) are highlighted with black frames. 

 

Figure 7. Training results in opposite regulation of mitochondrial proteins compared to 
type II diabetes and cirrhosis. A) Significance of the overlap between the exercise-regulated 
differential proteins compared to identified proteins in case-control proteomics disease cohorts. 
The horizontal line represents p=0.05. MI = Myocardial Infarction, HCM = Hypertrophic 
Cardiomyopathy, NASH = Non-alcoholic Hepatosteatosis, Cirr = Cirrhosis, T2D = Type 2 
Diabetes. B) Significance of the opposite directionality (Fisher’s exact test) when comparing the 
fold change sign of the overlapping proteins from (A). NAFLD = Non-alcoholic Fatty Liver 
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Disease, HF = Heart Failure. C) Skeletal muscle T2D network. GeneMANIA network of the 
differential proteins that had sex-consistent response in week 8 of training and were both 
significant and had opposite direction of effect in two separate T2D cohorts. D) Liver cirrhosis 
network. GeneMANIA network of the 8-week female differential proteins that were both 
significant and had opposite direction of effect in the liver cirrhosis cohort.  
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